
A Java-Based Code Generator for Parallel

Evolutionary Algorithms

Jackson Amaral da Silva

Computer Engineering Department

Universidade Estadual do Maranhão

São Luis – MA – Brazil

jackson.amarals@gmail.com

Omar A. Carmona Cortes, Josenildo Costa da Silva

Informatics Academic Department

Instituto Federal do Maranhão

São Luis – MA – Brazil

{omar, jcsilva}@ifma.edu.br

Abstract—Evolutionary Algorithms (EAs) are able to find out

solutions in many fields and complex disciplines. Parallel

Evolutionary Algorithms (PEAs) solve many kinds of problems,

as well; moreover it overcomes problems with run time

constraints when the problems being solved are much more

complex. Thereby, we can state that PEAs can be efficient and

faster than a regular EA. On the other hand, parallel

programming brings new substantial problems to the developers

that have to deal with synchronization and a different debugging

process, increasing the learning curve and the programming

efforts. In this context, we developed a web-based software that

automatically creates java code for parallel genetic algorithms

and parallel evolutionary strategies, reducing the required time

to develop this kind of application. Two parallel models were

implemented, the island model and master-slave. Further, the

design patterns strategy and observer were applied in the

generation of the PEAs code in order to increase the software

maintainability and legibility. An experiment was conducted in

order to show how our software can reduce the time consuming

of an EA.

Keywords—Parallel Evolutionary Algorithms, Automatic Code

Creation, Design Patterns.

I. INTRODUCTION

Evolutionary Algorithms (EAs) are search algorithms based
on natural evolution [1], which can find out good solutions in a
reasonably amount of time. However, as they solve harder
problems there is an increase in the running time in order to
find adequate solutions. As a consequence, there have been
multiple efforts to make EAs faster, and one of the most
promising choices is to use parallel implementations [2].

The concept of Parallel Evolutionary Algorithms (PEA) is
quite simple. Despite this, the use of parallel computing
demands challenges such as the synchronization between
demes and the proper exploration of parallel algorithms.
Furthermore, the lack of experience in developing parallel
applications might impact directly in the productivity of
parallel evolutionary applications.

In order to overcome the problems raised by parallel
computing, Jaquie [3], Malacarne [4], Passini & Dotti [5] and
Rodrigues et. al. [6] present some tools that produce parallel
code automatically. However, users have to implement their
specific code. In this sense, Hawick & Playne [7] create an
approach for generating parallel code to solve partial

differential equations (PDEs); Linford et. al. [8] present a
general analysis and code generation tool that achieves
significantly reduced time-to-solution for chemical kinetics
kernels on three multicore platforms. In Cahon et. al. [9] is
presented the ParadisEO, which is a framework that provides a
generic set of classes for implementing parallel and distributed
metaheuristics. Further, ParadisEO offers different models of
parallelization using MPI, PVM and PThreads. Inspite of this,
the user has to implement the specific classes of his application
and learn how to use those classes properly. To the best of our
knowledge, there is no work that automatically produces
parallel code for evolutionary algorithms.

In this context, this work presents the Java Parallel
Evolutionary Algorithms Generator (JPEAG), which is a
template-based parallel code generator that produces parallel
evolutionary algorithms in Java, where users have to
implement only the evaluation function because it is specific
for each application. Nonetheless, this function can be inserted
by means of the graphical interface. Thus, the code is ready to
be compiled and executed. Currently, JPEAG can create code
for parallel genetic algorithms and parallel evolutionary
strategies, using real-coded individuals. However, extensions
for generating other kinds of PEA can be easily implemented
into the software.

The remaining of this paper is divided as following: Section
II shows the basic concepts of evolutionary algorithms and
parallel evolutionary algorithms; Section III presents briefly the
theory about code generation; Section IV illustrates how the
design patterns was used and applied into the codification of
PEAs; Section V deals with the development of the JPEAG;
finally, Section VI presents the conclusion of this work.

