
RB-MOPSO: A PSO algorithm based on reference points

Olacir R. Castro Jr
Computer Science’s Department

Federal University of Paraná
Curitiba, Paraná

olacirjr@gmail.com

André Britto
Computer Science’s Department

Federal University of Paraná
Curitiba, Paraná

andrebc@inf.ufpr.br

Aurora Pozo
Computer Science’s Department

Federal University of Paraná
Curitiba, Paraná

aurora@inf.ufpr.br

Abstract—Many-objective problems refer to problems con-
taining large number of objective functions to be optimized,
typically more than three. As most existing algorithms based
on Pareto dominance are not efficient in handling this kind
of problem, researchers have been working on alternatives
to overcome these limitations. Recently, Deb et al. proposed
an improved NSGA-II, the principal characteristic of which
is the use of reference points to obtain a larger covered
portion of the Pareto front. Inspired by the results of the
improved NSGA-II, in this paper we propose a new algo-
rithm based on Particle Swarm Optimization grounded on
these concepts. The algorithm, called RB-SMPSO, presents
as features improved mechanisms for (i) the update of the
external archive to consider the reference points, and (ii) the
selection of social leaders. In order to validate the proposal,
a comparative study is presented considering a state of art
MOPSO-based algorithm (Speed-constrained Multi-Objective
Particle Swarm Optimization, SMPSO) using two different
leader selection methods. All algorithms are evaluated using
well-known scalable problems with 2, 3, 5, 10, 15 and 20
objectives, respectively. The results point out that RB-SMPSO
presents the better overall performance between the compared
approaches.

Keywords-Particle Swarm Optimization, Multi-objective,
Many-objective, Optimization

I. INTRODUCTION

Many-objective problems are a kind of multi-objective
problems which have more than three objective functions to
be optimized. Many real world applications need to consider
and optimize more than two or three objective functions [1],
but due to lack of suitable algorithms they normally are
down-sized to two or three objectives and solved [2].

The interest in solving these problems has grown because
most existing optimization algorithms are not efficient in
handling many objectives. This mainly occurs because the
proportion of non-dominated solutions in a population in-
creases with the number of objectives, which decrease the
selection pressure towards the Pareto front. Moreover, the
number of points to accurately represent the front increases
exponentially with the number of objectives.

In spite of the fact that the computational resources
available today allows the use of large population sizes, it
is certainly difficult for a decision-maker to consider a large

number of trade-off solutions. These issues require diversity
techniques to yield a better distribution of the solutions [2].

Recently a new many-objective optimizer that tackles
these challenges was proposed, it is called M-NSGA-II [2]
and has the differential of adopting a selection mechanism
based on a predefined set of reference points emphasizing
the members of the non-dominated population closer to each
reference point.

A promising meta-heuristic to optimize many objectives is
the Multi-Objective Particle Swarm Optimization (MOPSO),
which is a multi-objective population based meta-heuristic
inspired by the bird flocking behavior. In this algorithm each
possible solution, called particle, uses simple local rules to
guide its actions, and through interactions with the group,
the entire population, called swarm, achieves its objectives.

This study presents a new MOPSO algorithm called
RB-SMPSO which incorporates the reference points idea
from M-NSGA-II including two mechanisms to improve its
performance. One of them incorporates a preference relation
on the archiving method based on reference points, where a
solution closer to a reference point is preferred over a farther
one. The other mechanism is incorporated in the leader
selection method, where instead of the particle selecting its
leader, the available leaders select the closest particles to
lead. These features aim to improve both the convergence
and the diversity of the search.

Unlike other studies using reference points to guide the
search [3], [4], in this work the objective is not to reduce the
portion of the Pareto front to be explored. Here the reference
points are used to keep well spread leader candidates to use
them as guides to make the particles cover a larger portion
of the Pareto front.

The remainder of this paper is organized as follows: The
general description of the M-NSGA-II algorithm is presented
in section II. The RB-SMPSO algorithm is presented in
section III. A brief explanation about the benchmark prob-
lems and performance metrics, as well as the empirical
study performed to compare the algorithms is presented in
Section IV, and section V presents the conclusions.

II. MANY-OBJECTIVE NSGA-II
A Multi-Objective Problem (MOP) involves the simul-

taneous optimization of two or more objective functions.
These objectives are usually in conflict, which means that
MOPs do not have a single optimum solution, but a set of
them. Pareto optimality theory is used to find this set of
solutions [5].

