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Abstract—Evolutionary Algorithms (EAs) are able to find out 

solutions in many fields and complex disciplines. Parallel 

Evolutionary Algorithms (PEAs) solve many kinds of problems, 

as well; moreover it overcomes problems with run time 

constraints when the problems being solved are much more 

complex. Thereby, we can state that PEAs can be efficient and 

faster than a regular EA. On the other hand, parallel 

programming brings new substantial problems to the developers 

that have to deal with synchronization and a different debugging 

process, increasing the learning curve and the programming 

efforts. In this context, we developed a web-based software that 

automatically creates java code for parallel genetic algorithms 

and parallel evolutionary strategies, reducing the required time 

to develop this kind of application. Two parallel models were 

implemented, the island model and master-slave. Further, the 

design patterns strategy and observer were applied in the 

generation of the PEAs code in order to increase the software 

maintainability and legibility. An experiment was conducted in 

order to show how our software can reduce the time consuming 

of an EA. 

Keywords—Parallel Evolutionary Algorithms, Automatic Code 

Creation, Design Patterns. 

I. INTRODUCTION 

Evolutionary Algorithms (EAs) are search algorithms based 
on natural evolution [1], which can find out good solutions in a 
reasonably amount of time. However, as they solve harder 
problems there is an increase in the running time in order to 
find adequate solutions. As a consequence, there have been 
multiple efforts to make EAs faster, and one of the most 
promising choices is to use parallel implementations [2]. 

The concept of Parallel Evolutionary Algorithms (PEA) is 
quite simple. Despite this, the use of parallel computing 
demands challenges such as the synchronization between 
demes and the proper exploration of parallel algorithms. 
Furthermore, the lack of experience in developing parallel 
applications might impact directly in the productivity of 
parallel evolutionary applications. 

In order to overcome the problems raised by parallel 
computing, Jaquie [3], Malacarne [4], Passini & Dotti [5] and 
Rodrigues et. al. [6] present some tools that produce parallel 
code automatically. However, users have to implement their 
specific code. In this sense, Hawick & Playne [7] create an 
approach for generating parallel code to solve partial 

differential equations (PDEs); Linford et. al. [8] present a 
general analysis and code generation tool that achieves 
significantly reduced time-to-solution for chemical kinetics 
kernels on three multicore platforms. In Cahon et. al. [9] is 
presented the ParadisEO, which is a framework that provides a 
generic set of classes for implementing parallel and distributed 
metaheuristics. Further, ParadisEO offers different models of 
parallelization using MPI, PVM and PThreads. Inspite of this, 
the user has to implement the specific classes of his application 
and learn how to use those classes properly. To the best of our 
knowledge, there is no work that automatically produces 
parallel code for evolutionary algorithms. 

In this context, this work presents the Java Parallel 
Evolutionary Algorithms Generator (JPEAG), which is a 
template-based parallel code generator that produces parallel 
evolutionary algorithms in Java, where users have to 
implement only the evaluation function because it is specific 
for each application. Nonetheless, this function can be inserted 
by means of the graphical interface. Thus, the code is ready to 
be compiled and executed. Currently, JPEAG can create code 
for parallel genetic algorithms and parallel evolutionary 
strategies, using real-coded individuals. However, extensions 
for generating other kinds of PEA can be easily implemented 
into the software. 

The remaining of this paper is divided as following: Section 
II shows the basic concepts of evolutionary algorithms and 
parallel evolutionary algorithms; Section III presents briefly the 
theory about code generation; Section IV illustrates how the 
design patterns was used and applied into the codification of 
PEAs; Section V deals with the development of the JPEAG; 
finally, Section VI presents the conclusion of this work. 

II. EVOLUTIONARY ALGORITHMS 

Basically, evolutionary algorithms try to find out the best 
solution for a specific problem processing a population of 
individuals, where each one represents a possible solution. The 
population has to undergo genetic operators on many iterations 
until reach some stop criteria as follows: (i) certain amount of 
iterations, (ii) there is no more evolution, or (iii) the algorithm 
gets to the known optimal. Fig. 1 shows the structure of an EA. 

