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Abstract—Passive sonar systems used in submarines, performs
the direction of arrival (DOA), the detection and classification of
targets signals that are impinging on the hydrophones from a
particular direction of interest. In some situations, depending
on the resolution of the beamformer (hydrophones array) and
when the signals are at too close bearings, a cross interference
may bring difficult on the target identification by the operator of
sonar. This paper aims at using independent component analysis
(ICA) as preprocessing on DEMON analysis to improve the
targets identification.The FastICA algorithm was used, which was
applied to the simulated data, and performance was measured
both, qualitatively and quantitatively.

I. I NTRODUCTION

Sonar Sound Navigation and Ranging [1] systems use the
sound propagation in underwater environments for detection,
communication and navigation. The main purpose of these
systems is to analyse the underwater acoustic waves received
from different directions by a sensor system and identify the
type of target that is detected in a given direction. Sonar
systems may be active or passive. The active sonar transmits
an acoustic wave that is reflected by the target and signal de-
tection, parameter estimation and localization can be obtained
through the corresponding echoes [1], [2]. On the other hand,
passive sonar systems perform signal detection and estimation
using the noise radiated by the target [2], [3]. Both passive
and active sonar systems are mainly employed in military
settings, although they are also used in commercial and
scientific applications, i.e., detecting shoal fishes, performing
tomography on sea to exploit a given area, to measure the depth
of a region, and so on [4]. On the other hand, a increased
awareness of environmental issues has also stimulated the
development of passive sonar techniques for detecting schools
of fish and whales, as well as the detection of oil and gas in
depth waters. The major difficulty in passive sonar systems,on
military applications, is that often target detection is performed
under huge background noise conditions and in some situations
interference caused by others ships in a scenario.

The passive sonar system aims at carrying out detection
and classification (target identification) of acoustic signals in
underwater environments from a target. A way to perform
the detection and classification of the target is trough its
propeller noise. The target identification may be done usingthe
DEMON (Detection Envelope Modulation On Noise) analysis
[2] that allow the identification of the shaft rotation and the
blade rate of the target. But, in some situations, when the
targets are on closed bearings a cross interference may difficult

the identification by the sonar operator. Due to this, it is
necessary perform a preprocessing on the DEMON analysis, to
improve the signal-to-interference ratio (SIR), thus facilitating
the contact identification by the sonar operator.

This preprocessing is implemented using the ICA algo-
rithms [5], [6]. The algorithm used in this work was the
FastICA. The performance evaluations of the algorithm willbe
done qualitatively and quantitatively, using analysis graphical
in the field of observations and estimated components. The
quantitative performance will be realized using the Kullback-
Leibler divergence as figure of merit [7].

II. PROPULSIONIDENTIFICATION

In order to accomplish contact identification at some direc-
tion of interest, the DEMON analysis may be used to detect
the propulsion of the target. DEMON is a narrow band analysis
that operates on cavitation noise in order to identify the number
of axis, the rotation frequency and the blade rate of a contact
[2] and [8]. With this analysis will be enable to perform the
detection and identification of a contact on a direction of
interest by the sonar operator. The Figure 1 shows the block
diagram of the classical DEMON analysis. At a particular
bearing, the signal is band limited by a bandpass filter, for
the frequency band where cavitation is more pronounced. The
cavitation frequency range goes from hundreds to thousands
of Hertz [9]. However, in a certain frequency bandwidth,
cavitation is more emphasized, that is, the modulation index
is higher, facilitating the identification of the contact. In our
case, the bandwidth was chosen to be within 1 and 2 kHz [4].
After filtering, the signal is demodulated to obtain the contact
propulsion. As the sampling frequency of the signal is so high
with respect to the propulsion band, a resampling is performed
so that the signal is transposed to the propulsion range where
the propeller characteristics are more evident [10]. Then,a fast
Fourier transform (STFFT - Short Time Fourier Transform)
[11] is implemented to reach the spectrum. A normalization is
implemented to perform the frequency peak equalization [2].
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Figure 1. Block diagram of the classic DEMON analysis.



A. Data Acquisition

The data used in this work were acquired by simulation
from a collaboration with the Brazilian Navy. The sampling
rate was maintained atfs = 31, 250 Hz and the signals were
split into time windows of60 s. This choice of the windows
lengths is by the fact that in the resampling process, it is
necessary at least, approximately20 s for a good resolution
on a FFT of1, 024 frequency bins, which is performed during
the analysis DEMON analysis. Then, were chosen three time
windows to implement the analysis.

