
Analysis of Quantum Neural Models

Fernando M. de Paula Neto, Adenilton J. da Silva
and Teresa B. Ludermir

Universidade Federal de Pernambuco
Centro de Informática

Recife, Pernambuco 50740560
Telephone: (+5581) 2126–84302

Email: {fmpn2, ajs3,tbl}@cin.ufpe.br

Wilson R. de Oliveira
Universidade Federal Rural de Pernambuco
Departamento de Estatística e Informática

Recife, Pernambuco 52171-900
Telephone: (+5581)-33206491

Email: wilson.rosa@gmail.com

Abstract—On this paper, we briefly analyze and compare
some models of quantum artificial neural networks. Quantum
operators must be linear ones; we verify that no unitary
operators are used in two models of quantum perceptron.
We also analyze a model of quantum weightless neural
network and a quantum complex neural network. These
models have quantum architecture and learning, but we show
that they use nonlinear operators in the learning process. This
study, toward a comparative method, tries to clarify important
aspects in models of quantum neural networks as well as
understand more its operation.

I. INTRODUCTION

Electronic components have decreased of size signifi-
cantly in the last decades. As Moore’s Laws proposed,
the number of transistors on chip practically doubles
every two years. So this decrease has created non positive
perspectives to keep using the classic paradigm of elec-
tronic circuit building. The classical physic law does not
preserve its operation in atomic particles individually.
Meanwhile, quantum computing might be more pow-
erful than classic computing machines, as investigated
and proposed by Feynman [2]. Then, many algorithms
have been proposed by scientists to provide solutions in
the quantum paradigm in many of the computing fields.
In the Artificial Intelligence (AI) field this trend grows
up specially (a) for the importance of techniques that
can analyze a huge data set automatically and cluster in
related groups[1]; (b) for the medical applicability, in seg-
mentation of images, pattern recognition and genomes
clusterizing that helped to discover and prevent diseases,
respectively; (c) for the robotic that is more and more
present in the industries of high accuracy as in the
daily human activity. Many other reasons are present in
literature to encourage more study and investments in
the AI.

Since 1943, when the psychologist McCulloch and the
mathematical Pitts created the artificial neuron inspired
in the biologic work and after the Hopfield network
and backpropagation algorithm had been created, the AI
field improved significantly when considerable models
of Neural Network and Perceptrons were proposing.

So, this study allows to compare, associating these
models and proposing a comparison of the quantum
neurons in order to provide perspectives and impor-

tant topics to take in consideration when a network is
created to solve some problem. In the section II, there
is an exploring introduction of the quantum computing
topics, in section III, the operation of a perceptron and
neural network in classical methods are explained and in
section IV the quantum models are presented. After that,
there is a study of comparison in section V towards the
methods explained. A conclusion is given in section VI.

II. QUANTUM COMPUTING

A quantum bit, qubit, is a complex bi-dimensional
unitary vector. The vectors |0〉 = [1, 0]T and |1〉 = [0, 1]T
form a computational basis. Any qubit |ψ〉 can be written
as in Equation (1), where α and β are complex numbers
and |α|2 + |β|2 = 1. Tensor products are used to com-
posed systems |ij〉 = |i〉 ⊗ |j〉.

|ψ〉 = α|0〉+ β|1〉 (1)

A quantum operator U over n qubits is a 2n× 2n com-
plex unitary matrix. For instance, some main operators
over 1 qubit are the identity I, not X and Hadamard H
operators, described in Equation (2) and Equation (3).
The combinational representation of unitary operators is
called quantum circuit.

I =
[

1 0
0 1

]
I|0〉 = |0〉
I|1〉 = |1〉 X =

[
0 1
1 0

]
X|0〉 = |1〉
X|1〉 = |0〉

(2)

H = 1√
2

[
1 1
1 −1

]
H|0〉 = 1/

√
2(|0〉+ |1〉)

H|1〉 = 1/
√

2(|0〉 − |1〉) (3)

The identity operator I outputs the input; flip operator
X behaves as the classical NOT on the computational ba-
sis; Hadamard transformation H generates superposition
of states. The CNOT operator has 2 input qubits and 2
output qubits and flips the second qubit if the first one
is 1 as show in Figure 1.