In the first step, the population is initialized at random, 
normally using auniform distribution. Then the population is 
evaluated in order to determine how each individual fits to the 
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solution. The better is the fitness, the stronger is the individual 
within the population, so might be higher the probability of an 
individual to be selected for genetic operators or to go to the 
next iteration (generation), that depends on which EA is 
running on. 

 

Fig. 1. Structure of an EA. 

Typically, the genetic operators are selection, crossover and 
mutation. Selection is the process of choosing individual to 
undergo to genetic operators or to go to next generation. 
Parents exchange information (genes) between themselves in 
order to create one or more offspring, in the crossover operator. 
Ideally, when two strong individuals exchange genes the 
offspring is stronger than its parents [10] and then, spread its 
genes in next generations. On the other hand, this behavior can 
lead to a premature convergence of the solution because the 
population can be trap into local optima. The mutation operator 
has the purpose of avoid the premature convergence applying 
some modifications to one or more genes. In other words, the 
process of using genetic operators tends to improve the 
solution quality as new generations carry on [11].  

Taking this operators into account, we can notice that 
several EA share similar features. For instance, genetic 
algorithms and evolutionary strategies may use all those 
genetic operations. However, the sequence that these operators 
are used is different. Evolutionary strategy applies first the 
genetic operators then it uses the selection operators, whereas 
genetic algorithms select the individuals and thereafter perform 
the genetic operators.Moreover, evolutionary strategies need 
two vectors for representing an individual instead of only one 
of genetic algorithms. Details about theseEAscan be seen in 
Michalewicz [11], Cortes [12] and Herrara [10]. 

A. Parallel Evolutionary Algorithms (PEAs) 

The main idea behind the parallel computing is to divide a 
task into smaller pieces and solve those using different 
processing units. In this context, EAs can be considered 
because they have an intrinsic parallelism [13]. There are many 
ways to explore their parallelism such as: find out different 
solutions for the same problem, explore several points in the 
search space at the same time, and reduce the computation time 
to get a solution [14].  

According to Cantu-Paz [2] there are three basic models to 
explore the parallelism of EAs: master-slave, cell and island. 
Combining these models we can obtain a hybrid model as well. 
Different names might be used for these models, however their 
characteristics remain the same. In this work we implemented 
the master-slave and the island model. 

Regarding the master-slave model, a PEA maintains a 
population in a master processor that delegates the function 
evaluation or the applications of the genetic operators to slaves. 

Commonly, the parallelization is done distributing the function 
evaluation to slaves [2]. In the cell model, all processors works 
on the same population, where each individual is put into a 
grid, so the genetic operators can be done only with their 
neighborhood in the grid. Finally, independent populations are 
processed at the same time in the island model, introducing the 
concept of migration, where one or more individuals can be 
frequently exchanged between the populations. This last model 
also introduces new parameters such as the number of 
individuals being exchanged, how frequent the migration has to 
be done and the island topology which represents how islands 
can communicate with other ones. Researches indicate that the 
proper migration process contributes in the population diversity 
and enhance the quality of solutions [2]. Regardless the model 
being considered, all communication between processor can be 
synchronous or asynchronous. In the first one, if a processor 
wants to communicate, it has to wait until all of involved 
processors be ready. On the other hand, in the asynchronous 
communication, the execution and the communication do not 
depend on the other processors, i.e., if a processor wants to 
communicate with another one it send the information and 
continues with its execution. 

III. AUTOMATIC CODE GENERATION  

Code generation can be defined as a technique in which we 
write programs that create another programs. According to 
Herrington [15], creating code presents many benefits such as: 

 Agile software development – code generators go 
toward completion faster than a hand-made code, 
reducing the cost of development as well. 

 Consistency – code generators maintain the standard in 
both design patterns and code conventions, avoiding 
breaches introduced by programmers. 

 One point for gathering knowledge – a change made in 
a definition file can be propagated to all files created 
previously, whereas programmers have to do this file by 
file in a hand-made coding  

There are some strategies for coding generation. We are 
focus on templates which represents a pre-defined piece of 
software, i.e., an unfinished software that may be completed 
using variables [16]. In other words, a software replaces some 
elements present in the template file [17]. The substitution has 
to be performed by a template processor considering a set of 
inputs. 

