
Comparison of Parkinson’s Disease Diagnosis

using SOM and MLP Neural Networks

Abstract— This paper realizes a comparison of two methods

used as solution to the classification problem of patient’s with

Parkinson´s Disease from measures taken on bosses of voice. The

used methods are Multilayer Perceptron (MLP) and Kohonen’s

self-organizing maps (SOM). Both methods are addressed with

and without data preprocessing using Principal Components

Analysis (PCA). The best classification result obtained is with

MLP without data preprocessing, which achieved a high correct

average classification rate of 90.24%, therefore it can be taken

into account for the Parkinson’s Disease diagnosis. Finally a

comparison between the addressed solutions is made in terms of

correct classification rate.

Keywords— diagnosis, Multilayer Perceptrons, Parkinson´s

Disease, PCA, Self Organizing Maps, supervised learning,

unsupervised learning.

I. INTRODUCTION

Parkinson’s is a degenerative disease that generates
movement disorders, altering coordination, reflex, posture,
sleeps disorders, loss of sense of smell, depression and
cognitive impairments among others. Since the symptoms of
this disease can be attributed to other disorders, diagnosis is
complex, especially in the early stages of the disease. The
diagnosis method addressed in this paper is the measurements
analysis of recorded speech signals from 32 people, 9 with
Parkinson´s Disease [1].

Among the methods that have been addressed to solve this
problem are: Support Vector Machine [2] with the same dataset
that is used in this work (recorded speech signals), achieving a
correct average classification rate of 91.4%; Self Organized
Neural Nets [3], using the Hoehn and Yahr classification with a
correct classification rate of approximately 90%; Self
Organized Maps, analyzing movement coordination trough
drawings with an optical mouse [4] and Fuzzy Expert Systems
using recorded speech signals of the PhysioNet database [5].

In the present work, the Multilayer Perceptron (MLP) and
Kohonen´s Self-Organizing Maps (SOM) are used to carry out
the classification. The principal component analysis (PCA) is
performed in both methods and the results are compared with
the diagnosis with the complete dataset. Finally, a comparison
between MLP and SOM is performed.

The paper is organized as follows: Section II explains the
experimental methodology. Section III explains the data
preprocessing trough Principal Components Analysis (PCA)
method. Section IV presents the classification using Multilayer

Perceptron with and without applying PCA. Section V presents
the classification using a Kononen’s self-organizing map with
and without applying PCA. Section VI make a comparison
between the obtained results using MLP and SOM and finally
the section VII presents the conclusion of this work.

II. METHODOLOGY

The experimentation is carried out in the following way:

For both methods (MLP and SOM), there are performed two

experiments: with and without applying preprocessing of data,

and for each experiment several variants are realized; these are

change the optimization function, neurons in the hidden layer,

and learning rate for MLP; and change map dimensions,

neighborhood function and neighborhood topology for SOM.

The obtained results are compared in terms of the average

correct classification rate which determine the ability to

generalize of the neural network.

III. DATA PREPROCESSING

The original dataset is composed by 192 instances and 22

attributes (measures extracted from voice recordings),

distributed in 6 samples taken at 32 patients. To reduce

neural network complexity, a transformation of the original

dataset is realized with the aim of decrease the number of

attributes taken as much information as possible contained in

the original dataset.

The Principal Components Analysis [7] is based on the

data correlation matrix, obtaining the components with the

greater variance. The PCA method goal is to extract attributes

with strong correlation and substitute it by a set with less

attributes. The Fig. 1 shows the load curve which describes the

behavior of the variability percent with respect to the

eigenvalues of the correlation matrix.

𝑅 = 𝑇𝛬𝑇′ (1)

𝛬 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, 𝜆2, … , 𝜆𝑝) (2)

𝑆𝑜 = 𝑑𝑖𝑎𝑔(𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑝) (3)

𝑠𝑖 = √𝑣𝑎𝑟(𝑋𝑖) (4)

𝑌 = 𝑋𝑆𝑜
−1𝑇 (5)

Camilo A. Torres1, Diego A. Mora2, Orjuela-Canon, A.D.3

Department of Electronic Engineering

Universidad Distrital Francisco José de Caldas

Bogotá, Colombia

1. caatorresc@correo.udistrital.edu.co
2. damorag@correo.udistrital.edu.co

3. dorjuela@ieee.org

mailto:damorag@correo.udistrital.edu.co

Fig. 1. Load curve to determine the number of components after applying
PCA. With only six components there is a variability percentage of 91.41%.