MOPs presenting more than three objectives are called
Many-Objective Problems (MaOPs), and the area which
tackles the issues related to this kind of problem is the many-
objective optimization.

M-NSGA-II [2] is a many-objective optimizer based on
the Non-dominated Sorting Genetic Algorithm II (NSGA-
II) [6]. M-NSGA-II has a special selection mechanism based
on reference points. To better understand the M-NSGA-II,
first the NSGA-II is briefly explained.

The NSGA-II was proposed in [6] and is one evolution-
ary algorithm frequently used nowadays to optimize multi-
objective problems [1], [2]. This popularity is mainly due to
its ease of implementation and quality of the approximated
frontiers generated for many problems.

Its basic operation is the following: Firstly a population
P0 is randomly created, then it is sorted in non-dominance
levels (F1, F2, ...), F1 being composed of all the non-
dominated solutions with respect to the total population, F2

containing the solutions non-dominated after the removal of
the solutions that comprise F1 and so on (with |F1| < |P |).

Binary tournament selection, recombination and mutation
operators are used to create a child population Q0 of size
N . From the first generation onward, the population is
generated using a combination between the parent and the
child populations. The procedure for a generation t > 0 is
shown in the Algorithm 1.

Algorithm 1: NSGA-II pseudo code
Rt = Pt ∪Qt

F=non dominated sort(Rt)
while |Pt+1| < N do

crowding distance assignment (Fi)
Pt+1 = Pt+1 ∪ Fi

end while
sort(Pt+1,≥n)
Pt+1 = Pt+1[0 : N])
Qt+1= make new population (Pt+1)
t = t + 1

In Algorithm 1, firstly a new combined population Rt =
Pt ∪ Qt is formed and classified in non-dominance levels.
The new parent population Pt+1 is formed by adding solu-
tions from F1 until the number of solutions in Pt+1 exceed
N . Next, the solutions from the last accepted level Fl are
sorted using the niched comparison operator (≥n), which
compares the solutions according to the non-dominance level
(in) and the crowding distance (id), with this operator, given
two solutions ~i and ~j is defined that ~i is preferable to ~j
denoted by (~i ≥n

~j), if (in < jn) or ((in = jn) and
(id > jd)). In this case the first N solutions are selected,
so |Pt+1| = N . Then this population is selected and,

crossover and mutation procedures are applied to create the
new population Qt+1.

Besides the same basic steps of NSGA-II, M-NSGA-II
utilizes a set of reference points created in an hyperplane us-
ing the procedure detailed in [7], [2] as additional criteria for
the selection procedure. In the new algorithm, all members
of the population from the level 1 until (l− 1) are included
in Pt+1 and to choose the remaining k = N −

∑l−1
i=1 Fi

members of the last front Fl, all members from level 1 to l
are considered, constituting the set St.

To determine the degree of crowding of the solutions in
St, every solution is projected in the created hyperplane
and associated with its closest reference point, then each
reference point will have a set of associated solutions. With
H reference points, ideally a population of size N should
have an average of Pideal =

N
H solutions per reference point.

If any set close to a reference point has less than Pideal

solutions, this point is said deficient, and a deficiency count
(Pideal−Pactual) is calculated, in which Pactual is the actual
number of solutions associated to this reference point.

Thereafter, the most deficient reference point is found, the
solution in Fl closest to this point is chosen and the defi-
ciency count of this point is reduced by one. The next more
deficient reference point is found and the solution closest
to it is identified and so on. This process continues until all
members from Fl are chosen to fill the N members of Pt+1.
At the end, the cluster for each reference point is checked
and if it is empty, the reference point is considered defunct
and its allocated ideal cluster size Pideal is distributed among
its neighboring reference points. Normally this happens in
disconnected fronts, in regions where is not possible to find
non-dominated solutions.

After Pt+1 is formed, it is used to create a new offspring
population Qt+1 by applying tournament selection, recom-
bination and mutation operators. The tournament selection
operator considers two solutions from Pt+1 and selects the
better one. In this case a hierarchy of considerations is used.
First, if a solution belongs to a better non-dominated level
than the other, the former is chosen. Second, if both solutions
belong to the same non-domination level, but they lie on
clusters of different reference points, the deficiency counts
of their respective reference points are compared and the
solution associated with a larger deficiency count is chosen.
Third, if both solutions lie on the same non-domination level
and, also on the same cluster, their distance to the reference
point is computed and the closer is chosen.

