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Abstract— This paper presents the research and 
development of a hybrid neuro-fuzzy model for the hierarchical 
coordination of multiple intelligent agents. The main objective 
of the models is to have multiple agents interact intelligently 
with each other in complex systems. We developed two new 
models of coordination for intelligent neuro-fuzzy multiagent 
systems that use MultiAgent Reinforcement Learning 
Hierarchical Neuro-Fuzzy with a market-driven coordination 
mechanism (MA-RL-HNFP- MD) and a MultiAgent 
Reinforcement Learning Hierarchical Neuro-Fuzzy with graph 
coordination (MA-RL-HNFP-GC). After setting options and 
using the MA-RL-HNFP_MA family of models, the 
coordination systems were tested in two case studies involving 
the implementation of a benchmark game of predator-prey. 
The tests showed that the new system has the ability to 
coordinate actions between agents with a convergence rate 
nearly 30% greater than that of the original version. 

I. INTRODUCTION 

here are many advantages to using multiple agents. 
Through parallel computing, multiple agents can work 
together to better exploit the decentralized structure of a 

given task and accelerate its completion [1][2]. Additionally, 
agents can exchange experiences by communicating [3], 
observe and learn from the most skilled agents [4], and serve 
as teachers for other agents [5]. The multiagent system 
(MAS) can also provide a high degree of scalability because 
it can add new agents when needed and assign the activities 
of failed agents to other agents [6]. The MAS described in 
this study also demonstrates the understanding of 
intelligence [7]. Because intelligence is strongly linked to 
interaction, the best way to create intelligent machines could 
be to build social networks of machines. Coordination is a 
key feature of a MAS that performs some activity in a shared 
environment [8]. Coordination is closely related to 
knowledge sharing between agents, and its main objective is 
to coordinate the actions of each individual agent to achieve 
the ultimate goal of the MAS [9]. The coordination 
mechanisms of most MASs can be classified as implicit 
(centralized) or explicit (distributed) [10]. These 
mechanisms are useful in simple environments, in which the 
mechanism has a single goal [11][12]. However, there are 
environments in which the ultimate goal is achieved by 
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fulfilling a number of conditions and sub-goals, with 
different agents playing different roles. These environments 
require elaborate coordination mechanisms and greater 
knowledge of the environment on the part of the operator 
[8][13]. 

Without coordination, the benefits of distributed execution 
of tasks disappear and the group of agents can degenerate 
into a chaotic and incoherent collection of individual 
behaviors [9]. Several problems can occur in a MAS without 
coordination, such as conflicts over resource access or 
misuse, redundancy, and increased waiting time, particularly 
when the activity of an agent depends on the completion of 
activities by other agents [13]. 

A good coordination system should avoid or minimize the 
occurrence of these problems by optimizing the use of 
resources and the time required to achieve the objectives 
[14]. Effective coordination between agents operating in a 
shared environment contributes to improving the quality of 
the solutions achieved and to improved performance in 
solving tasks [15]. The aim of this paper is to extend the 
MultiAgent Reinforcement Learning Hierarchical Neuro-
Fuzzy (MA-RL-HNFP) model by combining its advantages 
with those of existing coordination strategies to address 
complex environments and multiple objectives, improve 
performance, and enhance communication between agents. 
The main objective of this work is the development and 
implementation of strategies for multiagent coordination 
using the hybrid neuro-fuzzy models of the MA-RL-HNFP 
family. These models enable efficient and optimal 
coordination, which leads to improved communication 
among agents in complex environments and allows them to 
complete multiple objectives. 

II. RLF-HNFP MODEL  

The RL-HNFP model is composed of one or various 
standard cells called RL-neuro-fuzzy politree partitioning 
(RL-NFP). These cells are arranged in a hierarchical 
structure in the form of a tree in accordance with the type of 
partition being used. Binary Space Partitioning (BSP) 
[15][16] divides the space in two repeatedly. Politree 
partitioning is a generalization of the quadtree method [15]. 
In this partitioning method, the subdivision of the n-
dimensional space is accomplished in m=2n subdivisions. 