The approach based on templates was chosen because a 
significant amount of code for GAs and ESs are similar. 
Moreover, we noticed the same characteristics in the parallel 
models, especially in the island and master-slave models.Thus, 
when these similarities were identified we could write the 
templates containing the common parts. Besides, the template 
approach allows to modify any part of the generated code 
changing only the proper template, becoming easier the 
software maintainability.  

IV. DESIGN PATTERNS IN PEAS 

Regardless which EA are being implemented, to find out 
the optimal configuration for its parameters is not a trivial task 
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due to the huge range of possible combinations between 
parameters [18]. Thereby, the code of PEAs have to be 
flexible, extensible and readable, allowing changes in a stress-
free way. The use of design patterns can guarantee these 
features.  

Design patterns are general solutions to well-known 
problems in object oriented programming. All solutions have 
been tested and are considered elegant by software designers 
[18]. Further, design patterns bring benefits such as: 
modularization, low coupling and state change awareness, 
besides, it does not add significant complexity to the code. In 
this context, we applied two design patterns for generating 
PEA code: strategy and observer.  

The main reason of using strategy pattern is to provide 
modularization to the genetic operators and to the stop criteria, 
being easy to add new features and reuse the available 
operators in new EAs. The observer pattern was used because 
it offers a simple and elegant manner of synchronizing the 
communication between threads.   

The strategy pattern defines a group of algorithms 
encapsulating them by means of interfaces, allowing variations 
regardless it uses in the clients. This pattern is used, for 
example, to hide the implementation of genetic operators and 
to assure that any changes in the operators does not affect other 
parts of the code [19]. Further, this patterns permits that the 
genetic operators could be used in other kinds of EAs, for 
instance, in the future producing of parallel hybrid algorithms. 
The stop criteria was implemented using the strategy pattern in 
this work, as well. 

The observer pattern defines a 1-to-n relationship between 
objects. This relationship consists of one object being observed 
by many other ones with low coupling. When an observed 
object has its status modified all observers receive a 
notification being automatically updated [19]. This pattern was 
used for synchronization purposes between the objects. Being 
specific, a process receives information about the other 
processes, so it can decide whether await for the other 
processes, in the case of migration for example, or carry out 
with its own execution.    

V. THE JAVA-BASED CODE GENERATOR 

Even though the idea behind PEAs is simple, its 
implementation is not a trivial task because involves challenges 
from parallel computing such as synchronization problems, the 
proper uses of parallel resources/models and a hard procedure 
of debugging. So, the lack of experience in parallel computing 
might significantly reduce the productivity in the development 
of PEAs code. Moreover, parallel computing programming 
might demands the learning of a new frameworks, a new 
library or even a new language. 

Alternatively, tools for generating parallel code of general 
purpose can be used, however the specific code for the EA has 
to be implemented anyway.  In this context, a specific tool for 
creating parallel code for EAs called JPEAG is proposed. 
Currently, two parallel evolutionary algorithms are available: 
genetic algorithms (GA) and evolutionary strategies (ES), both 
using a real-coded representation. Table I shows the available 
operators for each one. The stop criteria are the same for both 

EAs, i.e., certain number of generations. Besides, the user can 
choose if the problem to be solved is a maximization or a 
minimization one. 

TABLE I.  AVAILABLE EAS AND THEIR GENETIC OPERATIONS  

EA Genetic operators Methods 

Genetic Algorithm 

Selection 
Roulette 

Tournament 

Crossover 
One point 
Heuristic 

Linear 

Mutation 
Uniform or Random 
Creep 

Evolutionary Strategy 

Selection 
ES-(µ,) 

ES-(µ+) 

Crossover Intermediary 

Mutation Gaussian 

 

A. JPEAG: Requirements 

The JPEAG is a graphic web-based application developed 
in Java that follows the MVC pattern. It provides a graphic 
interface to create code for PEAs also in Java. Almost the 
entire for the AEP code is created with this application, 
excepting the evaluation function. Nevertheless, the function 
can be easily inserted in the application producing a complete 
code ready to be compiled and executed.  The application has 
developed obeying the following requirements:  

 Object oriented – nowadays the object oriented concepts 
are important, especially in order to apply pattern 
designs into the code. 