Once all the reference points are well spread, the members
of the population Pt+1 are also expected to be well spread.
Therefore, a recombination operator which creates offspring
solutions close to the parents is used. After the offspring
population Qt+1 is created, a new combined population is
formed and the described procedure is applied again.

III. REFERENCE BASED SMPSO

This section describes the RB-SMPSO algorithm inspired
by the ideas of M-NSGA-II. The algorithm is based on
the Speed-constrained Multi-Objective Particle Swarm Op-
timization (SMPSO) [8] and presents as features improved
mechanisms for (i) the update of the external archive to
consider the reference points, and (ii) the selection of social
leaders. First, the general structure of a MOPSO is presented.

MOPSO is a meta-heuristic based in the well-known
Particle Swarm Optimization (PSO) [9] modified to deal
with MOPs. Extending PSO to MOPSO consist to adapt
its leader mechanism to consider a set of non-dominated
solutions which are equally important, besides storing this
set of solutions in a repository.

To maintain the repository (or external archive), the Pareto
dominance relation is used. This archive keep the best non-
dominated solutions found so far, which are used as leader
candidates and returned as final approximated Pareto set at
the end of the search. However, the repository size increase
very quickly and must be bounded (or pruned), which makes
necessary the use of an additional criterion to decide which
non-dominated solutions to retain when the archive becomes
full, this criterion is used in the prune procedure.

The basic steps of a MOPSO algorithm are: initialization
of the swarm, initialization of the external archive, evaluation
and selection of the global leaders, position and velocity
update, mutation, update of the personal leader and update
of the external archive [8].

Each particle ~p, at a time step t, has a position ~x that
represents a possible solution. The position of the particle,
at time t+ 1, is obtained by adding its velocity, ~v to ~x.

The velocity of a particle ~p is based on the best position
already found by this particle (~pbest), and the best position
already found by its set of neighbors (~pleader) that is a leader
from the repository. The velocity is defined as follows:

~v(t) = $ · ~v(t− 1) + (C1 ·R1) · (~pbest(t)− ~x(t))

+(C2 ·R2) · (~pleader(t)− ~x(t)) (1)

R1 and R2, in (1), are random values in the range [0,
1]. ~pbest represent the particle best position, and ~pleader,
the particles global best position. Constants C1 and C2

indicate how much each component influences on velocity.
The coefficient $ is the inertia of the particle, and controls
how much the previous velocity affects the current one.

The MOPSO algorithm used as base in this work is
the Speed-constrained Multi-Objective Particle Swarm Op-
timization (SMPSO) [8], which consists of a MOPSO that
uses a velocity constriction mechanism to limit the velocity
of the particles when it becomes too high.

Given the differences between the NSGA-II and MOPSO,
some adaptations were needed to implement the approach
of reference points in this study. Here, the reference points

are used in the prune procedure as additional criteria for
selecting the particles.

In the new prune procedure proposed here, until the repos-
itory reach the limit, all the non-dominated solutions found
are added. Once the limit is reached, if a new non-dominated
solution is found and it does not dominate any solution of
the repository, the following operations are executed:

1) Find the reference point ~rc closer to the new solution
~f(~xnew).

2) Find the set of solutions (Sc) in the repository closer
to ~rc than any other reference point (associated to ~rc).

3) Find the solution in Sc farther to ~rc (~f(~xar)).
4) If |Sc| < A

H then include ~f(~xnew) and remove the
farther solution from the reference point with more
solutions associated to it.

5) If |Sc| ≥ A
H then verify which solution (~f(~xnew)) or

(~f(~xar)) is closer to ~rc and keep/include the closer
solution in the repository and discard the farther.

Where A represent the number of solutions in the archive,
and H is the number of reference points.

In the steps 1 to 3 the distance is calculated as follows:
firstly both solutions are translated to a normalized hyper-
plane using the Equation 2.

f ′i(~x) =
fi(~x)∑m
j=1 fj(~x)

(2)

Where ~f ′(~x) is an objective vector translated to the normal-
ized hyperplane, fi(~x) is the i-th objective of the vector
~f(~x), ~x represent one solution and m is the number of
objectives. In this equation the main idea is to draw a line
segment from the origin to the particle to be translated and
identify the point in which this line intercepts the hyperplane
in

∑m
i=1

~fi(~x) = 1.
After the calculation of the translated objective vector of

both solutions though Equation 2, the Euclidean distance
between them is used in the steps 1 to 3. This procedure
is done to better identify the region where the solution
is located, avoiding the distance between the particle and
the front to interfere in the calculation. In the step 4, the
Euclidean distance is used directly, since in this case it is
important to take the closeness to the front in consideration.