II. EVOLUTIONARY ALGORITHMS

Basically, evolutionary algorithms try to find out the best
solution for a specific problem processing a population of
individuals, where each one represents a possible solution. The
population has to undergo genetic operators on many iterations
until reach some stop criteria as follows: (i) certain amount of
iterations, (ii) there is no more evolution, or (iii) the algorithm
gets to the known optimal. Fig. 1 shows the structure of an EA.

In the first step, the population is initialized at random,
normally using auniform distribution. Then the population is
evaluated in order to determine how each individual fits to the

mailto:jackson.amarals@gmail.com

solution. The better is the fitness, the stronger is the individual
within the population, so might be higher the probability of an
individual to be selected for genetic operators or to go to the
next iteration (generation), that depends on which EA is
running on.

Fig. 1. Structure of an EA.

Typically, the genetic operators are selection, crossover and
mutation. Selection is the process of choosing individual to
undergo to genetic operators or to go to next generation.
Parents exchange information (genes) between themselves in
order to create one or more offspring, in the crossover operator.
Ideally, when two strong individuals exchange genes the
offspring is stronger than its parents [10] and then, spread its
genes in next generations. On the other hand, this behavior can
lead to a premature convergence of the solution because the
population can be trap into local optima. The mutation operator
has the purpose of avoid the premature convergence applying
some modifications to one or more genes. In other words, the
process of using genetic operators tends to improve the
solution quality as new generations carry on [11].

Taking this operators into account, we can notice that
several EA share similar features. For instance, genetic
algorithms and evolutionary strategies may use all those
genetic operations. However, the sequence that these operators
are used is different. Evolutionary strategy applies first the
genetic operators then it uses the selection operators, whereas
genetic algorithms select the individuals and thereafter perform
the genetic operators.Moreover, evolutionary strategies need
two vectors for representing an individual instead of only one
of genetic algorithms. Details about theseEAscan be seen in
Michalewicz [11], Cortes [12] and Herrara [10].

A. Parallel Evolutionary Algorithms (PEAs)

The main idea behind the parallel computing is to divide a
task into smaller pieces and solve those using different
processing units. In this context, EAs can be considered
because they have an intrinsic parallelism [13]. There are many
ways to explore their parallelism such as: find out different
solutions for the same problem, explore several points in the
search space at the same time, and reduce the computation time
to get a solution [14].

According to Cantu-Paz [2] there are three basic models to
explore the parallelism of EAs: master-slave, cell and island.
Combining these models we can obtain a hybrid model as well.
Different names might be used for these models, however their
characteristics remain the same. In this work we implemented
the master-slave and the island model.

Regarding the master-slave model, a PEA maintains a
population in a master processor that delegates the function
evaluation or the applications of the genetic operators to slaves.

Commonly, the parallelization is done distributing the function
evaluation to slaves [2]. In the cell model, all processors works
on the same population, where each individual is put into a
grid, so the genetic operators can be done only with their
neighborhood in the grid. Finally, independent populations are
processed at the same time in the island model, introducing the
concept of migration, where one or more individuals can be
frequently exchanged between the populations. This last model
also introduces new parameters such as the number of
individuals being exchanged, how frequent the migration has to
be done and the island topology which represents how islands
can communicate with other ones. Researches indicate that the
proper migration process contributes in the population diversity
and enhance the quality of solutions [2]. Regardless the model
being considered, all communication between processor can be
synchronous or asynchronous. In the first one, if a processor
wants to communicate, it has to wait until all of involved
processors be ready. On the other hand, in the asynchronous
communication, the execution and the communication do not
depend on the other processors, i.e., if a processor wants to
communicate with another one it send the information and
continues with its execution.

III. AUTOMATIC CODE GENERATION

Code generation can be defined as a technique in which we
write programs that create another programs. According to
Herrington [15], creating code presents many benefits such as:

 Agile software development – code generators go
toward completion faster than a hand-made code,
reducing the cost of development as well.

 Consistency – code generators maintain the standard in
both design patterns and code conventions, avoiding
breaches introduced by programmers.

