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Abstract—Supervised learning techniques can be roughly Studying this structural property of RBF Networks is the mai
grouped into lazy learning or eager learning. Lazy learning and  motivation for this work.

eager learning have very different properties and are suitable . .
for different applications. In this paper we evaluate properties of RBF Networks and kNN are Distance-based algorithms.

the two types of learning using a representative distance based Distance-based algorithms are machine learning algosithm

algorithm for each class, namely, kNN (k-nearest neighbors) and that store internal parameters and a number of exemplars
RBFN (Radial Basis Function Network). In addition, an edition They compute the output for a given instance exclusively

algorithm (SPAM - Supervised Partitioning Around Medoids)  from a combination of the internal parameters and the distan

is used to reduce the labeled dataset. Our experiments for petween that instance and each exemplar. To accomplish this
classification and regression tasks, using 12 public datasets show task, RBFN uses knowledge of the global structure of the task
that prototype selection algorithms typically used with kNN are to bijild an interpolation while kNN works exclusively with

good alternatives for selection of centers of RBFN when to | Linf . H it h b lusivelowh
optimize the number of centers is not the relevant criterion. The ~ '0€al Information. However, it has not been conclusivelgs

experiments also show that the RBFN generally perform better ~that any global location algorithm consistently outpemier
than Edited kNN. every other algorithm in any specific task [5].

In this study, we investigated the properties and perfor-
|. INTRODUCTION mance of both supervised learning algorithms (Edited kNN
and RBFN) on classification and regression tasks. The goal,

The supervised learning techniques (classification or ref p ot i insiaht on th i .
gression) can be roughly grouped into lazy learning or eagei€refore, is to gain insight on the comparative properies
azy learning and eager learning.

learning. In lazy learning [2] little or no effort is experdie
during the training phase because the effort is postponét un  The remaining sections are organized as follows. The
the generalization phase to a new instance. Thus, no preict algorithms used in this work are briefly described in Section
model is constructed in advance such as a neural network gf. Section Ill presents the results together with the cpeal

a decision tree. In eager learning [2], in turn, focuses @n thdiscussion of the results. Finally, Section IV concludeis th
effort to build a concise and finished predictive model usingpaper.

training cases. Such a model should, to perform well, cover
the entire input space focusing to achieve greater accunacy
regions of higher probability. Typical examples of lazyrldag
and eager learning are, respectively, the kNN [6] and RBAN [9  The methodology of this research is as follows. Each
algorithms. dataset is split into training set and test set. An algorithm
e(SPAM) is applied to edit instances of the training set. Redu
training sets with 20%, 40%, 60% and 80% of the initial size
ave been generated. Along with the initial dataset thegnfor
e different training sets. The performance of the aldpnit

Il. THE ALGORITHMS

When the target function is very complex but can b
approximated using a combination of several local funatjon
lazy learners such as k-nearest neighbor (kNN) are known tE
achieve good results. However, as a downside, lazy learne . ; .
have high requirements in terms of storage and processirgg ti <\N for IF]_ 1 :]f and 5, ba?eéiB?:nNea_}%h elgg?:?\ls.et IS _corgpa_rﬁd
which may limit their use in real life applications. In order against the periormance o - 1he IS trained wit

; N ; ; he initial training set with the RBF centers having the same
to avoid such problems and possibly improving the algorlthmt . S :
results by avoiding noise and overfitting, an viable appindac edited sets used by kKNN. The used RBF activation function

to edit the training set. In this paper, we call a kNN algarith is the multiquadric. The following subsections describiefty

with the training set reduced by some method of redundancg}ﬁIe algorithms mentioned.
and outliers elimination as Editing KNN.