 User friendly – a user friendly application is easy to 
learn and might increase the code productivity. 

 Hiding the complexity of the parallel computing – users 
with no expertise in parallel computing are able to 
create PEAs, because the application hides the aspects 
involved in parallel models.  

 Code flexibility – The JPEAG is able to generate the 
entire code for a PEAs in Java, saving it in a text file 
that users can easily modify, adapt and extend.  

 Using of design patterns – applying design patterns we 
guarantee that tested solutions are being used. Besides, 
the PEA code becomes extensible and readable, 
improving its quality. 

B.  The JPEAG architecture 

The JPEAG architecture is presented in Fig. 2. Its operation 
is described as following: the interface is a web-based interface 
where users configure all features of the PEAs, including the 
evaluation function. When all parameters are set the user send 
it to the core. The core is responsible for selecting the proper 
template in the templates data base and use it to create the 
parallel EA code. Then, the parallel code is packed in a zip file 
and send it back to the user via download because is a web-
based application. 

Fig. 3 shows some details about the classes that compose 
the core of the JPEAG. The AEConfiguration class has a set of 
attributes that store the configuration of a PEA inserted by the 



user in the graphic interface. This process is done by the ZK 
framework [20] by means of AJAX requisitions. 

 

Fig. 2. JPEAGarchitecture 

 The TemplateProcessor class is responsible for processing 
the templates and creating the parallel code. The templates are 
processed by a framework called Apache Velocity [21] which 
implements an engine for template processing, and defines a 
language (VTL – Velocity Template Language) for creating it. 
The main advantage of the Apache Velocity is to have methods 
for processing templates and creating code for any textual 
language. 

 

Fig. 3. Main classes of JPEAG 

 The templates are Java code combined with code written in 
VTL, which indicates where the JPEAG has to fill in the code 
according to the parameters defined by the user in the graphic 
interface. All this code is replaced when the template is 
processed in the core of the JPEAG. Fig. 4 shows an example 
of VTL code. 

 

Fig. 4. Example of VTL code used by JPEAG 

 VLT directives starts with the character “#” and is executed 
when the template is processed. For instance, the #if directive 
in the Fig. 4 means that this part of code will be processed only 
if the user chose the island model. Variables begins with the 
character “$” and will be filled in according to the 
configuration done by the user in the graphic interface. As a 
result, the user will receive a pure Java code as shown in Fig. 5, 
where the parameters are the number of islands (4), the 
migration rate (5) and the migration frequency (10). Finally, 
the application is controlled by the Composer class, receiving 
all events whose the source is the visualization layer. Its name 
is suggested by ZK framework. 

 

Fig. 5. Java code after a template processing 

 The other classes are in the package Persistence and 
implement the application model using the Java Persistence 
API (JPA) and the Hibernate framework. Basically, their 
function is to provide the persistence layer retrieving and 
saving information about parallel models, EA models and 
genetic operators. At this time, all the persistence is done in a 
PostgreSQL database.  

C.  Parallelism and Synchronization in PEAs  

 JPEAG is capable of create PEAs in the models master-
slave (with evaluation function parallelization) and island in 
the current version. Besides, the parallelism is based on threads 
with no remote execution. In the master-slave model the 
evaluation is done in different threads. On the other hand, in 
the island model each deme evolves in a different thread. All 
communication is synchronized by a monitor object on both 
approaches. 

 Regarding to master-salve, there is a main thread where all 
population is held and the genetic operators are executed. The 
evaluation functions are executed in the slave threads. When 
the main process needs to perform the evaluation stage the 
population is divided into pieces and sent to the slaves. As soon 
as a slave ends the evaluation stage a notification is sent to the 
monitor object. If all slaves had done their jobs then the 
monitor object send a message to the master job that carry on 
with its execution.  