Figure 1a shows an example of a two-dimensional input 
partitioned using BSP. Politree partitioning can be 
represented by a tree structure. Figure 1b shows a typical 
example of politree partitioning (with n inputs). Hierarchical 
partitioning is flexible and minimizes the exponential rule 
growth problem because it creates new rules locally 
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according to its learning process. This type of partitioning is 
considered recursive because it uses a recursive process to 
generate partitions. With such partitioning, the resulting 
models have a hierarchy in their structure and thus have 
hierarchical rules. The outputs of the cells in the lower levels 
are the consequents of the cells in higher levels. 

 
Figure 1. (a) BSP Tree representing BSP partitioning, (b) generic tree 
representation of politree partitioning. 

 
An RL-NFP cell is a mini-neuro-fuzzy system that 

performs n-dimensional partitioning of a given space in 
accordance with the membership functions. The RL-NFP 
cell generates a precise (crisp) output after the 
defuzzification process [17][18]. Each cell receives all 
inputs considered in the problem  and the value of each input 
variable (xi) is read by one of the agent’s sensors. It is then 
inferred in the antecedents’ fuzzy sets (low - ρ(xi) - and high 
- µ(xi)). Figure 2 depicts an example of the resultant 
partition of a RL_NFP cell with two inputs – x1 and x2 , 
resulting in four sub-partitions (Quadtree partitioning). 

 
Figure 2 – Internal representation of the RL-NFP cells. 

The consequents of the cell partitions may be of the 
singleton type (a constant) or the output from a stage of a 
previous level. Although a singleton consequent is simple, 
this consequent is not known in advance because each 
singleton consequent is associated with an action that has not 
been defined a priori. Each partition has a set of possible 
actions (a1, a2, ... a1), in which each action is associated with 
a Q-value function. The Q-value is defined as the sum of the 
expected values of the rewards obtained by the execution of 
action a in state s, in accordance with a policy p. Further 
details of RL theory are presented in a previous study [19].  

The linguistic interpretation of the mapping implemented 
by the RL-NFP cell is given by rules. Each rule corresponds 
to one of the polipartitions generated by the politree 
partitioning and has the following structure: 

• Rule 1: If x1 Є ρ1and x2 Єρ2 then y = ai 
• Rule 2: If x1 Є ρ1and x2 Є µ2 then y = aj 
• Rule 3: If x1 Є µ1and x2 Є ρ2 then y = ap 
• Rule 4: If x1 Є µ1and x2 Є µ2 then y = aq 

 
RL-HNFP models can be created based on the 

interconnection of the basic cells described above. The cells 
form a hierarchical structure that results in the rules that 
comprise the agent’s reasoning. A neuro-fuzzy learning 
process is generally divided into two parts: structure 
identification and parameter adjustment. RL-HNFP performs 
these learning tasks in a single algorithm. It consists of six 
main steps: generate a root cell, calculate global 
reinforcement, back-propagate the reinforcement, select 
actions, update Q-values, and partitioning. A previous study 
provides details about how each step works [17]. 

III.  MULTIAGENT RL-HNFP MODEL 

The main idea of the multiagent version of the RL-HNFP 
family of algorithms is to ensure that all agents are able to 
explore different tasks or different state-action pairs 
simultaneously, thus speeding up learning and convergence 
for an optimal policy. There are many approaches that 
involve multiple agents, a goal to be learned, coordination 
among agents, and learning homogeneity. With the advent of 
multiagent RL-HNFP (MA-RL-HNFP), it became possible 
to broaden the RL-HNFP model in different ways to 
contemplate the greatest possible variety of applications.  

In this paper, different types of MA-RL-HNFP systems 
derived from the original system are presented, and we 
describe their behavior, particularities, and objectives. 
Additionally, the differences between models in terms of 
coordination and learning dynamics are explained. The 
proposed MA-RL-HNFP systems differ in two main aspects: 
learning dynamics and the coordination mechanism among 
agents. For MASs, learning occurs one of two ways: with or 
without the sharing of the learning structure.  