Fig. 1. CNOT operator

a • a

b a⊕ b

Parallelism is an important characteristic of quantum
computing. If one has an operator over n + 1 qubits U f
such that U f |xi, 0〉 = |xi, f (xi)〉 for each xi in computa-
tional basis, so one can calculate all values simultane-
ously applying U f in the state described in Equation (4),
that will result in a state described in Equation (5).

|ψ〉 =
n−1

∑
i=0

αi|xi, 0〉 (4)

U f |ψ〉 =
n−1

∑
i=0

αi|xi, f (xi)〉 (5)

In a classic computing, a search about unordered
arrays of m elements takes, in the worst case, m queries.
On average, one finds the desired element in 0.5m
queries. This process can be better quadratically faster
in a quantum computing using the Grover’s algorithm
[10]. Grover’s algorithm outperforms any classical algo-
rithm and solves in O(

√
N) quantum steps. The iteration

number T is calculated as in Equation (6), where M is the
number of answers in the search space:

T =
⌊π

4

√
N
M

⌋
(6)

The Algorithm 1 shows this routine and M is a
squared 2n-dimensional matrix whose each entry is 1/2n

.

Algorithm 1: Grover’s algorithm
Initialise the system |ψ〉=|0〉n1

Apply the Hadamard Transform |ψ〉=H⊗n|ψ〉2

Apply the phase inversion operation U f (I ⊗ H)3

Apply the inversion about the mean operation4

−I + 2M
Repeat steps 3 and 4, T = O(

√
2n) times.5

Measure the state |ψ〉6

III. CLASSIC PERCEPTRON AND NEURAL NETWORK

A classic Perceptron is a mathematical structure to
represent one operation inspired by a biologic neuron.
The result of a Perceptron is 1, or HIGH, if the intern
product between the input vector and the intern weight
vector is more than a known threshold value, and is 0,
or LOW, otherwise.

∑
x2

x1

1

xn

w0

w1

w2

wn

inputs weights

weighted sum step function

Fig. 2. Classic Perceptron

The first model proposed of Perceptron had an activa-
tion function, which processes the intern product, a step
function. Other models, like Adaline, incorporated non-
linear function and increased its computational power,
described in (7). It is used to classification problems and
as a function approximator.

y = f (∑
i=0

xi ∗ wi) (7)

The Neural Networks are a set of Perceptrons that are
connected to each other. An output of one is the entry
to the other perceptron. In other words, each output
is one of the inputs of another. A neural network can
have more than one layer of perceptrons, increasing
its computational power to solve nonlinear problems.
Currently, they are used in temporal series forecast, in
classification problems, pattern recognition and many
other real problems.

IV. QUANTUM NEURON MODELS

The main problem of a quantum model to incorporate
a neuronal function is the need of a nonlinear function
that allows to compute nonlinear problems, as the classic
XOR boolean operator. Quantum computing is not di-
rectly compatible with that operations, because its gates
are linear, unitary and invertible. Differents solutions
are given to solve this problem and one explains four
of them below. Each one has a set of characteristics to
solve this problem. Depending on the method chosen to
build a quantum neuron maybe one needs a non-unitary
quantum gate to operate it, during or after the training
of the neuron.

A. AQP

The model AQP Quantum Perceptron was proposed
in [7] by Altaysky. This model interacts over only one
qubit of input. It outputs also a state of only one qubit.

|y〉 = F̂
n

∑
j=1

ŵj|x〉j (8)

It is described by the Equation (8), where F̂ can have
the role of the function of activation, wj is a 2x2 matrix

acting and |x〉j one of the n inputs |x〉1, ..., |x〉n. For
this method, Altaiksy also proposed a learning rule that
adapts the matrix of weights to a desired output, through
the learning rule described in (9), where wj is a matrix
of weight, η is a real number between 0 and 1, |d〉 is the
desired qubit, |y(t)〉 is the output of the operator F̂ in
Equation (8) and xj the qubit of input.