Fig. 2. MLP network implemented as solution to the problem of
classification using PCA.

The equations (1)-(5), refers to the expressions used in

PCA's application to the original dataset, where X, is the

original dataset matrix; R, is the correlation matrix of X; 𝛬, is

the diagonal R eigenvalues matrix; T are the R eigenvectors

and Y is the new organized space.

The criterion used to determine the number of components

that shape the new organized space is known as Percentage

Explained [7], it uses the variability percentage depending on

eigenvalues of the correlation matrix in the load curve.

The expression that gives origin to the variability

percentage curve of the Fig. 1, is given by (6).

𝑃𝑞 =
∑ 𝜆𝑖

𝑞
𝑖=1

∑ 𝜆𝑖
𝑝
𝑖=1

∗ 100, 𝑝 > 𝑞 (6)

Using a criteria of 90%, as can be seen in Fig. 1, the

91.41% of the information is achieved if the first 6

components of the transformation are used.

The dataset is segmented in three subsets for training,

validation and test. So, in 6 samples assigned to each patient; 3

are assigned to training set, for a total of 96 samples; 2 are

assigned to validation set, for a total of 64 samples and 1 is

assigned for test set, for a total of 32 samples.

IV. CLASSIFICATION USING MULTILAYER PERCEPTRON

The multilayer perceptron is basically a neural network

that consists of an input neuron layer, a hidden neuron layer

and an output layer. It’s a learning method supervised by the

error back-propagation algorithm. This solution approach

adopts the convention, "1" for patients without Parkinson's and

"0" for patients with Parkinson’s.

A. Neural Network Design

Using nntraintool of Matlab®, there is a need to specify

the number of neurons in the input, hidden and output layers,

the size of the train, validation and test sets of the data, and the

learning rate of the Network. Then the number of neurons is

specified in the hidden layer based on the net size valid

generalization given by Baum and Haussler [6], so for a

projected 5 test errors, the maximum number of neurons in the

hidden layer is M=13. However, several tests are performed

with different sizes in order to determine the appropriate

number of neurons in this layer in terms of the correct

classification rate. Thus, based on experimental results the

number of neurons in the hidden layer is determined in 3 for

the training with PCA and 22 for the training that uses the

complete dataset. The input layer is composed by 6 neurons

for training applying PCA and by 22 neurons for the training

that uses the complete dataset. In the output layer one neuron

is used in both cases, given the fact that the network output is

binary (healthy or with Parkinson’s disease). In Fig. 2 is

observed the structure of MLP network designed for training

with PCA.

Other important parameter during the neural network

design is the selection of the learning rate η. For this, is used

the method suggested by Haykin [8], in which η must satisfy

the condition given by (7).

0 < 𝜂 <
2

𝜆𝑚𝑎𝑥
 (7)

Where 𝜆𝑚𝑎𝑥 is the maximum eigenvalue in the correlation

matrix of the training input data set. In this case, 𝜆𝑚𝑎𝑥 is 1

given that all the eigenvalues of the main diagonal in the

correlation matrix are 1; it´s a range of possible values for the

learning rate: 0 < η < 2.

The stopping criteria during the network training are

selected as premature stop 10000 epochs, the mean square

error of 1x10-4 and a value of gradient in error surface of 1

x10-7.

To select a value of η, 20 experiments are performed with

each value of η, varying this parameter from 0.1 to 2 with

steps of 0.1. There is observed that performance in

classification rate is better with values in the range 1 < η <2.

After analyzing the experiments results varying learning

rate, the best results are observed with η values of 1.5, 1.6 and

1.7 with very similar between each other therefore taking

learning rate η = 1.7 for the network training.

As can be observed in Fig. 2, in the output layer sigmoidal

function is used as activation function, due to the fact that

output only adopts two possible values: 0 or 1; which are

precisely the minimal and maximum range values of

sigmoidal function. In the hidden layer the activation function

is the hyperbolic tangent, which in comparison to sigmoidal

function has a better performance in the algorithm

TABLE I

MLP PARAMETERS

Parameters

Inputs 6

Neurons in the output layer 1

Neurons in the hidden

layer

3

Rate of Learning (η) 1.7

Performance Classification rate

Stop criteria

Epoch 10000

MSE 1e-4

Gradient 1e-7

convergence during the network training stage [8, pp. 200-

206]. Table I, is a summary of the parameters selected in the

construction of the MLP network implemented.

