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Abstract—Supervised learning techniques can be roughly
grouped into lazy learning or eager learning. Lazy learning and
eager learning have very different properties and are suitable
for different applications. In this paper we evaluate properties of
the two types of learning using a representative distance based
algorithm for each class, namely, kNN (k-nearest neighbors) and
RBFN (Radial Basis Function Network). In addition, an edition
algorithm (SPAM - Supervised Partitioning Around Medoids)
is used to reduce the labeled dataset. Our experiments for
classification and regression tasks, using 12 public datasets show
that prototype selection algorithms typically used with kNN are
good alternatives for selection of centers of RBFN when to
optimize the number of centers is not the relevant criterion. The
experiments also show that the RBFN generally perform better
than Edited kNN.

I. I NTRODUCTION

The supervised learning techniques (classification or re-
gression) can be roughly grouped into lazy learning or eager
learning. In lazy learning [2] little or no effort is expended
during the training phase because the effort is postponed until
the generalization phase to a new instance. Thus, no predictive
model is constructed in advance such as a neural network or
a decision tree. In eager learning [2], in turn, focuses on the
effort to build a concise and finished predictive model using
training cases. Such a model should, to perform well, cover
the entire input space focusing to achieve greater accuracyin
regions of higher probability. Typical examples of lazy learning
and eager learning are, respectively, the kNN [6] and RBFN [9]
algorithms.

When the target function is very complex but can be
approximated using a combination of several local functions,
lazy learners such as k-nearest neighbor (kNN) are known to
achieve good results. However, as a downside, lazy learners
have high requirements in terms of storage and processing time
which may limit their use in real life applications. In order
to avoid such problems and possibly improving the algorithm
results by avoiding noise and overfitting, an viable approach is
to edit the training set. In this paper, we call a kNN algorithm
with the training set reduced by some method of redundancy
and outliers elimination as Editing kNN.

Radial Basis Function Networks (RBF Networks), on the
other hand, have lower classification time requirements be-
cause they produce global optimization of the target function
during the training stage. Even though the RBFN is an eager
learner method, it approximates the target function using a
combination of several local functions. Therefore, RBF Net-
works combine the advantages of lazy and eager learners.

Studying this structural property of RBF Networks is the main
motivation for this work.

RBF Networks and kNN are Distance-based algorithms.
Distance-based algorithms are machine learning algorithms
that store internal parameters and a number of exemplars.
They compute the output for a given instance exclusively
from a combination of the internal parameters and the distance
between that instance and each exemplar. To accomplish this
task, RBFN uses knowledge of the global structure of the task
to build an interpolation while kNN works exclusively with
local information. However, it has not been conclusively shown
that any global location algorithm consistently outperforms
every other algorithm in any specific task [5].

In this study, we investigated the properties and perfor-
mance of both supervised learning algorithms (Edited kNN
and RBFN) on classification and regression tasks. The goal,
therefore, is to gain insight on the comparative propertiesof
lazy learning and eager learning.

The remaining sections are organized as follows. The
algorithms used in this work are briefly described in Section
II. Section III presents the results together with the conceptual
discussion of the results. Finally, Section IV concludes this
paper.

II. T HE ALGORITHMS

The methodology of this research is as follows. Each
dataset is split into training set and test set. An algorithm
(SPAM) is applied to edit instances of the training set. Reduced
training sets with 20%, 40%, 60% and 80% of the initial size
have been generated. Along with the initial dataset they form
five different training sets. The performance of the algorithm
kNN for k = 1, 3 and 5, based on each edited set is compared
against the performance of RBFN. The RBFN is trained with
the initial training set with the RBF centers having the same
edited sets used by kNN. The used RBF activation function
is the multiquadric. The following subsections describe briefly
the algorithms mentioned.

A. kNN - k Nearest Neighbors

The kNN algorithm is one of the most widely used lazy
learning approaches [2] that uses a non-parametric method
for classifying patterns. This popularity is primarily dueto
its simplicity and intuitivity. It is a powerful classification
algorithm capable of solving complex problems. Given a set
of patternsX to be estimated, andxi ∈ X, the k-Nearest



Neighbor procedure classifiesxi into one ofωC ∈ Ω classes,
is as follows [1]:

• Determine the k-nearest training data vectors to the
patternxi using an appropriate distance metric, such
as, e.g., the Euclidean Distance, Mahalanobis Distance
or Manhattan Distance.