 One point for gathering knowledge – a change made in
a definition file can be propagated to all files created
previously, whereas programmers have to do this file by
file in a hand-made coding

There are some strategies for coding generation. We are
focus on templates which represents a pre-defined piece of
software, i.e., an unfinished software that may be completed
using variables [16]. In other words, a software replaces some
elements present in the template file [17]. The substitution has
to be performed by a template processor considering a set of
inputs.

The approach based on templates was chosen because a
significant amount of code for GAs and ESs are similar.
Moreover, we noticed the same characteristics in the parallel
models, especially in the island and master-slave models.Thus,
when these similarities were identified we could write the
templates containing the common parts. Besides, the template
approach allows to modify any part of the generated code
changing only the proper template, becoming easier the
software maintainability.

IV. DESIGN PATTERNS IN PEAS

Regardless which EA are being implemented, to find out
the optimal configuration for its parameters is not a trivial task

Initialization;
Evaluation;
Whilestop criteria is not reached
Selection;
Genetic Operators;
Evaluation;
End-While;
Returnbest solution or individual;

due to the huge range of possible combinations between
parameters [18]. Thereby, the code of PEAs have to be
flexible, extensible and readable, allowing changes in a stress-
free way. The use of design patterns can guarantee these
features.

Design patterns are general solutions to well-known
problems in object oriented programming. All solutions have
been tested and are considered elegant by software designers
[18]. Further, design patterns bring benefits such as:
modularization, low coupling and state change awareness,
besides, it does not add significant complexity to the code. In
this context, we applied two design patterns for generating
PEA code: strategy and observer.

The main reason of using strategy pattern is to provide
modularization to the genetic operators and to the stop criteria,
being easy to add new features and reuse the available
operators in new EAs. The observer pattern was used because
it offers a simple and elegant manner of synchronizing the
communication between threads.

The strategy pattern defines a group of algorithms
encapsulating them by means of interfaces, allowing variations
regardless it uses in the clients. This pattern is used, for
example, to hide the implementation of genetic operators and
to assure that any changes in the operators does not affect other
parts of the code [19]. Further, this patterns permits that the
genetic operators could be used in other kinds of EAs, for
instance, in the future producing of parallel hybrid algorithms.
The stop criteria was implemented using the strategy pattern in
this work, as well.

The observer pattern defines a 1-to-n relationship between
objects. This relationship consists of one object being observed
by many other ones with low coupling. When an observed
object has its status modified all observers receive a
notification being automatically updated [19]. This pattern was
used for synchronization purposes between the objects. Being
specific, a process receives information about the other
processes, so it can decide whether await for the other
processes, in the case of migration for example, or carry out
with its own execution.

V. THE JAVA-BASED CODE GENERATOR

Even though the idea behind PEAs is simple, its
implementation is not a trivial task because involves challenges
from parallel computing such as synchronization problems, the
proper uses of parallel resources/models and a hard procedure
of debugging. So, the lack of experience in parallel computing
might significantly reduce the productivity in the development
of PEAs code. Moreover, parallel computing programming
might demands the learning of a new frameworks, a new
library or even a new language.

Alternatively, tools for generating parallel code of general
purpose can be used, however the specific code for the EA has
to be implemented anyway. In this context, a specific tool for
creating parallel code for EAs called JPEAG is proposed.
Currently, two parallel evolutionary algorithms are available:
genetic algorithms (GA) and evolutionary strategies (ES), both
using a real-coded representation. Table I shows the available
operators for each one. The stop criteria are the same for both

EAs, i.e., certain number of generations. Besides, the user can
choose if the problem to be solved is a maximization or a
minimization one.

TABLE I. AVAILABLE EAS AND THEIR GENETIC OPERATIONS

EA Genetic operators Methods

Genetic Algorithm

Selection
Roulette

Tournament

Crossover
One point
Heuristic

Linear

Mutation
Uniform or Random
Creep

Evolutionary Strategy

Selection
ES-(µ,)

ES-(µ+)

Crossover Intermediary

Mutation Gaussian

A. JPEAG: Requirements

The JPEAG is a graphic web-based application developed
in Java that follows the MVC pattern. It provides a graphic
interface to create code for PEAs also in Java. Almost the
entire for the AEP code is created with this application,
excepting the evaluation function. Nevertheless, the function
can be easily inserted in the application producing a complete
code ready to be compiled and executed. The application has
developed obeying the following requirements:

 Object oriented – nowadays the object oriented concepts
are important, especially in order to apply pattern
designs into the code.