. . . A. KNN - k Nearest Neighbor
Radial Basis Function Networks (RBF Networks), on the earest Neighbors

other hand, have lower classification time requirements be- The kNN algorithm is one of the most widely used lazy
cause they produce global optimization of the target fmcti learning approaches [2] that uses a non-parametric methoc
during the training stage. Even though the RBFN is an eagdior classifying patterns. This popularity is primarily die
learner method, it approximates the target function using #s simplicity and intuitivity. It is a powerful classificiamn
combination of several local functions. Therefore, RBF-Net algorithm capable of solving complex problems. Given a set
works combine the advantages of lazy and eager learnersf patternsX to be estimated, and; € X, the k-Nearest



Neighbor procedure classifies into one ofwe € Q) classes,
is as follows [1]:
O(dn k) =/ (d7, ), + ) (1)
e Determine the k-nearest training data vectors to the
patternz; using an appropriate distance metric, such  The Multi-Quadric activation functions(d,, ;) (Eq. 1),
as, e.g., the Euclidean Distance, Mahalanobis Distancgerefore, outputs the computed value for a given scalar
or Manhattan Distance. constant to the output layer. This work adopted: 0. Finally,
the P neurons on the last layer perform a weighted sum of

e The estimated label; should be assigned as the mosté(dmk) with the weightsw, ;. (Eq. 2).

frequent label among the k-nearest neighbors:of

The choice of an adequate value for paramktsrnot triv- %
ial since larger values tend to reduce the classifier seitgiti L 2
to noise and smaller values may cause the neighborhood to Ynp = kzwp,W(dn,k) 2)
not extend to the domain of other classes. In order to choose =0

an optimal paramete, a cross-validation procedure is usually  gjnce the input values are directly sent to the nodes at the
performed [1]. hidden layer, training an MQ-RBFN consists of defining the

The kNN can also be used for regression problems. Oncé”d,c valu.es for eaph neuron located at the hiddenllay.er and
determined the vicinity of the point, an local interpolatio finding suitable weights, ». An usual method to defing is
model is constructed to estimate the output. A simple implethrough a clustering algorithm, e.g., k-Means, PAM or SPAM.
mentation of KNN regression consists in assigning the ptgpe 1h€ last two ones were chosen to perform such task. There
value of the object to be the average of the values of its k&re several different approaches detailed in the liteeathat
nearest neighbors. Another approach uses an inverse alistarfinds suitable values for the neurons weights. In this paper,
weighted average of the k-nearest neighbors. Also it may usgingular Value Decomposition is performed in order to find
more sophisticated methods. For example, local least eguarth® Moore-Penrose pseudo-inverse which is used to solve the
regression [7] or formulating an local optimization prableo  following linear system:
determine the output [8]. Regression through kNN may use
the same distance functions as the kNN classifier. This study
used the inverse distance weighted average. W =2o%Y )

_ » _ WhereN represents the number of training patterbss a
B. Nearest Neighbor Editing (Prototype Selection) N x K matrix whose elemen®; ; representssd; ;), i.e., the

Often the set of prototypes used in the training contain%i/Stance between theh input pattern:; and thg-th center;;
noise or irrelevant information, which hinder the procegs o !V represents &’ x P matrix whose element; ; represents

training the classifier. These problematic prototypes can bth€ weight between theth neuron at the hidden layer and
removed from the training set using a selection process knowtN€i-th neuron at the output layer; aidis a N > P matrix
as prototype selection. The prototype selection can also al/hose elemeni;; represents theth desired output for the
by selecting the prototypes most significant for the tragnin '"th fraining patternz;.

process. Selecting a set of examples that generates a templa

with the best accuracy, for example. The algorithm chosen fo IIl. RESULTS ANDDIscUssION

this work is the SCE (Supervised Clustering Editing) [4]6Th  The experiments were performed using 6 public datasets
SCE uses the second method mentioned. Selecting @ numbgg ciassification and other 6 public datasets for regressio

k from the original examples so that the most significant elegach dataset was randomly divided in training set (90%) and
ments are selected. The SCE algorithm divides the protetypgest set (10%). Then, each training set from each dataset wa
into clusters using a clustering algorithm, chooses thetmospmjtted to a prototype selection algorithm that allowsedi
significant element of e_ach cluster and _these pr_ototypels Wihumber K of prototypes to be selected. The values of K were
be selected by the algorithm. The clustering algorithmciete 20%, 40%, 60%. 80% and, of course, 100% of the total of

was the supervised algorithm SPAM (Supervised Partit®nin jnsiances in the training set. The experiment was repedied 1
around Medoids) [11] (a variation of the clustering algumt  jmes.