These operations are performed to increase the portion of
the front covered guaranteeing the association of A

H non-
dominated solutions to each reference point. This technique
requires that the number of particles in the swarm always
be greater than or equal to the number of reference points
and the repository size.

The design of the algorithm aims that all the solutions
in the repository converge to the true Pareto front, as well
as be widely distributed over it. Thus, it is important to
have a leader selection mechanism that emphasizes that by
creating pressure over the entire front, and without causing

the particles to move unnecessarily, since this behavior may
result in loss of convergence [10].

In this new leader selection method, instead of each
particle selecting its own leader, the opposite happens. Each
leader candidate selects the particles closest to it to lead,
avoiding the unnecessary movements of the particles.

Firstly the number of particles per leader is calculated as
n = P

A , where n represent the number of particles per leader,
P is the population size, and A is the number of candidates
within the repository. Usually, it is chosen P = A, resulting
in n = 1 when the repository is full, however population and
repository sizes can be different, being mandatory P ≥ A.

Next, each leader calculates its distance to every particle
using the Equation 2 and selects the n closest particles that
do not have leader yet. With this procedure is expected that
the leaders choose particles in its respective regions and that
the particles cover the entire front.

As the RB-SMPSO algorithm implement its own leader
selection method as presented, two other methods are used
in this work with the SMPSO algorithm in the comparative
study: The Sigma method [11], which presents good results
at the literature [10], and the binary tournament using
Crowding Distance [6], which is the original leader selection
method in SMPSO. Explanations about these methods were
not included in this work for brevity.

IV. EMPIRICAL STUDY

This section presents the empirical study done in this pa-
per to assess the performance of the RB-SMPSO algorithm.
The comparison use the original SMPSO, which have its
leader selection based on binary tournament considering the
Crowding Distance (CD) [6], and a different version of this
algorithm which incorporates one of the best leader selection
methods found in [10], named Sigma method [11].

The benchmark problems used in these experiments are
part of the well-known DTLZ class of multi-objective opti-
mization problems [12]. In this paper two problems of this
family are used, namely DTLZ2 and DTLZ4.

To properly assess the performance of the compared
algorithms, two quality indicators are used. The first of
them is the well-known Generational Distance (GD). This
indicator measures how far, on average, the Pareto front
approximation achieved using an algorithm (PFknown) is
from the true Pareto front (PFtrue), measuring the conver-
gence towards the true Pareto front. A value of zero indicates
PFknown = PFtrue [5].

The second metric used here, is the Inverted Generational
Distance (IGD). This metric measure if PFknown is well
distributed over PFtrue, representing mainly the diversity
of PFknown. It is calculated basically the same way as
the original GD, but the roles of PFtrue and PFknown are
inverted in the GD definition [5]. Here the PFtrue used is
represented by the reference points targeted in the Pareto
surface, as done in [2].

To assess if there are significant differences in the results
found for each utilized measure, the results are submitted to
the Friedman statistical test, which is a non-parametric sta-
tistical test used to detect differences between data sets [13].
In this study the significance level used was 0.05, and the
three algorithms were compared per objective number on
each test problem.

The basic parameters of both algorithms were defined
according to [8]. The number of iterations used for the prob-
lems DTLZ2 and DTLZ4 were 200 and 500 respectively, the
population always kept in 300 and the size of the repository
also fixed in 300. In both problems where used objectives
varying between two and twenty. The number of divisions
per axis (p variable) is defined according to [2].

The CD and Sigma leader selection methods were used
with the standard archiving method of SMPSO (Crowding
Distance), while the new reference based approach imple-
ments its own leader and archiving methods and do not need
additional parameters. Each configuration was executed 30
times with each number of objectives.

The results of the experiments are presented through
charts where each curve represents one different algorithm
for the problems DTLZ2 and DTLZ4 respectively. Each
point is the mean of the quality indicator values for each
number of objectives. The algorithms showing the best
results and no statistical difference according to Friedman
test for each number of objectives are presented in Table I.

Figure 1. GD values for the DTLZ2 problem.

Fig. 1 shows the GD values for the DTLZ2 problem.
For two objectives is not possible to see differences of
performance between the algorithms, while for three ob-
jectives the SMPSO with Sigma show a slightly worse
performance. From five to twenty objectives the differences
become more visible, with the RB-SMPSO presenting the
better convergence followed by the SMPSO with Sigma,
while the original SMPSO presents the worst results.