ŵj(t + 1) = ŵj + η(|d〉 − |y(t)〉)
〈

xj
∣∣ (9)

This methods also implies a possible non unitary gate
during or in the end of the training steps.

An example of that does not preserve unitary opera-
tors in Equation (9) can be demonstrated in one iteration
of the iterative quantum learning rule. Set j=1, the weight

ŵ1(t) =
(

1 0
0 −1

)
, η = 0.2, the desired output |d〉 = |0〉,

considering the input
∣∣xj
〉
= |1〉, the network output is

−|1〉, by the Equation (8). Then,

ŵj(t + 1) =
(

1 0
0 −1

)
+ 0.2(|0〉+ |1〉)〈1|

=

(
1 0
0 −1

)
+ 0.2(|0〉〈1|+ |1〉〈1|)

=

(
1 0
0 −1

)
+

(
0 0.2
0 0.2

)
=

(
1 0.2
0 −0.8

)

where one sees that ŵj(t+ 1) is non-unitary. This implies
that properties of the quantum computing are not pre-
served. The machine where this model will be used must
consider some mode to work with nonlinearity.

B. ZQP

Zhou [3] proposed one representation of neuron given
by a matrix of weights where it is updated from a
training set during a training process. This algorithm
tries to be an analogous method in relation to the classic
one, but without the nonlinear function. The product
of the matrix of weight with the input generates the
quantum state output. The output is described by the
Equation (10).

Oi = ∑
j

wijφj (10)

where j = 1, 2, 3, ... , 2n, n is a number of qubits of
inputs, and w the matrix of weight 2n x 2n.

A quantum state of n qubits is presented to the
Perceptron and there is an intern product with the weight
matrix. The adaptation of the weights can turn this one
nonlinear, during the training step presented below.

Its weight update function is described by the Equa-
tion (11).

wt+1
ij = wt

ij + η(|O〉i − |ψ〉i)|φ〉j (11)

where wij is one position of the matrix of weights, η is
a traditional learning constant that is fitting to the size
of the training step, ψi is a i-th position of the output of
the neuron, |Oi〉 the i-th qubit in the desired quantum
state in the training set presented and

∣∣φj
〉

the j-th qubit
of the input.

This architecture bounds the size of the output qubit
to be the same of the input. If one desires only one qubit
as answer, one solution of that is to use some of the
qubit in the output state as the answer of the perceptron.
Other problem is that for n qubits of inputs, the matrix
of weights necessarily has n2 entries.

It is important to mention that in training example in
[3], the author has not used the correct Equation (11) to
training, what is a mistake. The |φ〉j is changed to |φ〉i
in his example and the calculus of some weight matrix
is not what Zhou describes. If one corrects the use of
position of the |ψ〉 during the training, the example of
the paper becomes correct.

The updated matrix of the proposed method is also
not necessarily unitary during or after the training step.
An example is showed below:

Supposing the initial weight matrix:

W0 =

(
1 0
0 1

)
Two pairs of input-output:

{((
1
0

)
,

1√
2

(
1
1

))
,
((

0
1

)
,

1√
2

(
1
−1

))}
Then:

|ψ〉 = W0|φ〉 =
(

1 0
0 1

)(
1
0

)
=

(
1
0

)
where |ψ〉

is the output of the first input in the training set.