 Concerning the island model, each island runs an 
independent EA in each thread and individuals are exchange in 
a migration stage. The migration rate and the migration 
frequency are defined by the user in the graphic interface.  
When the time comes the n best individual, corresponding to 
the migration rate, are sent to the other islands. The received 
individuals replace the n worst ones in the population. As soon 
as an island ends the sending process the monitor object is 
notified and each island waits for an acknowledgment from the 
monitor to continue its execution. 

D. The Parallel Code of EAs 

 The considered models, master-slave and island, are created 
using different class diagrams. Fig. 6 presents de class diagram 
for a master-slave PEA created by JPEAG and Table II 
describes the main ones: GAMasterSalve, Evaluator and 
Evaluators. 

 

Fig. 6. Master-slave PEA class diagram created by JPEAG 

 The class diagram for the other model available in JPEAG, 
the island model, is depicted in Fig. 7 and Table III describes 
the main classes: GAIsland, GA and Evaluator. Actually, those 
cases (Figures 6 and 7) are a particular one concerned to a 

#if ($parallelismModel == "Island") 

${EAModel}${parallelismModel} ea = new 

${EAModel}${parallelismModel}($islandNumber, 

$migrationRate, $migrationFrequency); 

#end 

GAIsland ea = new GAIsland(4, 5, 10); 



Genetic Algorithm. Otherwise, taking an Evolutionary Strategy 
into account, these classes would begin with ES. 

TABLE II.  THE MAIN CLASSES OF MASTER-SLAVE PEA 

Class Description 

GAMasterSlave 

This class implements the EA. It maintains the objects 

that implements the operators according to the 

Strategy Pattern.  

Evaluator 

It implements all methods that use the evaluation 

function defined by the user. This class implements 

the interface Java.lang.Runnable, allowing that each 
evaluator runs into a different thread.  

Evaluators 

It maintains a data structure with the available 

evaluators, being similar to a list, allowing the master 
process to send individuals to the evaluators. In fact, 

the master send individuals to an evaluators object 

whose function is send it to the slaves. 

  

Fig. 7. Island PEA class diagram created by JPEAG 

TABLE III.  THE MAIN CLASSES OF ISLAND PEA 

Class Description 

GAIsland 

It maintains a data structure similar to a graph indicating how 

the island can communicate each other. In fact, this class 
instances each island and execute it.  

GA 

This class maintains the objects that implement the genetic 

operators according to the strategy pattern. Also, this class 
implements the interface Java.lang.Runnable, allowing each 

island be executed in a different thread. 

Evaluator 
It implements the methods for the evaluation function defined 
by the JPEAG user.  

 The classes described in Table IV are common to both 
models with the same implementation or with small variations. 

TABLE IV.  COMMON CLASSES IN BOTH PARALLEL MODELS 

Class Description 

Main 

It is used for instancing the PEA and start its 

execution. The difference is in the instantiated class 

that has to be adequate tothe parallel model.  

Individual 
It is the class for instantiate individuals, having the 

same implementation for both PEAs. 

Population 
It is a list of individual containing methods for its 
manipulation. 

ParallelismMonitor 

Its function is to maintain the synchronization on the 

parallel models. It controls the migration process in 

the island model and the evaluators in the master-
slave model. 

E. Experiment 

 In order to demonstrate how the software can be used to 
improve the speedup of an EA, we present an experiment based 
on the Griewank function, which is showed in Equation 1, 

where xi[-600,600] and n is equal 30, representing an 
individual with 30 real-coded genes. This function was 
introduced in 1981 and is well known in the literature [22]. 
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 The experiment was conducted in an Intel i5 2.3 Ghz, 4GB 
of RAM with two physical cores, using Ubuntu Linux, JDK 
1.7.04. A Parallel Genetic Algorithm was built using the 
configuration presented in Table V, where the first 9 
parameters are common in both models and the last three ones 
are related only to the Island Model.  