The Friedman test for GD values from the DTLZ2 prob-
lem is presented at Table I. RB-SMPSO is best for all
numbers of objectives with exception of two objectives,

Table I
COMPARISON OF MOPSO ALGORITHMS FOR DTLZ2 AND DTLZ4

ACCORDING TO FRIEDMAN TEST.

Prob Obj Best Algorithms
GD IGD

DTLZ2

2 CD CD
3 RB-SMSPO RB-SMSPO
5 RB-SMSPO RB-SMSPO
10 RB-SMSPO RB-SMSPO
15 RB-SMSPO RB-SMSPO
20 RB-SMSPO RB-SMSPO and Sigma

DTLZ4

2 RB-SMSPO CD
3 RB-SMSPO and CD RB-SMSPO and CD
5 RB-SMSPO CD
10 RB-SMSPO RB-SMSPO, CD and Sigma
15 RB-SMSPO RB-SMSPO
20 RB-SMSPO Sigma

where the original SMPSO presents the better performance.

Figure 2. IGD values for the DTLZ2 problem.

The IGD values for the DTLZ2 problem are presented
in Fig. 2 representing the diversity obtained with the al-
gorithms. The results have similar behavior to the GD
values. The Sigma presents a performance slightly worse
for two and three objectives, while the RB-SMPSO and
the CD presents performance very close. For five to twenty
objectives the RB-SMPSO present the better performance,
followed by the SMPSO with Sigma and the original
SMPSO with CD presenting the worse results.

The IGD statistical tests for the DTLZ2 problem displayed
at Table I confirmed the data of the chart, with the RB-
SMPSO presenting the better performance for all of number
of objectives with exception of two objectives, and present-
ing no statistically significant differences from the Sigma for
twenty objectives.

Fig. 3 shows the GD values obtained for the problem
DTLZ4, in which for two and three objectives the RB-
SMPSO and the original SMPSO presented the better per-
formances with the Sigma slightly worse. For five to twenty
objectives the RB-SMPSO presents the better results, while
the Sigma performs worse than CD for five objectives. CD
and Sigma perform very close for ten objectives, and for
fifteen and twenty objectives the Sigma stands out.

The GD statistical tests for the DTLZ4 problem shown at
the Table I points the RB-SMPSO as better algorithm for all

Figure 3. GD values for the DTLZ4 problem.

of number of objectives. For three objectives, the SMPSO
with CD and RB-SMPSO are equivalent.

Figure 4. IGD values for the DTLZ4 problem.

The IGD values for the DTLZ4 problem are presented
at Fig. 4. It is possible to observe very small differences
between the values obtained with the algorithms. For two
objectives the original SMPSO with CD and the RB-SMPSO
presents results very close, while the Sigma performs worse.
For three and five objectives the SMPSO with CD present a
slightly better performance, followed by the SMPSO, with
the Sigma presenting the worse results. For ten objectives,
the three algorithms presents about the same results, while
for fifteen the RB-SMPSO presents results slightly superior,
followed by Sigma and at last by SMPSO with CD. For
twenty objectives the Sigma stands out, followed by the RB-
SMPSO and the original SMPSO with the worst results. The
DTLZ4 IGD statistical tests are presented at Table I.

As the data presented shows, neither of the algorithms is
better for all numbers of objectives. These results indicates
that the new RB-SMPSO have a good overall performance
being able to maintain a good convergence of solutions in
both problems and a better diversity in the problem DTLZ2

with a diversity comparable to the other algorithms in the
DTLZ4 problem.

In the DTLZ2 problem, which is easier to optimize,
the solutions obtained with the RB-SMPSO were more
influenced by the reference points, as it is designed to be,
achieving a good convergence especially for many objectives
where the particles are more distant to each other favoring
the convergence. The diversity was worsening as the number
of objectives increases mostly because of the bigger spacing
between the reference points as the objective space grows,
concentrating the solutions closer to the reference points.

In the DTLZ4 problem, the RB-SMPSO achieved a better
convergence, especially for many objectives, presenting a
behavior similar to the observed for DTLZ2, however the
diversity hardness imposed by this problem causes difficul-
ties to obtain a good diversity for all of the algorithms.

V. CONCLUSION

This work presented a new MOPSO approach based on
reference points aiming to better cover the entire Pareto front
with a limited number of solutions. Its performance was
compared with the SMPSO algorithm using two different
leader selection methods.