PAM - Partitioning around Medoids [10]), so we could get the _ _ _
exact number of clusters generated. The learning sets are normalized using z-score, and the tes

sets are normalized using the corresponding mean and garian
from the learning set. Statistical evaluation of the resuked
C. MQ-RBFN: Multi-Quadric Radial Basis Function Network the two-sample t-test [1] with a significance level equal %.5
The null hypothesis is that the MSE or Accuracy distribusion
alre independent random samples from normal distributions
ith equal means and equal but unknown variances. The
alternative hypothesis is that the means are not equal.

The Multi-Quadric Radial Basis Function Network [1]
consists in a single hidden layer neural network where eac
node located in such layer computes a Multi-Quadric adtivat
function. Furthermore, each of th€ neurons in the hidden
layer is assigned, during the training phase, to a centereval After that, the evaluated algorithms were executed for
(1 in order to compute the distaneg, , between an input each value of K to generate the statistical values that can be
patternx,, € X and uy. seen in these sections. A description of the datasets can b



found in the Tables | and Il. The datasets can be found in

TABLE I.

DATASETS USED FOR CLASSIFICATION

http://sci2s.ugr.es/keel/datasets.php. #Attributes | #Instances | #Classes
d tol 34 358 6
Tables Il and IV presents the results for each of the clas- e”:l:;ogy S 12 Z
sification and regression tasks, respectively, BotN = 0.2. heart 3 270 >
Each table entry shows three values: the mean, the standard wibc o 569 >
deviation and the-value obtained with the t-test. For all tests wine 3 178 3
the reference sample is that one achieved by RBFN-PAM, yeast a 1484 0
i.e., the t-test of each column (except the one from RBFN-
PAI_V_I) always matches with the RBFN-PAM result. In prd_er to TABLE Il DATASETS USED FOR REGRESSION
facilitate the tables comprehension, each table cell atdi
using a symbol, if the hypothesis has been rejectedaf not #Attributes | #Instances
(/)_ autoMPG8 7 392
. . . o baseball 16 337
Observing the classification results at Table lll, it is pos- forestFires 12 517
sible to notice that RBFN performance is almost unaltered machineCPU 6 209
when its centers are selected using an unsupervised method stock 9 950
(PAM) or an supervised one (SPAM). Furthermore, as shows treasury 15 1049

the statistic avaliation presented in the last 3 columres nl

hyphotesis is rejected only in 3 of 18 cases indicating that tagLE 1.

RBFN performance is superior, in such experiments, than the

FOR CLASSIFICATION (K/N = 0.2)

C OMPARISON BETWEENEDITED KNN AND MQ-RBFN

Edited KNN using SPAM.

Dataset RBFN RBFN INN 3NN 5NN

On regression experiments, Table IV shows that the null (5o DAy | SPAN) | (SPAM) | SPAM) | SPAM)
hypothesis is not rejected in 6 of the 18 presented caseseThe 2.68 2.81 4.41 4.16 457
6 cases focuses in two datsets: ForestFires and MachineCPU. v(833) | x(023) | v(135) | x(051)
Therefore, the RBFN mean performance is also superior than |~ ¢85 | 7096 [ 63575 | 59355 | 57.30% | 43.91%
the one achieved by kNN for regression datasets. This table ' V(781) | x(002) | x(e-d) | x(e-6)
also shows that, in this case, the RBFN performance does not Heart 84.44% | 84.07% | 78.89% | 7852% | 79.26%
change notably when using unsupervised or supervisedrcente 796 ,{;Sfe) ,‘2;336) X?_'ggs) ,3;210)
selection approaches. WDBC 97.71% | 97.37% | 93.68% | 92.98% | 92.46%