The weight upload is:

wt+1
00 = wt

00 + η(|O〉0 − |ψ〉0)|φ〉0
= w1

00 = 1 + 1
(

1√
2
− 1
)

1

= 1√
2

In the same way:

wt+1
01 = wt

01 + η(|O〉0 − |ψ〉0)|φ〉1
= w1

01 = 0 + 1
(

1√
2
− 1
)

0
= 0

wt+1
10 = wt

10 + η(|O〉1 − |ψ〉1)|φ〉0

= w1
10 = 0 + 1

(
1√
2
− 0
)

1 = 1√
2

wt+1
11 = wt

11 + η(|O〉1 − |ψ〉1)|φ〉1
= w1

11 = 1 + 1
(

1√
2
− 0
)

0 = 1

So, the first uploading of weight matrix will finish in:

W1 =

(1√
2

0
1√
2

1

)
where it is easy to check it is not a unitary matrix.
Continuing the procedure of update the weights in all
training set, it will be necessary to apply this matrix W1

again as a quantum operator but it is not an unitary
matrix. The access in the each position of weight matrix
in the update must be considerate when this model is
running, because it is not a quantum operation.

C. QNNW

In [5], Panella tells that the models proposed by
Altaisky in [7] and others in [6] and [8] are not con-
vincing because they do not use an efficient training
in the Perceptron, with massive parallelism procedure.
Panella also said that they do not solve basic aspects
of neural computing such as non-linearity, implying the
explanation as this nonlinearity works. There are two
ways to solve non-linearity in QNNW, elucidated by
Panella: (a) or a dissipative nonlinear gates are used or
(b) modifications are made in the network preliminarily
in order to result in a unitary gate. In Panella solution,
the second way is used. The non-linearity is used only in
the training step and this mechanism will not imply in a
non-linear network after the training like the AQP [7]and
ZQP [3] neurons. Panella also states that one efficient
training happens only when a superposition of states is
used.

This proposed model by Panella intents to solve this
non-linearity problem with a training efficient.

Panella uses superposition of states to apply an ex-
haustive search of the optimal net through the nonlinear
operators. The main idea is to represent the neuron as
a string of qubits which is equivalent to a problem to
solve. The general case |Ψ〉 for all the possible QNNs is
represented in Equation (12), where n is the number of
qubits. One can represent all the possible QNNs by the
N = 2n states in superposition.

|Ψ〉 = 1√
N

N

∑
k=0

∣∣∣Ψ(k)
1 Ψ(k)

2 ...Ψ(k)
n

〉
(12)

where
∣∣∣Ψ(k)

〉
is the kth QNN, k = 1, ..., N and

∣∣∣Ψ(k)
j

〉
,

j=1,...,n, the j-th qubit of its representation. If one has
N0 inputs and in one N1 neurons layer, one will need
N0 ∗ N1 blocks of F0, which computes the synapses. The
synapses of the one neuron happen in two steps. The first

one by the sum of two complex numbers of magnitude
1 and considering as its output the argument of the sum.
N1 ∗ N0 bias, θ, are considered in this step in each block
of F0. The calculus of this step (involving entries and
bias) is showed with details in [5]. In the second step, the
result of each F0 block is added with the bias ξ. This sum
is applied by F1 operator, where the non-linear function
is implemented and it is explained with details in [5].
This function does is not a quadratic matrix and does
the role of the nonlinear function of the neuron. In the
other words, its output of F1 is the output of the neuron.
The successive layers are similar to the first one.

For an example, a neuron with three inputs and two
neurons in the first layer, it would have 3 · 2 = 6 blocks
of F0, then 3 · 2 also θ, (θ

(1)
1 , θ

(1)
2 , θ

(1)
3 , θ

(1)
4 , θ

(1)
5 , θ

(1)
6) and

two ξ, (ξ(1)1 , ξ
(1)
2), as shown in Figure (3).

The efficient of a neural network given a training
set is calculated as a performance ∆(p), by a one block
F2, described with details in [5]. The F2 function can be
considered as a boolean function of another function F3.
F3 is implemented supported by [9]. When an input is a
|Ψ〉 that represents all QNNW in superposition, then the
output of F3 is the superposition of

∣∣∣|Ψ〉, ∆(p)
〉

. In this
state, each QNN will be entangled with its performance,
for the example, {X(p), t(p)}, where X is the inputs and t
the desired targets. The performance is described for the
equation (13), where u(p) is the output of the QNN.