As mentioned early, the data were acquired through a
passive sonar simulator for training sonar operators and each
of them have1, 020 s (17 minutes). In this simulation, it was
created a scenario where two ships are operating in permanent
cavitation regime, beginning at distinct bearings (B1 and B2)
and some time afterwards, they start to get close enough, so
that there is an interference among them. This interference
begins, approximately, at fourteenth window and the SIR
decreases until the seventeenth window. The main feature of
these data is the high level of cavitation, which allows the
identification of the contact propulsion through the DEMON
analysis.

Next will be shown the ICA algorithm and the methodolo-
gy that was used to implement the blind separation.

III. B LIND SOURCESEPARATION

The purpose of blind source separation (BSS) is to estimate
sources that were mixed in some unknown way. BSS intends
to emphasize the absence or almost no knowledge about
the sources which gave rise to the observations [6]. The
observations (the data mixed) that are completely known, will
be the starting point and object of the work. Several methods
are used for solving the problem of blind source separation [12]
and [13]. In this work will be used the independent component
analysis.

A. Independent Component Analysis

Independent components means that, the value of a com-
ponent does not provide any information about the value of
any other, whereas the original components are statistically
independent. Then the aim is to extract the components from
observations.

The independent component analysis considers a set of
N observed signals,x(t) = [x1(t), ..., xN (t)]T , is gener-
ated by a linear combination of signal sources,s(t) =
[s1(t), ..., sN (t)]T , as show in Equation 1, whereA is a
mixture matrix [12].

x(t) = As(t) (1)

The purpose on this problem is estimate the sources,s(t),
using only the observations,x(t). A solution can be reached
calculating the inverse of mixture matrixB = A−1 and
applying this matrix on the observations to obtain the original
sources, as shown in Equation 2, wherey(t) is the estimative
of s(t). To estimate the unmixed matrix will be used the
FastICA algorithm.

y(t) = Bx(t) (2)

1) FastICA algorithm: This algorithm uses the principle
of the maximization of non gaussianity in terms of kurtosis
and negentropy [12], [14]. Considering a observationxi, it is
possible to perform the estimation of independent components
through a cost function, as shown in Equations 3 and 4, where
W is a weighting matrix, andz is the whitened data vector
by a matrixV, i.e., z = Vx. In order to make the algorithm
faster, the gradient is carried out as shown in Equation 5:

x = WT z (3)
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The classical approach using negentropy is based on higher
order cumulants and polynomial expansion of the input values
G(x) = log [cosh(x)] or − exp(x

2

2
) [15]. Using a gradient

algorithm based on this method, the polynomial functions,
mentioned above, may be applied in FastICA algorithm as
shown in Equation 6. The matrixW must be normalized,

W←−
W

‖W‖
, to avoid an algorithm divergence.
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}
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}

W (6)

The FastICA algorithm may estimated the independent
components, all at a time or one-by-one. In this work, the
estimation was performed using the deflation method that
extract the components one-by-one.

IV. PERFORMANCEMEASUREMENTS

There were used two ways to measure the performance
of the algorithm. The SIR among the signals were measured
before and after the estimation of the components, to verify
if there was an improvement upon the SIR estimation with
ICA. Quantitatively, it was calculated the Kullback-Leibler
divergence [16], as shown in Equation 7, among the spectra
of the observations and among the spectra of the estimated
components. Then, may be possible to verify the efficiency of
the algorithm on the separation.
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∑

i
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(

pi

qi

)

pi (7)



V. RESULTS

The DEMON analysis usually goes of0 until 1, 500
rpm, that normally correspond to the range of the contact
propulsion. In the case of simulated data, that were used in
this work, as the propulsion range of each the contact is on
the range of380 and480 rpm respectively, the processing and
graphical representation were performed at the range of350
tilun 550 rpm. Due to this, the components that are not of
interest will be already eliminated.

As the simulated data are fully controlled, due to prior
knowledge of their behaviour, it was assumed a benchmark
of quality for each of the contacts. The benchmark choice
was the first time window of each bearing. This choice was
by fact that, at the first window, the contacts are more sepa-
rated. Measurements were performed among the spectra of the
benchmarks, and the observations and estimated components
by the FastICA.