• The estimated label̂ωi should be assigned as the most
frequent label among the k-nearest neighbors ofxi.

The choice of an adequate value for parameterk is not triv-
ial since larger values tend to reduce the classifier sensitivity
to noise and smaller values may cause the neighborhood to
not extend to the domain of other classes. In order to choose
an optimal parameterk, a cross-validation procedure is usually
performed [1].

The kNN can also be used for regression problems. Once
determined the vicinity of the point, an local interpolation
model is constructed to estimate the output. A simple imple-
mentation of kNN regression consists in assigning the property
value of the object to be the average of the values of its k-
nearest neighbors. Another approach uses an inverse distance
weighted average of the k-nearest neighbors. Also it may use
more sophisticated methods. For example, local least squares
regression [7] or formulating an local optimization problem to
determine the output [8]. Regression through kNN may use
the same distance functions as the kNN classifier. This study
used the inverse distance weighted average.

B. Nearest Neighbor Editing (Prototype Selection)

Often the set of prototypes used in the training contains
noise or irrelevant information, which hinder the process of
training the classifier. These problematic prototypes can be
removed from the training set using a selection process known
as prototype selection. The prototype selection can also act
by selecting the prototypes most significant for the training
process. Selecting a set of examples that generates a template
with the best accuracy, for example. The algorithm chosen for
this work is the SCE (Supervised Clustering Editing) [4]. The
SCE uses the second method mentioned. Selecting a number
k from the original examples so that the most significant ele-
ments are selected. The SCE algorithm divides the prototypes
into clusters using a clustering algorithm, chooses the most
significant element of each cluster and these prototypes will
be selected by the algorithm. The clustering algorithm selected
was the supervised algorithm SPAM (Supervised Partitioning
around Medoids) [11] (a variation of the clustering algorithm
PAM - Partitioning around Medoids [10]), so we could get the
exact number of clusters generated.

C. MQ-RBFN: Multi-Quadric Radial Basis Function Network

The Multi-Quadric Radial Basis Function Network [1]
consists in a single hidden layer neural network where each
node located in such layer computes a Multi-Quadric activation
function. Furthermore, each of theK neurons in the hidden
layer is assigned, during the training phase, to a center value
µk in order to compute the distancedn,k between an input
patternxn ∈ X andµk.

φ(dn,k) =
√

(d2n,k + c2) (1)

The Multi-Quadric activation functionφ(dn,k) (Eq. 1),
therefore, outputs the computed value for a given scalar
constantc to the output layer. This work adoptedc = 0. Finally,
the P neurons on the last layer perform a weighted sum of
φ(dn,k) with the weightswp,k (Eq. 2).

ŷn,p =

K
∑

k=0

wp,kφ(dn,k) (2)

Since the input values are directly sent to the nodes at the
hidden layer, training an MQ-RBFN consists of defining theµ
and c values for each neuron located at the hidden layer and
finding suitable weightswp,k. An usual method to defineµ is
through a clustering algorithm, e.g., k-Means, PAM or SPAM.
The last two ones were chosen to perform such task. There
are several different approaches detailed in the literature that
finds suitable values for the neurons weights. In this paper,
Singular Value Decomposition is performed in order to find
the Moore-Penrose pseudo-inverse which is used to solve the
following linear system:

W = Φ+Y (3)

WhereN represents the number of training patterns;Φ is a
N ×K matrix whose elementΦi,j representsφ(di,j), i.e., the
distance between thei-th input patternxi and thej-th centerµj ;
W represents aK × P matrix whose elementwi,j represents
the weight between thej-th neuron at the hidden layer and
the i-th neuron at the output layer; andY is aN × P matrix
whose elementωi,j represents thej-th desired output for the
i-th training patternxi.

III. R ESULTS AND DISCUSSION

The experiments were performed using 6 public datasets
for classification and other 6 public datasets for regression.
Each dataset was randomly divided in training set (90%) and
test set (10%). Then, each training set from each dataset was
submitted to a prototype selection algorithm that allows a fixed
number K of prototypes to be selected. The values of K were
20%, 40%, 60%, 80% and, of course, 100% of the total of
instances in the training set. The experiment was repeated 10
times.