∆ =
Np

∑
p=1

∆(p) =
Np

∑
p=1
|t(p) − u(p)| (13)

In resume, the ∆ makes the sum of the difference (the
error) of the output and the desired state. This is done
through the F3 gate, but a value δ is considered in the
place of ∆, which δ is the average of the ∆(p). After that,
the quantum state will be:

Φ =
1√
(2)

N

∑
k=1

∣∣∣Ψ(k), δ(k)
〉

(14)

To determine the optimal QNNW, one needs to find
the QNN that has the δ less than or equal to a given
threshold. This is done by a non-linear function Ug
described with details in [5]. This gate marks the states
which have the previous condition (to be less or equal
to a given threshould) if it exists. This state is marked in
a special qubit |c〉 with the value |1〉 when the δ is less
or equal to a suitable threshold; and with |0〉 otherwise.
After that, the quantum state will be as showed in
Equation (15).

Ω = |Φ, c〉 = 1√
N

∑
ck=1

∣∣∣Ψ(k), δ(k), c(k)
〉
+

1√
N

∑
ck=0

∣∣∣Ψ(k), δ(k), c(k)
〉 (15)

The final step is an exhaustive search which finds the
QNNW which was marked with that flag |c〉 = 1, that it
will be the chosen network.

Fig. 3. Scheme of the proposed QNN by Panella in an example of
three inputs and two neurons

D. qRAM Neuron

Adenilton [11] defined a quantization of a RAM based
neuron described in [4]. This model does not use a non-
linear activation function. The neuron works with a set
of 2n selectors, |s〉, where n is the number of qubits of
the inputs |i〉, one qubit |o〉 of output and 2n matrices
(or quantum circuit) of controlled-NOT gates. In other
words, there are three quantum registers |s〉, |i〉 and |o〉,
where the input |i〉 chooses one qubit of the selector to
apply in the controlled-NOT gates with the output qubit.

For example, given an input |i〉=|0〉, the neuron will
choose the first qubit, |s0〉, of the selector; given another
one |i〉=|1〉, the neuron will select the second qubit, |s1〉,
of the selector, and so on. After this choice, the neuron
applies the chosen selector with the output qubit in
a controlled-NOT gate. In superposition state of input,
this neuron can choose selectors in superposition, and,
probably, to generate an output in superposition. The N
neuron is represented by the operator in Equation (16).

N =
2n−1

∑
i=0
|i〉n〈i|n Asio (16)

This model can be better understood with the rep-
resentation in Figure (4). As one can see, the selectors
|s〉 after the training step can learn a pattern, changing
their values. Adenilton also suggests a configuration of a
neural network using this model of neuron represented
in Figure (5).

|ψ〉 • •
|ϕ〉 • •
|s1〉

A1 A2 A3 A4

|s2〉

|s3〉

|s4〉

|o〉

Fig. 4. qRAM node

N1
i1
i2

s1

-
-
-

N2
i3
i4

s2

-
-
-

-
- N3

s3-

-

Fig. 5. Two layer qRAM network

Two training algorithms are proposed by Adenilton in
[11]. The first one is called by the author as "Naive
qRAM Net Learning" and it received this name because
it does not explore quantum mechanics properties. This
algorithm describes its check and update of the selectors
|s〉, given a training pattern set. It does not make use of
quantum superposition and it does a change of register
qubit iteratively. More details are found in [11]. The
second one, described in Algorithm 2, makes use of
superposition and quantum properties. Its work is based
in Grover’s algorithm [10], that amplifies amplitudes of
the qubits given an input |ψ〉 and its desired states |d〉.