The last time window (window17) contains information
where the contacts are more closer, corresponding to higher
interference. The ICA algorithm have been applied in each
one of the time windows, in order to improve the interference
among the signals facilitating the contacts identificationby the
sonar operator. Only the last three time windows analysis will
be shown, since, these windows suffer the greatest interfer-
ences.

The ICA was applied on the DEMON analysis, on the time
domain, after the signals resampling as shown in Figure 2. Due
to the fact that the ICA is being performed in the propulsion
domain, some components that are not of interest just will be
eliminated.
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Figure 2. Block diagram of the ICA in the DEMON analysis.

A. Results with FastICA Algorithm

The Figures 3, 4 and 5 show the DEMON analysis
regarding the last three time windows and their respective
components.
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Figure 3. DEMON analysis of the contacts and the components ofthe time
window 15.
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Figure 4. DEMON analysis of the contacts and the components ofthe time
window 16.
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Figure 5. DEMON analysis of the contacts and the components ofthe time
window 17.

The Figure 3 shows that, the SIR of the contact have5
and8 dB respectively. After the components estimations, may
be observed that the SIR at each of the components reached
13 and 15 dB, respectively, showing that the SIR increases
among the components. On the Figures 4 and 5, the algorithm
performed the attenuation in interference among the contacts,
improving the SIR.

Quantitatively, the measure of the Kullback-Leibler (KL)
divergence was chosen to measure the algorithm performance
[7]. First, the KL divergence was implemented at each time
window, among the contacts (observations) and among the
components, as shown in Figure 6.
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Figure 6. KL divergence among observations and among the components
estimated by the FastICA algorithm.

May be observed the efficiency of the separation by com-
paring the curves of kl divergence, among the observations and
the components. From first until the thirteenth time window,
where the signals are not suffering cross interference, theKL
divergence among observations and components, remain at the
same level, suffering only variations due to noise fluctuations.



These time windows may serve to calibrate the behaviour of
the algorithm. From the thirteenth time window, when begins
the interference, the KL divergence among the observations,
begins to decrease, going toward zero, while the KL divergence
among components remain in values next to1.6. This shows
that the KL divergence of the components are with the values
next to the divergence of the initial time windows. May be
concluded that the algorithm is separating the signals and
returning to values next of the initial observations.

Another way to verify the FastICA algorithm performance
is to measure the KL divergence among the benchmarks time
windows and the respective contacts, and among benchmarks
and their respective components, as shown in Figure 7.
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Figure 7. KL among the benchmarks and contacts, and benchmarks and
components by FastICA algorithm.

The KL divergence among the benchmarks and observa-
tions remain nearly zero from the first until the thirteenth
time window. From the fourteenth window upward, there is
an increasing of the divergence due to the interference. While
the divergence among the benchmarks and the components,
remain around zero in all windows, ensuring that the algorithm
performed the separation.

VI. CONCLUSION

Independent component analysis may be used as a impor-
tant tool on passive sonar signals separation that are suffering
cross interference among them. In this work the independent
component analysis was used as preprocessing on the DE-
MON analysis with the purpose of emphasize the propulsion
detection of a contact on time domain, improving the contact
identification by the sonar operator. Simulated data was used
to verify the behaviour of ICA the algorithms. The algorithm
used in this work was the FastICA, using the negentropy as
cost function and the deflation method to reach the independent
components.

The performance, of the algorithm, was investigating by
the use of two index. Qualitatively, the SIR was measured
among the contacts(observations) and the components. May
be observed that SIR after the estimation by the algorithm
suffered a substantial increment showing that the algorithms
searched an efficient separation.

Quantitatively, it was measured the KL divergence among
the contacts (observations) and among the components esti-
mated by the FastICA and it was observed the behaviour of
the curves. The KL divergence of the components, on time
windows that have less SIR, remained on values next the
initial temporal windows, showing that the algorithm returned

to values on which the contacts are most separated unless of
noise fluctuations. When the SIR decrease, from the thirteen
time window ahead, the KL divergence among the contacts
goes toward zero, while the divergence among the components
remains in turn of the values of the time windows that are not
suffering interferences. This indicates that there was a contacts
separation. Finally, another way measuring quantitatively the
algorithm performance was through a benchmark. May be
observed that in all time windows, the components remain next
zero, providing the the algorithms implemented the separation.

Then, may concluded that the FastICA algorithm had a
good performance in the separation of contacts improving the
SIR on the time domain. Future works can be implemented
using others ICA algorithms and applying the independent
components in another domain of the DEMON analysis.
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