 User friendly – a user friendly application is easy to
learn and might increase the code productivity.

 Hiding the complexity of the parallel computing – users
with no expertise in parallel computing are able to
create PEAs, because the application hides the aspects
involved in parallel models.

 Code flexibility – The JPEAG is able to generate the
entire code for a PEAs in Java, saving it in a text file
that users can easily modify, adapt and extend.

 Using of design patterns – applying design patterns we
guarantee that tested solutions are being used. Besides,
the PEA code becomes extensible and readable,
improving its quality.

B. The JPEAG architecture

The JPEAG architecture is presented in Fig. 2. Its operation
is described as following: the interface is a web-based interface
where users configure all features of the PEAs, including the
evaluation function. When all parameters are set the user send
it to the core. The core is responsible for selecting the proper
template in the templates data base and use it to create the
parallel EA code. Then, the parallel code is packed in a zip file
and send it back to the user via download because is a web-
based application.

Fig. 3 shows some details about the classes that compose
the core of the JPEAG. The AEConfiguration class has a set of
attributes that store the configuration of a PEA inserted by the

user in the graphic interface. This process is done by the ZK
framework [20] by means of AJAX requisitions.

Fig. 2. JPEAGarchitecture

 The TemplateProcessor class is responsible for processing
the templates and creating the parallel code. The templates are
processed by a framework called Apache Velocity [21] which
implements an engine for template processing, and defines a
language (VTL – Velocity Template Language) for creating it.
The main advantage of the Apache Velocity is to have methods
for processing templates and creating code for any textual
language.

Fig. 3. Main classes of JPEAG

 The templates are Java code combined with code written in
VTL, which indicates where the JPEAG has to fill in the code
according to the parameters defined by the user in the graphic
interface. All this code is replaced when the template is
processed in the core of the JPEAG. Fig. 4 shows an example
of VTL code.

Fig. 4. Example of VTL code used by JPEAG

 VLT directives starts with the character “#” and is executed
when the template is processed. For instance, the #if directive
in the Fig. 4 means that this part of code will be processed only
if the user chose the island model. Variables begins with the
character “$” and will be filled in according to the
configuration done by the user in the graphic interface. As a
result, the user will receive a pure Java code as shown in Fig. 5,
where the parameters are the number of islands (4), the
migration rate (5) and the migration frequency (10). Finally,
the application is controlled by the Composer class, receiving
all events whose the source is the visualization layer. Its name
is suggested by ZK framework.

Fig. 5. Java code after a template processing

 The other classes are in the package Persistence and
implement the application model using the Java Persistence
API (JPA) and the Hibernate framework. Basically, their
function is to provide the persistence layer retrieving and
saving information about parallel models, EA models and
genetic operators. At this time, all the persistence is done in a
PostgreSQL database.

C. Parallelism and Synchronization in PEAs

 JPEAG is capable of create PEAs in the models master-
slave (with evaluation function parallelization) and island in
the current version. Besides, the parallelism is based on threads
with no remote execution. In the master-slave model the
evaluation is done in different threads. On the other hand, in
the island model each deme evolves in a different thread. All
communication is synchronized by a monitor object on both
approaches.

 Regarding to master-salve, there is a main thread where all
population is held and the genetic operators are executed. The
evaluation functions are executed in the slave threads. When
the main process needs to perform the evaluation stage the
population is divided into pieces and sent to the slaves. As soon
as a slave ends the evaluation stage a notification is sent to the
monitor object. If all slaves had done their jobs then the
monitor object send a message to the master job that carry on
with its execution.

 Concerning the island model, each island runs an
independent EA in each thread and individuals are exchange in
a migration stage. The migration rate and the migration
frequency are defined by the user in the graphic interface.
When the time comes the n best individual, corresponding to
the migration rate, are sent to the other islands. The received
individuals replace the n worst ones in the population. As soon
as an island ends the sending process the monitor object is
notified and each island waits for an acknowledgment from the
monitor to continue its execution.