The learning sets are normalized using z-score, and the test
sets are normalized using the corresponding mean and variance
from the learning set. Statistical evaluation of the results used
the two-sample t-test [1] with a significance level equal to 5%.
The null hypothesis is that the MSE or Accuracy distributions
are independent random samples from normal distributions
with equal means and equal but unknown variances. The
alternative hypothesis is that the means are not equal.

After that, the evaluated algorithms were executed for
each value of K to generate the statistical values that can be
seen in these sections. A description of the datasets can be



found in the Tables I and II. The datasets can be found in
http://sci2s.ugr.es/keel/datasets.php.

Tables III and IV presents the results for each of the clas-
sification and regression tasks, respectively, forK/N = 0.2.
Each table entry shows three values: the mean, the standard
deviation and thep-value obtained with the t-test. For all tests
the reference sample is that one achieved by RBFN-PAM,
i.e., the t-test of each column (except the one from RBFN-
PAM) always matches with the RBFN-PAM result. In order to
facilitate the tables comprehension, each table cell indicates,
using a symbol, if the hypothesis has been rejected (×) or not
(X).

Observing the classification results at Table III, it is pos-
sible to notice that RBFN performance is almost unaltered
when its centers are selected using an unsupervised method
(PAM) or an supervised one (SPAM). Furthermore, as shows
the statistic avaliation presented in the last 3 columns, the null
hyphotesis is rejected only in 3 of 18 cases indicating that
RBFN performance is superior, in such experiments, than the
Edited kNN using SPAM.

On regression experiments, Table IV shows that the null
hypothesis is not rejected in 6 of the 18 presented cases. These
6 cases focuses in two datsets: ForestFires and MachineCPU.
Therefore, the RBFN mean performance is also superior than
the one achieved by kNN for regression datasets. This table
also shows that, in this case, the RBFN performance does not
change notably when using unsupervised or supervised center
selection approaches.

The plots at Figures 1 to 4 shows the effect of varying
the ratio K/N . Since the same behavior is noticeable for
the other datasets, they were ommited in this paper for the
sake of brevity. Figures 1 and 2 shows the regression results
of Stocks and Treasaury datasets. The RBFN sistematically
achieves better performance than the kNN. Notice that for
small values ofK/N , the RBFN MSE is almost one order
of magnitude lower than the 1NN.

The classification results for the Glass and Dermatology
datasets are presented at Figures 3 and 4. For both cases,
the RBFN accuracy keeps with small variation along the
entire range ofK/N . On the other hand, as the ratioK/N
increases, the kNN accuracy improves considerably at the
Glass dataset, but, at the Dermatology dataset, its accuracy
suffers no considerable changes for the same range.

When analysing only the Edited kNN algorithm, it is pos-
sible to see that the parameterk is hard to be tuned. While its
performance improves as thek increases on classification tasks
such as Glass or Yeast, however, a considerable performance
reduction is noticeable at the MachineCPU regression dataset.
Inverse behaviors can also be found on both tables. Notice
that the RBFN behavior presents a very regular performance
whether is at classification or regression tasks, and whether is
at for all datasets or even at the entire range ofK/N .

IV. CONCLUSION

The second and third columns of the Tables III and IV
confirm the null hypothesis that the RBFNs with centers
selected by the supervised algorithm (SPAM) or unsupervised
(PAM) have statistically comparable performance. On the other

TABLE I. DATASETS USED FOR CLASSIFICATION

#Attributes #Instances #Classes

dermatology 34 358 6

glass 9 214 7

heart 13 270 2

wdbc 30 569 2

wine 13 178 3

yeast 8 1484 10

TABLE II. D ATASETS USED FOR REGRESSION

#Attributes #Instances

autoMPG8 7 392

baseball 16 337

forestFires 12 517

machineCPU 6 209

stock 9 950

treasury 15 1049

TABLE III. C OMPARISON BETWEENEDITED KNN AND MQ-RBFN
FOR CLASSIFICATION (K/N = 0.2)

Dataset RBFN RBFN 1NN 3NN 5NN
(PAM) (SPAM) (SPAM) (SPAM) (SPAM)