When the structure is shared, the learning structure is the 
same for every agent. The learning structure functions as a 
“group intelligence”, which is used by all agents for decision 
making and serves as a knowledge repository. In other 
words, each agent can execute a specific action in a distinct 
state of knowledge. Subsequent agents can access the 
information provided by the previous agents in the single 
structure, choose the action to be performed, and update the 
Q values according to the received information.  

This type of model, in which multiple agents use the same 
structure, is used when agents need to learn the same task 
and seek cooperation. If all of the agents compete using the 
exact same “intelligence”, there would be no losers or 
winners.  

Similar to the RL-HNFP model, learning also occurs 
cyclically. First, the agents access the structure to make a 
decision, explore the state-action pairs of the environment, 
receive the return, and transfer “what they have learned” to 
the knowledge structure, which processes the information of 
the explored state-action pair and received return value. A 
new cycle is then performed for another agent, which can 
explore a completely distinct space in the environment. The 
main difference is the agent’s rotation in its exploration of 



 
 

 

the environment. The full training process is divided into 
seven steps, as depicted in Figure 3.  

However, in a competitive environment, there is no need 
for an agent to provide knowledge to its rivals. Then, the 
other method of learning involves each agent keeping its 
own structure separate from the other agents in the 
environment. In this case, each agent specializes itself to a 
specific task. This approach seeks to solve problems 
involving both cooperation and competition among multiple 
agents. To make agents cooperate, there must be a 
coordination mechanism or central agent that receives and 
combines the information from each RL-HNFP structure. In 
competitive problems, the agents may use their own 
structures independently, with the goal of learning a specific 
task and competing against other agents that are equally 
“equipped” with an RL-HNFP learning structure. 

IV.  COORDINATION IN MULTIAGENT SYSTEMS 

Coordination is defined as "the act of working together 
harmoniously towards achieving an agreement and common 
goal" [13]. Working together, in turn, depends on the 
application or problem at hand. Coordination is important in 
competitive, cooperative, and mixed environments. In a 
competitive environment, coordination focuses on conflict 
resolution and negotiation. In a collaborative environment, 
coordination focuses on cooperation among agents, 
including ways to solve global problems in a distributed 
manner by creating teams and agents that work in groups to 
optimize the achievement of goals. Coordination in MASs 
seeks to efficiently organize the intelligent behavior of a set 
of autonomous agents. The goal in such a system is to define 
strategies or ways of coordinating the different skills and 
behaviors of the agents such that they can jointly take action 
and solve problems efficiently. 

Coordination in MASs involves coordination between the 
agents and the coordination of actions of an agent. Many 
problems can occur in a MAS that lacks a coordinating 
mechanism or has one that is not appropriate: 

• Conflicts between features or system resource 
demands; 

•  Redundancy in the tasks of agents; 
•  Increases in waiting time when the activity of an 

agent depends on the activities of other agents. 
Thus, the main purpose of coordination is to avoid or 

minimize these problems while optimizing the resources and 
time to perform complex tasks. Such tasks can be completed 
though a single agent does not have all of the resources that 
are necessary to complete the task or meet several sub-goals 
to achieve the overall goal [1][2]. 

There are several coordination mechanisms. In this paper, 
two models are chosen that provide excellent results in the 
coordination of MASs in different applications [12] and are 
the most frequently used in the current literature. The first is 
market-driven coordination, and the second is graph 
coordination. 

 
Figure 3 –Learning algorithm of the MA-RL-HNFP model. 

 

A. Market-driven coordination 

This approach considers a group of agents whose goal is to 
complete the tasks successfully while trying to minimize 
total costs. Each agent will seek to minimize costs and 
maximize its individual private profit. The idea of method-
oriented MASs is based on the interaction of agents in a 
distributed manner, which allows agents to have greater 
bargaining power and information. Thus, agents must have a 
mechanism that allows for communication amongst them 
[20]. 