2.36 2.07 4.39 4.22 5.61

The plots at Figures 1 to 4 shows the effect of varying v(.735) | x(.032) | x(011) | x(.024)
the ratio K/N. Since the same behavior is noticeable for Wine B3V | 903 | oW | 922 | 92.78%
the other datasets, they were ommited in this paper for the ' C(L0) | x(017) | x(025) | x(.027)
sake of brevity. Figures 1 and 2 shows the regression results Yeast 59.10% | 59.66% | 47.25% | 53.22% | 53.83%
of Stocks and Treasaury datasets. The RBFN sistematically 3.43 /%'ZSO) Xif_i) xz(él-75) Xz(-:_é)
achieves better performance than the KNN. Notice that for :
small Va,lues OfK/N' the RBFN MSE is almost one order TABLE V. COMPARISON BETWEENEDITED KNN AND MQ-RBFN
Of magn'tude |0W€I’ than the 1NN FOR REGRESSlON(K/N = 02)

The classification results for the Glass and Dermatology Dataset RBFN | RBFN 1NN 3NN 5NN
datasets are presented at Figures 3 and 4. For both cases, (PAM) | (SPAM) | (SPAM) | (SPAM) | (SPAM)
the RBFN accuracy keeps with small variation along the | A"OMPC® | 70 | 73 | Ldexl | L3erl | 13exl
entire range ofi{/N. On the other hand, as the rati6/N v (811) | x(e-04) | x(.001) | x(e-04)
increases, the kNN accuracy improves considerably at the Baseball ?ig:g ggg:g 31}212:2 ;fl"z:g ;32:2
Glass dataset, but, at the Dermatology dataset, its agcurac ' 7 (841) | x(e-04) | x(038) | x(.023)
suffers no considerable changes for the same range. ForestFires ?2212 4712:2 ﬂ:i 5(15213 ;1.2:2

When analysing only the Edited kNN algorithm, it is pos- v (.887) | v(.150) | v/(.690) | v(.860)
sible to see that the parameteis hard to be tuned. While its MachineCPU | 3.8e+3 1 35et3 | 20et3 | Slend | Boews
performance improves as thencreases on classification tasks ' /(:880) | v(:400) | v(.300) | v(.160)
such as Glass or Yeast, however, a considerable performance Stock 54e-1] 88el 16 2.2 3.2
reduction is noticeable at the MachineCPU regression efatas L) e | i) | xioon | xioon)
Inverse behaviors can also be found on both tables. Notice Treasury | 4062 | 4262 | 1bel | I5el | L.7el
that the RBFN behavior presents a very regular performance 2.0e-2 | 19e-2 | 7.8e2 | 86e2 | 9le2

v (:812) | x(.002) | x(.003) | x(.002)

whether is at classification or regression tasks, and whéthe
at for all datasets or even at the entire rangexgiv.

IV. CONCLUSION

hand, the three last columns of Tables Il and IV show that

the RBFN performance is consistently greater than kNN. It

The second and third columns of the Tables Il and IVis important to note that the use of 20% of the training data

confirm the null hypothesis that the RBFNs with centersas RBFN centers is only suitable when the number of RBFs
selected by the supervised algorithm (SPAM) or unsupedlviseis not a relevant restriction. Note, however, that the agldpt

(PAM) have statistically comparable performance. On theot approach used the Multi-Quadric RBFN which has lower time
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Fig. 3. Accuracy results for Glass dataset for K/N = 0.2 ta 1.0
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complexity than the usual Gaussian RBF. [10]

When varying the selected prototypes set cardinality and

using them for training the edited kNN and also for defining[11]

the RBFs centers in the RBFN, the RBFN performance was
slightly different. The MSE graphs for regression (Figures
1 and 2) shows that for smaller edited datasets the RBFN
performance is clearly better than the ones achieved by kNN.

Fig. 4.
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Accuracy results for Dermatology dataset for K/N = @21.0.

As the edited set cardinality increases, the performange ga
between the kNN and RBFN gets smaller. In contrast, the
average accuracy of RBFN for the classification (Figuresd an
4) is greater than kNN for the full scale datasets in analysis

One can thus conclude that the local approximation prop-
erties of the kNN (a lazy method) were not enough to
overcome the global approximation properties of RBFN (an
eager method) when the number of RBFs is great.

Note in Tables Il and IV that, although RBFN has the
overall best performance, the kNN classifier, in some cases,
was able to achieve similar performance. The next step & thi
study is to extend to larger and broader datasets.
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