Algorithm 2: qRAM - Superposition based Learning
Initialize all the qubits in register s with the1

quantum state H|0〉.
Initialize the register p, o , d with the quantum2

state |p〉 = ∑
p
i=1 |pi, 0, di〉.

|ψ〉 = N|ψ〉, where N is a quantum operator3

representing the action of the neuron.
Use a quantum oracle to change the phase of the4

states where the registers p, o, d = ∑
p
i=1 |pi, di, di〉

Apply the operator inverse to the neuron in the5

state |ψ〉, |ψ〉 = N−1|ψ〉, to disentangle the state in
the register s
Apply the inversion about the mean operation (see6

Algorithm 1) in the register s
Repeat steps 3, 4, 5 and 6 T = π

4
√

n times, where n7
is the number of selectors of the networks.
Measure the register s to obtain the desired8

parameters.

The Algorithm 2 shows the procedure of initialization

of the registers and the routine that amplifies the ampli-
tudes of the desired states of the |s〉 based in the desired
outputs.

V. COMPARATIVE METHOD

A Quantum Neuron needs to be a universal quantum
gate or quantum circuit and, not only that, it must
provide an adaptive and powerful learning. This is found
in the models described above, each one with its pecu-
liarities.

Then, a simple general structure of Perceptron is pre-
sented below. Adenilton and Panella models have used
algorithms that implement superposition and explicit
quantum parallelism, so this simple model of training
is not considered directly by them.

|P〉 = F̂
n

∑
j

Ŵj|Ψ〉j (17)

|W〉t+1 = |W〉t + ∑
j
|x〉j(|ψ〉, |d〉, |φ〉)〈y|j(|ψ〉, |d〉, |φ〉)

(18)

In the equation (17), a Perceptron is defined as appli-
cations of weight operators Ŵ in inputs |Ψ〉 that can be
one qubit or more than one. The AQP model is the one
with the restriction that its input is only one qubit and
w a 2x2 matrix. In qRAM model, the model is exactly
that, if one considers that |i〉n and 〈i|n build a linear
operator W based on extern product. In ZQP model is
equal considering F̂ as the identity operator I. Panella
has proposed that the perceptron is the sum of strings of
qubit and the Equation (17) also is able to represent, as
the string of qubits being the operator gate W applied in
the inputs ψ. In other words, the string of qubits can be
generated from the product of W with the inputs.

It is important to refer that the model AQP accesses
the amplitudes of the qubit states. In quantum comput-
ing, this is done by a measuring where the state is lost
and it implies the collapse of the measured quantum
state.

In the general learning rule (18), one needs to ensure
that the adaptation of weights is function of the input
and of the desired output. The qubit |x〉 and the qubit
|y〉 are quantum states in function of the input of the net-
work and of the desired output. Any operator is formed
from the |i〉a and 〈i|b states [13] and it can generate the
operators which are proposed by each model presented.
It is necessary also to consider that this procedure of
training will converge.

To compare the models, some important topics have
been considered. In the Table (I), one sees that the
method AQP and ZQP have a matrix learning, but only
AQP has a matrix operation in the training. In other
words, AQP is the unique to update the own matrix
using matrix operations. The other models necessarily
need to update qubits or values in the matrix positions,

TABLE I. COMPARISON OF QUANTUM NEURON TECHNIQUES

Model Matrix input/ q-learning classical
learning output learning

AQP X 1 qubit X**
qRAM >=1 qubit X X
ZQP X* >=1 qubit X**

QNNW >=1 qubit X

*Despite ZQP uses a matrix learning, during the training, the update in each
position of the matrix is not one matrix operation, it is an individual calculus in
each position. **AQP and ZQP do not have an explicit superposition training.

like an assignment, with no process of matrix operation.
The column q-learning is set if the model uses the
quantum computing properties during the training and
all of the methods are signed as able, although the AQP
and ZQP model can generate a nonlinear weight matrix
or network. Only qRAM and QNNW models have an
explicit superposition training. The qRAM has the power
to be trained from a classical training.

The models presented are not self-adaptative or self-
organizing methods, they need tags or supervised learn-
ings to adjust its intern parameters. Then all of them use
supervised learning.