B. Training with complete dataset

As mentioned above, the best results are obtained with the

learning rate of 1.7. Therefore training with different number

of neurons in the hidden layer is performed, following the

Baum and Haussler generalization, mentioned in paragraph A.

Fifty experiments are performed for each hidden layer size

(3, 8, 13 and 22 neurons), and both average of mistakes and

correct classification rate are obtained.

Given that the classification results thrown by the MLP are

not exactly ‘1’ or ‘0’, a condition is implemented in order to

determine when a value between 0 and 1 can be a healthy or a

Parkinson’s patient. This condition is as follows: If the value

is greater than 0.6 is assumed like 1, and if the value is less

than 0.4 is assumed like 0. In addition to set an errors count

pattern in the validation stage the following assessment is

carried out: There is a classification error if validation data is 1

and the network output is less than 0.6 or if validation data is 0

and the network output is greater than 0.4. Based on these

considerations, the results for different number of neurons in

the hidden layer are shown in Table II, where NHL: Neurons

in hidden layer; AM: Average of Mistakes; CACR: Correct

Average Classification Rate.

As can be seen in Table II, the correct average

classification rate increases as the number of neurons in the

hidden layer increases, and the best result occurs with 22

neurons in this layer with an average CACR of 90,24%. In

Fig. 3 is shown one of the best results obtained with 22

neurons in the hidden layer, it has just 2 classification errors

and a correct classification rate of 96,875%.

TABLE II

MLP RESULTS WITH COMPLETE DATASET

 Parameter

NHL 3 8 13 22

AM 8,9 7,04 6,44 6,24
CACR (%) 86,09 89 89,94 90,24

Fig. 3. One of the best results with 22 neurons in the hidden layer. It has a

correct classification error rate of 96,875 % (just two errors).

TABLE III
MLP RESULTS WITH PCA USING DIFFERENT OPTIMIZATION METHODS

 Parameter

Opt. Method GD SCG RP LM

AM 6,53 8,14 8,26 8,84
CACR (%) 89,79 87,28 87,09 86,19

C. Training applying PCA

The training applying PCA is divided in three stages: The

first stage as mentioned above is to determine the best learning

rate with which the synaptic weights will be modified. After

analyzing the experimentation results, the selected learning

rate for network training is η = 1.7. The second stage is use

different optimization methods to find a local minimum. These

methods are:

 Gradient Descent (GD)

 Scaled Conjugated Gradient (SCG)

 Levenberg-Marquardt (LM)

 Resilient (RP)

Fifty experiments are performed for each optimization

method with η = 1.7 and 3 neurons in the hidden layer

obtaining the results that are shown in the Table III.

As can be seen, the best results are obtained with Gradient

Descent as optimization method. Then, the third stage is use

GD as optimization method and to experiment with different

number of neurons in the hidden layer based on Baum and

Haussler net size generalization, which thrown M=13 as the

maximum number of neurons in the hidden layer. Therefore,

fifty experiments are realized with 8 and 13 neurons in the

hidden layer (NHL) in order to compare the results with the 3

initial hidden neurons. The results of it are shown in Table IV.

The obtained results shows that, increase the number of

neurons in the hidden layer doesn´t have a satisfactory

performance in terms of classification rate.

TABLE IV

MLP RESULTS WITH PCA, GD AND OTHER NUMBER OF NEURONS IN THE

HIDDEN LAYER

 Parameter

NHL 8 13

AM 8,52 8,94

CACR (%) 86,69 86,03

V. CLASSIFICATION USING SELF-ORGANIZING MAP

The self-organizing maps, is one of the unsupervised
learning methods most used in neural networks, as the name
implies does not have an external supervisor to verify and
monitor the learning process, therefore the aim of the neural
network involves the search for correlations, characteristics or
behavior patterns in the input data; this indicates that
unsupervised learning generates satisfactory results when
regularities are present in the input data.

Kohonen’s maps or self-organizing maps, used as a
criterion for modifying connections, or synaptic weights, use
the approach proposed by Donald Hebb in 1949, known as the
Hebb Rule: "Let us assume that the persistence or repetition of
a reverberatory activity (or "trace") tends to induce lasting
cellular changes that add to its stability.… When an axon of
cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or
metabolic change takes place in one or both cells such that A's
efficiency, as one of the cells firing B, is increased.", In other
words, the modification of the synaptic weights of the neuron
depends of the received stimulation set of the neurons around
it.