As soon as the MAS has a goal, the goal is decomposed 
into smaller tasks. Then, an auction is held for each of these 
tasks and is associated with a gain (reward) for that task. In 
each auction, the participating agents calculate the estimated 
cost to accomplish the task and offer a price to the 
auctioneer. 

At the end of the auction, the bidder (agent) with the 
lowest price offered will be given the right of task execution 
and receive a gain. An agent can open another auction to sell 
the task that he won. Two or more agents can work together 
to accomplish a task that would be difficult for a single 
agent. To develop the market-driven strategy, a cost function 
must be defined for all of the resources needed to 
accomplish the task. Each of these resources can have a 
different weight depending on the importance of each to 
perform the task [20]. 

B. Graph coordination 

This type of coordination uses graphs to relate agents to 
each other and coordinate their actions in a specific 



 
 

 

situation. In most applications, it is rare that agents have 
interdependent actions, i.e., in a few situations, the actions of 
an agent require that the actions of other agents have been 
previously performed. The problem of global coordination is 
now replaced by problems of coordination sites with fewer 
agents. 

This decomposition can be represented by graphs in 
which each node is an agent and each edge indicates that two 
agents must coordinate their actions. This technique is 
referred to as a coordination graph (CG) [12]. Each 
dependency corresponds to a local function, which assigns a 
specific value to each of the different combinations of 
actions of the agents involved. Figure 4 shows a CG 
structure for eight agents (numbered circles). For each 
connection, a dependence function between the agents is 
specified. For example, the edge between agents 1 and 2, 
represented by f12, is a function that contains all possible 
actions of agent 1 with agent 2. 

 

Figure 4 - CG for eight agents. 
 

The overall function is the sum of all local functions. To 
calculate the action that maximizes the overall function, the 
variable elimination algorithm can be used [12]. This 
algorithm is briefly presented below. 

The graphical representation of the dependencies of agent 
actions is generated through CGs, but to find individual 
stocks that produce optimal system performance, the 
coordination is measured using the method of variable 
elimination [12]. This method can be described 
mathematically by a function that coordinates the relations 
shown by the graphs. 

The idea of variable elimination is to calculate a 
coordinated action involving a group of n agents with the 
purpose of maximizing a revenue function. The problem can 
be described as follows: each agent i selects an individual 
action ai from a set of actions Ai, and the resulting joint 
action a = (a1,… an) generates a callback function R(a). The 
problem is to find the optimal action that maximizes the 
callback function a* = argmaxa R(a). 

The deceptively simple approach to solve the coordination 
problem is to enumerate all possible joint actions and choose 
the one that maximizes R(a). In most real applications, this 

enumeration process becomes computationally impractical. 
However, several problems in the action of an agent i 
depend solely on a small group of agents ϒ(i) rather than on 
all agents. Thus, the overall function returns R(a) as a linear 
combination of local functions, as shown in the following 
equation: 

 
R(a) =	∑ f��(a�, a�)



���                   (1) 

 
The graph representation was chosen to facilitate the 

modeling of the problem by making it possible to represent 
any dependency [12]. To solve the coordination problem, the 
graph representation finds the best joint action a* = argmaxa 
R(a) using variable elimination [12]. 

When an agent is selected for elimination, all functions 
that have a return or dependence associated with their 
vertices are removed. Then, a callback function conditional 
is calculated (∅(a)), which returns the maximum value that 
the agent is able to contribute to the system as a function of 
each combination of actions with its neighbors. The callback 
function conditional also returns a better response function 
(B(a)), which returns the corresponding action for this 
maximized value. The agent communicates this conditional 
reward function to one of its neighbors and is then 
eliminated. 