TABLE V.  PARAMETERS OF THE PEA 

Evolutionary Algorithm Genetic Algorithm 

Selection Operator Tournament 

Tournament Size 10 

Crossover operator Heuristic 

Probability of Crossover 0.8 

Mutation Operator Uniform (Random) 

Probability of Mutation 0.01 

Population Size 360 

Stop Criteria 2000 iterations 

Island Model 

Migration Rate 5 individuals 

Migration Frequency 200 iterations 

Topology Ring 

 

 The performance, speedup and efficiency are presented in 
Table VI. The time is the average of 31 trials in milliseconds 
and the value between brackets depicts the standard deviation. 
The speedup is calculated based on the weak speedup [23], 
where the performance of the serial version is measured using 
the same code of the parallel version but running in only one 
thread. The efficiency represents how better a parallel version 
is when compared against a serial one. Finally, t represents a t-
test [24] for identifying whether the differences are significant 
or not.  

TABLE VI.  PERFORMANCE, SPEEDUP AND EFFICIENCY  

Master-Slave 

Threads Time(ms) Speedup Efficiency t 

1 
4572.3870 

(37.52) 
- - 

101.24 

2 
3778,1290 

(22.35) 
1,2102 60.5% 

Island 

1 
4297.2258 

(49.58) 
- - 

59.07 

2 
3108.9354 

(100.41) 
1,3822 69.1% 

 

 Regarding the differences between the parallel versions and 
the serials, they are significant, otherwise t should be in the 
range [-2.0017, 2.0017] with α=0.05 in a two tailed test. In 
other words, the parallel version using the master-slave model 
is 60.5% faster than serial version, whereas the island model is 
69.1% faster, with both models using 2 cores (threads).  

 Also according to the performance table we can realize that 
the island model overcome the master-slave model in 8.6% of 



the efficiency. Taking into account a t-test between them, the 
result t=36.21 indicates that this difference is significant. This 
happens because the master-slave model has to deal with more 
synchronization aspects than the island model, i.e., there are 
more communications between threads in the master-slave 
model. However, in both cases there is a reduction in the time 
required to execute an evolutionary algorithm. 

VI. CONCLUSIONS AND FUTURE WORKS 

 This paper proposed the Java Parallel Evolutionary 
Algorithm Generator (JPEAG), a graphic web-based 
application that allows users to create parallel evolutionary 
algorithms in a friendly way. The main advantage of our 
software is to generate parallel code ready to be compiled and 
executed. In other words, our application makes code much 
more quickly than a programmer doing the same job at-hand. 
Thereby, JPEAG contributes on the increasing of the 
programmer’s productivity and reducing the cost of creating 
parallel code. Further, our tool demands knowledge only in 
PEA theory, dismissing knowledge in parallel computing, 
excepting if the user wants to change or adds more features 
into the parallel programming resources. Furthermore, the user 
does not have to deal with the complexity of some particular 
aspects such as design patterns, for instance. Therefore, our 
tool can also be used by less experienced programmers. 

 Regarding the design patters, experienced programmers are 
able to easily make changes and extend the code. The strategy 
pattern got show effective hence the implementation of genetic 
operators became independent with no coupling, allowing their 
use in extended versions or in new operators. Moreover, the 
observer pattern lets us to implement an elegant solution, 
created with low coupling in order to control the 
synchronization by means of an automatically information 
exchange between processes, in the parallel models. 

 Finally, the use of templates allows including new EAs and 
parallel models by changing the pre-existing templates and 
adding the specific features of each algorithm. Thus, parallel 
hybrid EA can easily attached to the JPEAG. However, if the 
new algorithms are completely different with absolutely no 
similarities with the existing ones new templates can be added. 

A.  Future Works 

 The implementation of JPEAG carries out. New features 
include: binary-coded for GA, more genetic operators (for GA 
and ES), the use of elitism in GA (ES (µ+λ) is already 
available on ES), and the parallel cell model. Further, a study 
about how to perform the parallelization by means of 
asynchronous communication has to be taken into 
consideration. Furthermore, tests in different platform are 
required for a better evaluation of the parallelization efficiency. 

 Extensions of the JPEAG for generating distributed PEAs 
using remote objects or frameworks such as ProActive, and 
JavaMPI are also in consideration. Implementations of the 
PEAs in other languages such as C and Python are also in 
mind.   
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