∆𝑊𝑖𝑗 = 𝑎𝑖 ∙ 𝑎𝑗 (8)

Equation (8) shows the variation of synaptic weight
between neurons i and j, where 𝑎𝑖 and 𝑎𝑗 are activation values

of neuron i and j respectively given great importance to the
topology of the neural network, because the way in which
network are interconnected, determine the behavior of the
synaptic weights and thereby the performance of the network.

However, to determine the topology of the network, it must
be related to the lateral interaction model [9] that explains how
to perform the interaction between neurons on the self-
organizing map. This model proposes two layers: the input
layer and competitive layer. Each element of the input layer is
interconnected to each neuron in the competition layer. Each
neuron of the network is connected to a competition set of
neighboring neurons (topology) and is able to excite a set of
neighboring neurons (neighborhood function) in order to
generate a learning method called winner takes all, wherein
each neuron modifies its own to achieve its synaptic weights on
the neurons excitation closest, but also seeks an inhibitory
effect in their neighbors that are far away.

Fig. 4. Self-Organizing Map.

This effect is achieved using a neighborhood function (Fig. 4).

A. Neural Network Design

The proposed solution is implemented using somtoolbox1

[10] tool developed by the University of Helsinki. This tool

requires different parameters for neural network construction,

including define the function that determines the competitive

process, the neighborhood function that acts in the cooperative

process, the learning rate function η, which acts in the

adaptive process, the map size, the initialization method of the

synaptic weights and the training method (presentation of data

during network training).

The addressing of this solution is using PCA as indicated

in section II, using the same sets of training, validation and

testing. To determine the map size the following expression is

used (9) [10]:

𝑠𝑖𝑧𝑒 = 5√𝑛 (9)

Where n = 96, which is the number of instances used in

network training that gives an estimated size for the map of 49

neurons.

With this network size the relationship between the sides

of the map is established as the root square of the ratio

between the two largest eigenvalues (in this case the two

highest eigenvalues are 12.83 and 2.49) of the whole

correlation matrix input data [10]. According to the above, the

relationship that should exist between the two sides is 2.27.

Given the size of the map values and the relationship between

its sides, the size assigned to the map is 10 x 4 neurons.

The function used by the toolbox at the competition stage

is a measure of the distance through the modified Euclidean

norm (10):

‖𝑥 − 𝑚‖2 = ∑ 𝑤𝑘(𝑥𝑘 − 𝑚𝑘)2

𝑘∈𝐾 (10)

In the competition layer, somtoolbox provides two

interaction topologies in the neighborhood of neurons, for the

proposed solution, a hexagonal structure is used; as can be

seen in Fig. 5. Some experiments are performed using

Gaussian and Cutgauss neighborhood functions, available in

the toolbox2 [11], finally Gaussian function is select as a

neighborhood function (Fig. 6). and the Mexican hat (Ricker

wavelet) is included in the toolbox to compare results.

Fig. 7 shows the learning rate η functions used by the

toolbox. The design of the proposed network function is

selected inv because it converges in less time to η ≈ 0. The

training is realized in two steps: a coarse adjustment step in

which the learning rate function has a large variation and

finishes with a fine adjustments step in the values of η.
According to information provided by the toolbox

developers, using batch training method reduces convergence
times of the network [10] [11]; likewise, expressions are used
to estimate the number of epochs that are carried out for the
network learning and the initial radius of the neighborhood
function [9] [11], which in this case is 23 epochs and the initial
neighborhood radius of 2.5. The parameters used in the design
of self-organizing map are summarized in Table V.

4. Toolbox available under GNU General Public License at:

http://www.cis.hut.fi/projects/somtoolbox/

5. Fig. 4-6. Taken from somtoolbox manual, Available:
http://www.cis.hut.fi/projects/somtoolbox/download/.

http://en.wikipedia.org/wiki/Axon
http://www.cis.hut.fi/projects/somtoolbox/
http://www.cis.hut.fi/projects/somtoolbox/download/

Fig. 5. Interaction topologies in the neighborhood.

Fig. 6. Neighborhood Functions.

Fig. 7. Learning rate functions.