D. The Parallel Code of EAs

 The considered models, master-slave and island, are created
using different class diagrams. Fig. 6 presents de class diagram
for a master-slave PEA created by JPEAG and Table II
describes the main ones: GAMasterSalve, Evaluator and
Evaluators.

Fig. 6. Master-slave PEA class diagram created by JPEAG

 The class diagram for the other model available in JPEAG,
the island model, is depicted in Fig. 7 and Table III describes
the main classes: GAIsland, GA and Evaluator. Actually, those
cases (Figures 6 and 7) are a particular one concerned to a

#if ($parallelismModel == "Island")

${EAModel}${parallelismModel} ea = new

${EAModel}${parallelismModel}($islandNumber,

$migrationRate, $migrationFrequency);

#end

GAIsland ea = new GAIsland(4, 5, 10);

Genetic Algorithm. Otherwise, taking an Evolutionary Strategy
into account, these classes would begin with ES.

TABLE II. THE MAIN CLASSES OF MASTER-SLAVE PEA

Class Description

GAMasterSlave

This class implements the EA. It maintains the objects

that implements the operators according to the

Strategy Pattern.

Evaluator

It implements all methods that use the evaluation

function defined by the user. This class implements

the interface Java.lang.Runnable, allowing that each
evaluator runs into a different thread.

Evaluators

It maintains a data structure with the available

evaluators, being similar to a list, allowing the master
process to send individuals to the evaluators. In fact,

the master send individuals to an evaluators object

whose function is send it to the slaves.

Fig. 7. Island PEA class diagram created by JPEAG

TABLE III. THE MAIN CLASSES OF ISLAND PEA

Class Description

GAIsland

It maintains a data structure similar to a graph indicating how

the island can communicate each other. In fact, this class
instances each island and execute it.

GA

This class maintains the objects that implement the genetic

operators according to the strategy pattern. Also, this class
implements the interface Java.lang.Runnable, allowing each

island be executed in a different thread.

Evaluator
It implements the methods for the evaluation function defined
by the JPEAG user.

 The classes described in Table IV are common to both
models with the same implementation or with small variations.

TABLE IV. COMMON CLASSES IN BOTH PARALLEL MODELS

Class Description

Main

It is used for instancing the PEA and start its

execution. The difference is in the instantiated class

that has to be adequate tothe parallel model.

Individual
It is the class for instantiate individuals, having the

same implementation for both PEAs.

Population
It is a list of individual containing methods for its
manipulation.

ParallelismMonitor

Its function is to maintain the synchronization on the

parallel models. It controls the migration process in

the island model and the evaluators in the master-
slave model.

E. Experiment

 In order to demonstrate how the software can be used to
improve the speedup of an EA, we present an experiment based
on the Griewank function, which is showed in Equation 1,

where xi[-600,600] and n is equal 30, representing an
individual with 30 real-coded genes. This function was
introduced in 1981 and is well known in the literature [22].

 () ∑

 ∏ (

√
)

 (1)

 The experiment was conducted in an Intel i5 2.3 Ghz, 4GB
of RAM with two physical cores, using Ubuntu Linux, JDK
1.7.04. A Parallel Genetic Algorithm was built using the
configuration presented in Table V, where the first 9
parameters are common in both models and the last three ones
are related only to the Island Model.

TABLE V. PARAMETERS OF THE PEA

Evolutionary Algorithm Genetic Algorithm

Selection Operator Tournament

Tournament Size 10

Crossover operator Heuristic

Probability of Crossover 0.8

Mutation Operator Uniform (Random)

Probability of Mutation 0.01

Population Size 360

Stop Criteria 2000 iterations

Island Model

Migration Rate 5 individuals

Migration Frequency 200 iterations

Topology Ring

 The performance, speedup and efficiency are presented in
Table VI. The time is the average of 31 trials in milliseconds
and the value between brackets depicts the standard deviation.
The speedup is calculated based on the weak speedup [23],
where the performance of the serial version is measured using
the same code of the parallel version but running in only one
thread. The efficiency represents how better a parallel version
is when compared against a serial one. Finally, t represents a t-
test [24] for identifying whether the differences are significant
or not.