The neighbor agent creates a new dependency 
(connection) between the agent and those involved in the 
conditional function, and the next agent in the ordering is 
then selected for elimination. This process is repeated until a 
single agent remains. This agent sets its action to maximize 
the final function returns. This individual action is part of the 
joint action good, and the associated value function’s 
conditional return is equal to the desired value a* = argmaxa 
R(a). A second pass in reverse order is then performed in 
which each agent calculates its optimal action based on its 
conditional strategy and the actions of its neighbors are fixed 
[12]. An example of this method is shown in Figure 5, where 
four agents are represented with their dependencies. Each 
node in the graph is an agent, and the actions of agent 1 
depend on the actions of agents 2 and 3. The actions of agent 
2 depend solely on the actions of agent 1. The actions of 
agent 3 depend on the actions of agents 1 and 4. 

 

 
Figure 5 Example of the CG pair deletion variable. 

 
 
         



 
 

 

V. MULTIAGENT REINFORCEMENT LEARNING NEURO-
FUZZY MODEL WITH MARKET-DRIVEN COORDINATION  

The agents within a community group of the application 
have a role, and they perform some actions related to this 
role. Their roles define the behavior of each individual 
agent. For example, in football, in an attack situation, the 
role of the attacker is given to the player best positioned to 
take advantage of the situation.  

 

 
Figure 6 MA-RL-HNFP- MD model. 

  
The model is divided into two stages. The first step uses 

the MA-HNFP model to learn the best role for each agent. 
The second step uses the MD concept to choose the best 
action to be performed by the agent, as shown in Figure 7. 
This action is chosen from the stocks that belong to the set 
of actions associated with the role. 

The idea of the proposed approach is to use the MA-
HNFP model to identify the best role to be played by each 
agent in a specific environment. Figure 8 shows the block 
diagram of the MA-RL-HNFP-MD model, for which the 
RL-HNFP structure decides the role that each agent will 
have in a given state of the environment. The Market-Driven 
model decides what action each agent must perform. This 
model was chosen by learning a single structure (knowledge 
repository) for the agents of the system because any agent 
can assume one of the roles associated with a situation of the 
environment. 

 

 
Figure 7 MA-RL-HNFP-MD model. 

 
 

 

VI.  MULTIAGENT HIERARCHICAL NEURO-FUZZY MODEL 

WITH COORDINATION BY GRAPHS 

 
This model proposes the integration of the MA-RL-HNFP 

model with CG. The model involves a central methodology 
whose objective is to coordinate the agents. The actions of 
any particular agent depend on the actions of another agent. 
The model is divided into two stages. In the first stage, the 
RL-HNFP-MA model, which was used in the previous 
learning model, undertakes the role specification of an agent 
in every situation, as shown in Figure 9. After specifying the 
role of each agent, the second stage begins, where the action 
is chosen for each individual agent by variable elimination.

 

Figure 8 MA-RL-HNFP-CG model. 

This model aims to reduce the number of situations in 
which the agents coordinate actions while minimizing the 
consumption of system resources. When agents have to 
coordinate actions, the agents learn individual actions that 
maximize the return to the system. 

 
VII. CASE STUDY 

The prey-predator game, also known as the "pursuit 
game" [21], is used as a case study. In its most traditional 
form, agents participate in a game with four predators and 
one prey, which are arranged in an orthogonal grid that is 
divided into rows and columns such that each grid cell 
cannot be occupied by more than one participant at a time. 
The goal is to make the predators capture the prey as quickly 
as possible. 

The application can be considered collaborative because 
there is interaction between the predators for the sole 
purpose of capturing the prey. In this case study, MA-RL-
HNFP systems were built by following the specifications, 
assumptions, and restrictions outlined below:  

• The space consists of a 9×9 grid of orthogonal 
positions; 

• The four agents (predators) learn a role using MA-
RL-HNFP, with the goal of capturing the prey: 

  Role 1: Agent captures the prey to the left; 

  Role 2: Agent captures the prey to the right; 

  Role 3: Agent captures the prey above him; 

  Role 4: Agent captures the prey below him; 



 
 

 

• Each role has the same four associated actions, 
which are chosen by market-driven coordination or 
graph coordination; 

• The prey and predators can only move in four 
directions; diagonal moves are not allowed; 

• Each game round consists of a move by each 
participant; 

• The participants do not have the concept of 
acceleration. Each movement is always performed 
on a position immediately above, below, left, or 
right of the agent; 

• Participants move alternately, not simultaneously; 

• Each predator agent can see the positions of the 
other agents and prey; 

• Predator agents do not know the goals of the other 
agents; 

• Agents can share the 'knowledge' obtained during 
the learning; 

• In a collision after a drive, the agent or prey returns 
to its original position and the round ends; 

• If a participant tries to move off the grid, it returns 
to the previous position. 