TABLE V
SOM PARAMETERS

Parameters

Inputs 6

Map Size 40 (10 x 4)

Competition Function Modified Euclidean Distance

Neighborhood Function Gaussian

Neighborhood Topology Hexagonal

Function η Inverse

Initial Neighborhood
Radio

2.5

Final Neighborhood
Radio

1

Performance Classification rate

B. Training with the complete dataset

This training is made with the following parameters:

Gaussian neighborhood function, hexagonal cells

neighborhood topology and 10x4 Map Size. So, the obtained

result is an average of mistakes of 14.86 for a correct average

classification rate of 76.78%.

C. Training applying PCA

The training of the self-organized map using only the 6
attributes after the Principal Components Analysis is
performed for three cases:

 Changing the map dimensions

 Changing the neighborhood function

 Changing the cells neighborhood topology

1) Changing the map dimensions

In this experimentation, the initial map size of 10x4 is

changed to 10x5 in order to compare this results with the

original dimension which is sized based on the two higher

eigenvalues as explained previously. The results with 10x5

map size is an average of mistakes of 28.98 for a correct

average classification rate of just 54.72%. It is the worst result

obtained, which suggests that the adequate relationship

between the sides of the network is the exposed by de Faria et

al [10].

2) Changing the neighborhood function

There is two neighborhood functions that are used:

Gaussian, and the Mexican hat (Ricker wavelet). This function

is described by (11).

𝑚ℎ(𝑈𝑑, 𝑟) = −2𝑒−(𝑈𝑑2+𝑟2) − 0.5𝑒−(𝑈𝑑2+𝑟2)/3 (11)

Where, Ud is the topological distance and r is the

neighborhood radius, both used by somtoolbox.

The Mexican hat function is introduced in the toolbox

because his inhibitory behavior to the near cells is stronger

than the Gaussian function, given that using the Mexican hat

function the lateral interaction has the following behavior: If a

cell is closed to the analyzed cell, it receives a strong influence

of it. As the distance between the cells increases, decrease the

influence until become even negative [12], while the Gaussian

function takes always positive values in both cases. Can be

said that the Mexican hat function has a stronger inhibitory

behavior than Gaussian function. Mexican hat function can be

appreciated in Fig. 8.

For both cases an inverse learning rate is used; the initial

and final neighborhood radio are 2.5 and 1 respectively as

mentioned above in section A. Thus, the obtained results for

fifty experiments are summarized in Table VI.

Fig. 8. Mexican hat function. It can be seen how cells closed to the analyzed

cell (distance zero) receives a strong influence of it, while more distanced
cells experiments inhibition (negative Y axis values), and finally too far cells

don´t experiment any influence of the analyzed cell (cero Y axis values).

TABLE VI

SOM WITH PCA CHANGING THE NEIGHBORHOOD FUNCTION

 Parameter

Neigh. F. Gaussian Mex. Hat

AM 12,94 13,28

CACR (%) 79,78 79,25

3) Changing the cells neighborhood topology

In this case the rectangular topology is used as can be seen

in Fig. 5, with a 10x4 size map, using two neighborhood

functions, gauss and cutgauss (see Fig. 6). For every

neighborhood function 25 experiments are performed, the

obtained results are summarized in Table VII.

TABLE VII

SOM WITH PCA AND RECTANGULAR TOPOLOGY CHANGING THE

NEIGHBORHOOD FUNCTION

 Parameter

Neigh. F. Gaussian Cutgauss

AM 12 12,52

CACR (%) 81,25 80,43

VI. COMPARISON BETWEEN MLP AND SOM OBTAINED

RESULTS

In Tables VIII and IX are summarized all the

obtained results for MLP and SOM with and without

applying PCA. As can be seen the best result is MLP

without PCA, 22 neurons in hidden layer and Gradient

Descent as optimization method.

TABLE VIII

 MLP Results

Opt. Method NHL PCA AM CACR(%)

GD 3 No 8,9 86.09

GD 8 No 7.04 89

GD 13 No 6.44 89.94

GD 22 No 6.24 90.24

GD 3 Yes 6.53 89.79

SCG 3 Yes 8.14 87.28

RP 3 Yes 8.26 87.09

LM 3 Yes 8.84 86.19

GD 8 Yes 8.52 86.69

GD 13 Yes 86.69 86.03

TABLE IX

 SOM Results

Net.

Size

Neigh.

Function.