The empirical analysis was focused in comparing the
performance of the different approaches as the number of
objectives scales up. The experiments were conducted with
two well-known many-objective problems, and the objec-
tives were varied between two and twenty. The convergence
and the diversity of the obtained approximated Pareto fronts
were analyzed through two quality indicators: Generational
Distance, and Inverted Generational Distance. The Friedman
statistical test was used to detect differences between the
algorithms results.

From the data collected in the experiments, is possi-
ble to deduce that the proposed algorithm here presented
has better overall performance than the classic approaches,
mostly because of its idea of spread the particles across
the entire objective space. These good results incentives
further improvements on its main idea, especially to achieve
a superior diversity performance on the DTLZ4 problem,
which is characterized by presenting challenges in this sense.

Future works include the implementation of methods to
improve the diversity in scenarios with increased pressure to
small regions, like the DTLZ4. Additionally, more bench-
mark problems and metrics could be used to better validate
the results obtained.

REFERENCES

[1] E. Hughes, “Radar waveform optimisation as a many-
objective application benchmark,” in Evolutionary Multi-
Criterion Optimization, ser. Lecture Notes in Computer Sci-
ence, S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and
T. Murata, Eds. Springer Berlin / Heidelberg, 2007, vol.
4403, pp. 700–714.

[2] K. Deb and H. Jain, “An Improved NSGA-II Procedure for
Many-Objective Optimization Part I: Solving Problems with
Box Constraints,” Indian Institute of Technology, Kanpur,
Tech. Rep., 2012.

[3] D. W. Corne and J. D. Knowles, “Techniques for
highly multiobjective optimisation: some nondominated
points are better than others,” in Proceedings of the
9th annual conference on Genetic and evolutionary
computation, ser. GECCO ’07. New York, NY,
USA: ACM, 2007, pp. 773–780. [Online]. Available:
http://doi.acm.org/10.1145/1276958.1277115

[4] U. K. Wickramasinghe and X. Li, “Integrating user
preferences with particle swarms for multi-objective
optimization,” in Proceedings of the 10th annual conference
on Genetic and evolutionary computation, ser. GECCO ’08.
New York, NY, USA: ACM, 2008, pp. 745–752. [Online].
Available: http://doi.acm.org/10.1145/1389095.1389237

[5] C. A. C. Coello, G. B. Lamont, and D. A. V. Veldhuizen,
Evolutionary Algorithms for Solving Multi-Objective Prob-
lems (Genetic and Evolutionary Computation). Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 2006.

[6] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast
elitist non-dominated sorting genetic algorithm for multi-
objective optimisation: Nsga-ii,” in Proceedings of the 6th
International Conference on Parallel Problem Solving from
Nature, ser. PPSN VI. London, UK: Springer-Verlag, 2000,
pp. 849–858.

[7] I. Das and J. E. Dennis, “Normal-boundary intersection: A
new method for generating the pareto surface in nonlinear
multicriteria optimization problems,” SIAM Journal on Opti-
mization, vol. 8, no. 3, pp. 631–657, Mar. 1998.

[8] A. Nebro, J. Durillo, J. Garcia-Nieto, C. Coello Coello,
F. Luna, and E. Alba, “Smpso: A new pso-based metaheuristic
for multi-objective optimization,” in Computational intelli-
gence in multi-criteria decision-making, 2009., Apr. 2009, pp.
66 –73.

[9] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
in Proceedings of IEEE International Conference on Neural
Networks, nov/dec 1995, pp. 1942 –1948 vol.4.

[10] O. R. Castro Jr, A. Britto, and A. Pozo, “A comparison of
methods for leader selection in many-objective problems,” in
IEEE Congress on Evolutionary Computation, Jun. 2012, pp.
1 –8.

[11] S. Mostaghim and J. Teich, “Strategies for finding good
local guides in multi-objective particle swarm optimization
(mopso),” in Proceedings of the 2003 IEEE Swarm Intelli-
gence Symposium, 2003. SIS ’03, Apr. 2003, pp. 26 – 33.

[12] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable
test problems for evolutionary multiobjective optimization,”
in Evolutionary Multiobjective Optimization, ser. Advanced
Information and Knowledge Processing, A. Abraham, L. Jain,
and R. Goldberg, Eds. Springer London, 2005, pp. 105–145.

[13] J. Demsar, “Statistical comparisons of classifiers over multiple
data sets,” Journal of Machine Learning Research, vol. 7, pp.
1–30, 2006.