TABLE VI. PERFORMANCE, SPEEDUP AND EFFICIENCY

Master-Slave

Threads Time(ms) Speedup Efficiency t

1
4572.3870

(37.52)
- -

101.24

2
3778,1290

(22.35)
1,2102 60.5%

Island

1
4297.2258

(49.58)
- -

59.07

2
3108.9354

(100.41)
1,3822 69.1%

 Regarding the differences between the parallel versions and
the serials, they are significant, otherwise t should be in the
range [-2.0017, 2.0017] with α=0.05 in a two tailed test. In
other words, the parallel version using the master-slave model
is 60.5% faster than serial version, whereas the island model is
69.1% faster, with both models using 2 cores (threads).

 Also according to the performance table we can realize that
the island model overcome the master-slave model in 8.6% of

the efficiency. Taking into account a t-test between them, the
result t=36.21 indicates that this difference is significant. This
happens because the master-slave model has to deal with more
synchronization aspects than the island model, i.e., there are
more communications between threads in the master-slave
model. However, in both cases there is a reduction in the time
required to execute an evolutionary algorithm.

VI. CONCLUSIONS AND FUTURE WORKS

 This paper proposed the Java Parallel Evolutionary
Algorithm Generator (JPEAG), a graphic web-based
application that allows users to create parallel evolutionary
algorithms in a friendly way. The main advantage of our
software is to generate parallel code ready to be compiled and
executed. In other words, our application makes code much
more quickly than a programmer doing the same job at-hand.
Thereby, JPEAG contributes on the increasing of the
programmer’s productivity and reducing the cost of creating
parallel code. Further, our tool demands knowledge only in
PEA theory, dismissing knowledge in parallel computing,
excepting if the user wants to change or adds more features
into the parallel programming resources. Furthermore, the user
does not have to deal with the complexity of some particular
aspects such as design patterns, for instance. Therefore, our
tool can also be used by less experienced programmers.

 Regarding the design patters, experienced programmers are
able to easily make changes and extend the code. The strategy
pattern got show effective hence the implementation of genetic
operators became independent with no coupling, allowing their
use in extended versions or in new operators. Moreover, the
observer pattern lets us to implement an elegant solution,
created with low coupling in order to control the
synchronization by means of an automatically information
exchange between processes, in the parallel models.

 Finally, the use of templates allows including new EAs and
parallel models by changing the pre-existing templates and
adding the specific features of each algorithm. Thus, parallel
hybrid EA can easily attached to the JPEAG. However, if the
new algorithms are completely different with absolutely no
similarities with the existing ones new templates can be added.

A. Future Works

 The implementation of JPEAG carries out. New features
include: binary-coded for GA, more genetic operators (for GA
and ES), the use of elitism in GA (ES (µ+λ) is already
available on ES), and the parallel cell model. Further, a study
about how to perform the parallelization by means of
asynchronous communication has to be taken into
consideration. Furthermore, tests in different platform are
required for a better evaluation of the parallelization efficiency.

 Extensions of the JPEAG for generating distributed PEAs
using remote objects or frameworks such as ProActive, and
JavaMPI are also in consideration. Implementations of the
PEAs in other languages such as C and Python are also in
mind.

REFERENCES

[1] A. E. Eiben and Smith, J. E. Introduction to Evolutionary Computing,
Berlim: Springer Verlag,2003.

[2] E. Cantú-Paz. E.A Survey of Parallel Genetic Algorithms.Department of
ComputerScience and Illinois Genetic Algorithms
Laboratory.Universityof Illinois at Urbana-Champaign – 1998.

[3] K. Jaquie. Extensão da Ferramenta de Apoio à Programação Paralela
(F.A.P.P.) para Ambientes Paralelos Virtuais. Master Thesis – USP, São
Carlos, SP, Brazil, feb 1999.