Topology PCA AM CACR(%)

10x4 Gaussian Hex. No 14.86 76.78

10x5 Gaussian Hex. Yes 28.98 54.72

10x4 Gaussian Hex. Yes 12.94 79.78

10x4 Mex. hat Hex Yes 13.28 79.25

10x4 Gaussian Hex. Yes 12 81.25

10x4 Cutgauss Hex. Yes 12.52 80.43

VII. CONCLUSION

Applying a Multilayer Perceptron with the complete dataset

(without preprocessing of data), 22 neurons in hidden layer

and Gradient Descent as optimization method, the neural

network has the best performance with a highly and significant

correct average classification rate of 90.24% which is slightly

less to the result obtained by Little et al [2] but using a less

expensive computational algorithm. On the other hand, the

best classification result reached is a correct classification rate

of 96,875%; therefore MLP without PCA can be taken into

account for Parkinson’s diagnosis. For this dataset, best

diagnosis results are obtained using MLP than using SOM.

The inclusion (in somtoolbox) of the Mexican hat, from which

it was the hypothesis of has better results than the Gaussian

function by his inhibition shape, does not really improvements

in the classification performance. Apply data preprocessing

trough PCA doesn’t have a significant improve in the

performance of the neural network, for both MLP and SOM.

REFERENCES

[1] Little MA, McSharry PE, Roberts SJ, Costello DAE, Moroz IM.

‘Exploiting Nonlinear Recurrence and Fractal Scaling Properties for
Voice Disorder Detection'. BioMedical Engineering OnLine 2007, 6:23
(26 June 2007)

[2] Little, M.A.; McSharry, P.E.; Hunter, E.J.; Spielman, J.; Ramig, L.O.,
"Suitability of Dysphonia Measurements for Telemonitoring of
Parkinson's Disease," Biomedical Engineering, IEEE Transactions on ,
vol.56, no.4, pp.1015,1022, April 2009

[3] Fritsch, T.; Kraus, P. H.; Przuntek, H.; Tran-Gia, P., "Classification of
Parkinson rating-scale-data using a selforganising neural net," Neural
Networks, 1993., IEEE International Conference on , vol., no., pp.93,98
vol.1, 1993

[4] Voros, T.; Keresztenyi, Z.; Fazekas, Cs; Laczko, J., "Computer Aided
Interactive Remote Diagnosis Using Self-Organizing Maps,"
Engineering in Medicine and Biology Society, 2004. IEMBS '04. 26th
Annual International Conference of the IEEE , vol.2, no., pp.3190,3193,
1-5 Sept. 2004

[5] Geman, O., "A fuzzy expert systems design for diagnosis of Parkinson's
disease," E-Health and Bioengineering Conference (EHB), 2011 , vol.,
no., pp.1,4, 24-26 Nov. 2011

[6] Baum, E.; Haussler, D., “What Size Net Gives Valid Generalization?”
Issue of Neural Computation, MIT Press, January 1989.

[7] Grané, A., “Análisis de Componentes Principales”, Departamento de
Estadistica, Universidad Carlos III de Madrid. [Online]. Available:
http://halweb.uc3m.es/esp/Personal/personas/agrane/ficheros_docencia/
MULTIVARIANT/slides_comp_reducido.pdf.

[8] Haykin, S. “Neural Network: A comprehensive foundation”, 2nd ed.
Singapore: Pearson Education, 2005. pp. 150-157.

[9] Isasi, P. and Galván, I. “Redes de Neuronas Artíficiales, un enfoque
práctico”, Madrid:Pearson Education, 2004. pp. 123-144.

[10] De Faria, E., Portes, M., Gonzalez, J., Portes Marcio P., Pinto J,
"Introduçao ao Toolbox de Redes Neurais de Kohonen". Centro
Brasileiro de Pesquisas Físicas. Universidade Federal do Espírito Santo.,
Rio de Janeiro, Brasil, 2010.

[11] Vesanto, J., Himberg J., Alhoniemi, E., Parhankangas, J. “Som Toolbox
for Matlab 5”. Som Toolbox Team. Helsinki University of Tecnology,
April, 2000.
Available:http://www.cis.hut.fi/projects/somtoolbox/download/.

[12] Isasi, P. and Galván, I. “Redes de Neuronas Artíficiales, un enfoque
práctico”, Madrid:Pearson Education, 2004. pp. 130-131.

http://halweb.uc3m.es/esp/Personal/personas/agrane/ficheros_docencia/MULTIVARIANT/slides_comp_reducido.pdf
http://halweb.uc3m.es/esp/Personal/personas/agrane/ficheros_docencia/MULTIVARIANT/slides_comp_reducido.pdf
http://www.cis.hut.fi/projects/somtoolbox/download/