About non linearity, the AQP and ZQP models results
in possible nonlinear quantum structures, despite the
QNNW needs to use the nonlinearity in the training to
solve some problems, like check strings of qubits and flip
one qubit if necessary. The nonlinearity is not present in
the qRAM model.

In the study of quantum computing, using a non-
unitary matrix can be understood as the use of dissipa-
tive gate that not only changes the phase in the systems
as also the amplitude. Although it is not considerate to
some physicists as quantum computing, this nonlinear
methods have increased in the last researches, as in [12].

In details about complexity, only Panella and Adenil-
ton investigates its complexity and computational cost in
their articles.

VI. CONCLUSION

There are many aspects to consider when an artificial
neuron model is created and the choice of the technique
to build the neurons will reflect in its features. This is
also present in classical models. Many times, a neuron
model is good to solve some problem in particular.
On this paper, one can analyze some topics about the
complexity, the operation of the models and to verify
what the operation of each neuron struct provides. This
study is limited in terms of a full hardware review but
it is introductory to elucidate the variation of each one
in operations, size of input and output and about the
quantum properties, as parallelism and measuring. As
one sees the models present different ways to work and
an analysis of the models is necessary if one needs to
choose a neuron to work in an application.

This study can be extended in a simulation of real
databases of Artificial Intelligence field to compare these
techniques in real problems to verify results in each one.

ACKNOWLEDGMENT

This work is supported by research grants from
CNPq, CAPES and FACEPE (Brazilian research agen-
cies). The author Fernando is grateful by the inspiration
and motivation from the engineer and professor Helio
de Oliveira, UFPE.

REFERENCES

[1] Boley, D.; Gini, M.; Gross, R.; Han, E.-H.; Karypis, G.; Kumar, V.;
Mobasher, B.; Moore, J.; Hastings, K. Partitioning-based clustering
for web document categorization, Decis. Support Syst., v. 27, n. 3, p.
329-341, 1999.

[2] Feynman, R.P. Simulating physics with computers, Int. J.Theor.Phys.
21(1982)467-488.

[3] R. Zhou, Q. Ding, Quantum M-P neural network, International
Journal of Theoretical Physics 46 (2007) 3209-3215.

[4] I. Aleksander, Self-adaptive universal logic circuits, Electronics Let-
ters 2 (8) (1966) 321-322

[5] M. Panella, G. Martinelli, Neural networks with quantum architecture
and quantum learning, International Journal of Circuit Theory and
Applications 39 (1) (2011) 61-77, doi:10.1002/cta.619.

[6] Lewenstein M. Quantum perceptrons. Journal of Modern Optics
1994; 41:2491-2501.

[7] Altaisky MV. Quantum neural network. ArXiv: quant.ph/0107012,
5 July 2001.

[8] Ventura D, Martinez T. An artificial neuron with quantum mechanical
properties, Proceedings of the International Conference on Artificial
Neural Networks and Genetic Algorithms, Norwich, U.K., 1997;
482-485.

[9] Rieffel E, Polak W. An introduction to quantum computing for non-
physicists, ACM Computing Surveys 2000; 32:300-335.

[10] L.K. Grover, A fast quantum mechanical algorithm for database search,
in: Proceedings of the Twenty-Eighth Annual ACM Symposium on
Theory of Computing, STOC ’96, ACM, 1996, pp. 212-219.

[11] Adenilton J. da Silva, Wilson R. de Oliveira, Teresa B. Ludermir
Classical and superposed learning for quantum weightless neural net-
works Neurocomputing Journal, 2011, pp. 52-60.

[12] Daniel S. Abrams, Seth Lloyd Nonlinear quantum mechanics
implies polynomial-time solution for NP-complete and #P problems
Phys.Rev.Lett. 81 (1998) 3992-3995

[13] M.A. Nielsen, I.L. Chuang Quantum Computation and Quantum
Information, Cambridge University Press, 2000.