[4] J. Malacarne. Ambiente Visual para Programação Distribuída em Java.
Master Thesis – UFRGS, Porto Alegre, RS, Brazil, feb 2001.

[5] F.Pasini, F. L. Dotti, Code Generation for Parallel Applications
Modelled with Object-Based Graph Grammars, Electronic Notes in
Theoretical Computer Science, v. 184, p. 113-131, 2007.

[6] A.W.O. Rodrigues, F. Guyomarc'h,J. Dekeyser, Y. Le Menach,
Automatic Multi-GPU Code Generation Applied to Simulation of
Electrical Machines, Magnetics, IEEE Transactions on , vol.48, no.2,
pp.831,834, Feb. 2012

[7] K.A. Hawick, D.P. Playne, Automated and parallel code generation for
finite-differencing stencils with arbitrary data types, Procedia Computer
Science, Volume 1, Issue 1, May 2010.

[8] J. C. Linford, J.Michalakes, M.Vachharajani, A.Sandu,Automatic
Generation of Multicore Chemical Kernels, Parallel and Distributed
Systems, IEEE Transactions on , vol.22, no.1, pp.119,131, Jan. 2011

[9] S. Cahon, N. Melab, E.-G. Talbi. ParadisEO: A framework for the
reusable design of parallel and distributed metaheuristics. Journal of
Heuristics, v. 10, n. 3, p. 357-380, Springer 2004.

[10] F. Herrera, M. Lozano, and J. L. Verdagay. Tack-ling Real-Coded
Genetic Algorithms: Operators and Tools for BehaviouralAnalisys.
Artificial Intelligence Review, 4(12):265–319, 1998.

[11] Z. Michalewicz. Genetic Algorithms + DataStructure = Evolution
Programs. Springer-Verlag,New York, 3 edition, 1999.

[12] O. A. C. Cortes, R. H. C. Santana, M. J. Santana, O. R. S. Mendez,
Análise de Operadores de Recombinação em Estratégias Evolutivas
Aplicados no Refinamento de um Sistema Nebuloso. In: Simpósio
Brasileiro de Automática Inteligente, 2005.

[13] J. Yao. Analysis of Scalable Parallel Evolutionary Algorithms. IEEE
Congress on Evolutionary Computation Sheraton Vancouver Wall
Centre Hotel, Vancouver, BC, Canada. July, 2006.

[14] E. Alba and M.Tomassini. Parallelism and Evolutionary Algorithms.
IEEE Transactionson EvolutionaryComputation, Vol. 6, No. 5, October,
2002.

[15] J. Herrington. Code generation in action. Greenwich: Manning
Publications, 2003.

[16] D. Lucrédio. Uma Abordagem Orientada a Modelos para Reutilização
de Phd Thesis –USP, São Carlos, SP, Brazil, 2009.

[17] D. Manolescu. Pattern Languages of Program Design 5. Reading:
Addison-Wesley Professional.

[18] U.Markowska-Kaczmar and F.Krygowski. The Influence of Using
Design Patterns on the Process of Implementing Genetic Algorithms.
Trends in Applied Intelligent Systems, p. 173-182, Springer, 2010.

[19] H. Feng, K. Li-shaff, C. Yu-ping. A Generic Design Model for
Evolutionary Algorithms. Wuhan University Journal of Natural Sciences
Vol.8, No 1b, p. 224-228, 2003.

[20] ZK Framework Site - http://www.zkoss.org - access: 4/10/2013.

[21] Apache Velocity Project Site - http://velocity.apache.org - access:
4/10/2013.

[22] M. Locateli,, A note on the Griewank Test Function, Journal of Global
optimization, v. 25, p. 169-174, 2003.

[23] E. Alba, G. Luque, Evaluation of Parallel Metaheuristics, In L. Paquete,
M. Chiarandini and D. Basso (eds.), Proceedings of the EMAA, pp. 9-
14, Reykjavik, Islandia, 2006.

[24] W. C. Schefler, “Statistics: Concepts and Applications”, The
Benjamin/Cumming Publishing Company Inc., UK, 1988.