Dermathology 97.18% 96.92% 92.75% 94.42% 93.33%
2.68 2.81 4.41 4.16 4.57

X(.833) ×(.023) X(.135) ×(.051)
Glass 70.91% 69.57% 54.35% 51.30% 43.91%

11.70 9.61 9.45 9.57 7.79
X(.781) ×(.002) ×(e-4) ×(e-6)

Heart 84.44% 84.07% 78.89% 78.52% 79.26%
7.96 7.62 9.88 6.00 9.91

X(.916) X(.206) ×(.088) X(.240)
WDBC 97.71% 97.37% 93.68% 92.98% 92.46%

2.36 2.07 4.39 4.22 5.61
X(.735) ×(.032) ×(.011) ×(.024)

Wine 98.33% 98.33% 91.67% 92.22% 92.78%
2.68 2.68 7.05 7.03 6.44

X(1.0) ×(.017) ×(.025) ×(.027)
Yeast 59.10% 59.66% 47.25% 53.22% 53.83%

3.43 2.73 3.98 2.17 2.32
X(.690) ×(e-7) ×(e-5) ×(e-5)

TABLE IV. C OMPARISON BETWEENEDITED KNN AND MQ-RBFN
FOR REGRESSION(K/N = 0.2)

Dataset RBFN RBFN 1NN 3NN 5NN
(PAM) (SPAM) (SPAM) (SPAM) (SPAM)

AutoMPG8 7.6 7.3 1.4e+1 1.3e+1 1.3e+1
2.5 2.8 4.2 3.5 3.8

X(.811) ×(e-04) ×(.001) ×(e-04)
Baseball 5.1e+5 5.0e+5 1.2e+6 7.6e+5 7.4e+5

1.4e+5 2.0e+5 4.4e+5 3.1e+5 2.4e+5
X(.841) ×(e-04) ×(.038) ×(.023)

ForestFires 5.0e+3 4.3e+3 1.1e+4 5.6e+3 4.9e+3
7.2e+3 7.4e+3 1.1e+4 7.1e+3 7.4e+3

X(.887) X(.150) X(.690) X(.860)
MachineCPU 3.8e+3 3.5e+3 5.0e+3 6.1e+3 8.6e+3

4.9e+3 3.6e+3 4.0e+3 6.7e+3 9.9e+3
X(.880) X(.400) X(.300) X(.160)

Stock 5.4e-1 8.8e-1 1.6 2.2 3.2
1.2e-1 2.0e-1 5.6e-1 9.6e-1 1.6

×(e-4) ×(.003) ×(.002) ×(.001)
Treasury 4.0e-2 4.2e-2 1.5e-1 1.5e-1 1.7e-1

2.0e-2 1.9e-2 7.8e-2 8.6e-2 9.1e-2
X(.812) ×(.002) ×(.003) ×(.002)

hand, the three last columns of Tables III and IV show that
the RBFN performance is consistently greater than kNN. It
is important to note that the use of 20% of the training data
as RBFN centers is only suitable when the number of RBFs
is not a relevant restriction. Note, however, that the adopted
approach used the Multi-Quadric RBFN which has lower time
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Fig. 1. MSE results for Stocks dataset for K/N = 0.2 to 1.0.
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Fig. 2. MSE results for Treasury dataset for K/N = 0.2 to 1.0.
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Fig. 3. Accuracy results for Glass dataset for K/N = 0.2 to 1.0.

complexity than the usual Gaussian RBF.

When varying the selected prototypes set cardinality and
using them for training the edited kNN and also for defining
the RBFs centers in the RBFN, the RBFN performance was
slightly different. The MSE graphs for regression (Figures
1 and 2) shows that for smaller edited datasets the RBFN
performance is clearly better than the ones achieved by kNN.
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Fig. 4. Accuracy results for Dermatology dataset for K/N = 0.2to 1.0.

As the edited set cardinality increases, the performance gap
between the kNN and RBFN gets smaller. In contrast, the
average accuracy of RBFN for the classification (Figures 3 and
4) is greater than kNN for the full scale datasets in analysis.

One can thus conclude that the local approximation prop-
erties of the kNN (a lazy method) were not enough to
overcome the global approximation properties of RBFN (an
eager method) when the number of RBFs is great.

Note in Tables III and IV that, although RBFN has the
overall best performance, the kNN classifier, in some cases,
was able to achieve similar performance. The next step in this
study is to extend to larger and broader datasets.
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