1) Training with the MA-RL-HNFP-MD model 
 

This training covers the following stages of training: the 
mapping of the positions (states) in roles (shares) and the 
mapping of roles (states) in movements (actions), 
culminating in integral learning, including both collective 
learning (coordination of agents) and single-agent learning. 

The first stage of training in the predator-prey game is to 
learn the preferred role (share) of each predator depending 
on its position with respect to the prey and other predators. 

The reinforcement received by the model after each action 
was constructed in a manner inversely proportional to the 
distance between the agent and prey, as shown in Equations 
(11) and (12). 

 
Distance between the agent and prey: 
d = |(Ax – Px)| + |(Ay – Py)|         (11) 
 
Reward: 
r = 1 - dnorm              (12) 
 
Ax and Px are the positions of the agent and the prey and 

are attached to the x-axis. Py and Ay are the positions of the 
agent and the prey and are associated to the y-axis, 
respectively, and dnorm is the distance between the agent and 
prey, normalized linearly between zero and one. The training 
process was conducted with the prey always fixed in the 
position (4, 4). The position of each agent at the beginning 
of the game, or after each capture, was also initialized in a 
fixed manner. The corners of the grid were positions (0, 0), 
(8, 8), (8, 0), and (0 8). The agents needed to get out of the 

corners and capture the prey, which was fixed exactly the 
center of the grid. 

In the second stage of training, once the roles of the 
predators are chosen, the predators choose their preferred 
actions according to market-driven coordination.    

 
2) Training with the MA-RL-HNFP-CG model 

 Training for the second model is similar to that for the 
first model and is also divided into two steps. The first step 
is the same as that of the first model: we learn the best role 
of each predator, depending on the position (state) with 
respect to its prey and the other predators. In the second 
phase of training, once the predator roles are chosen, the 
preferred action in the model is chosen, and this action is 
accomplished via graph coordination. 
 

VIII R ESULTS 

In the first set of tests, 1,000 "persecution" tests were 
conducted, with the predators always dropping off the 
corners of the grid and with the prey fixed. It should be 
noted that 7,000 steps is ideal for catching prey because the 
optimal path is seven steps. In the second set of tests, 1,000 
"persecution" tests were performed, with the predators 
starting in a random places and prey always fixed. Finally, in 
a third test 1,000 “persecutions” were performed with 
random initial positions for all predators and prey. The 
results are shown in the following tables, in which the results 
are compared with the original model, MA-RL-HNFP. 

 
Model Prey 

start 
Predator 

start 
Coordination Pursuit time 

MA-RL-HNFP Fixed  Fixed 13,161 0% 

MA-RL-HNFP-
MD 

Fixed  Fixed 9,200 30% 

MA-RL-HNFP-
CG 

Fixed  Fixed 7,620 43% 

 

Table 1 – First test 

Model Prey 
start 

Predator 
start 

Coordination Pursuit time 

MA-RL-HNFP Fixed  Random 9,548 0% 

MA-RL-HNFP-
MD 

Fixed  Random 7,355 23% 

MA-RL-HNFP-
CG 

Fixed  Random 6,750 30% 

 

Table 2 – Second test 

Model Prey 
start 

Predator 
start 

Coordination Pursuit time 

MA-RL-HNFP Fixed  Random 9,476 0% 

MA-RL-HNFP-
MD 

Fixed  Random 7,210 23% 

MA-RL-HNFP-
CG 

Fixed  Random 5,940 38% 

 



 
 

 

Table 3 – Third test 

As can be seen from the tables above, the use of 
coordination methods in the MA environment greatly 
improved the performance in capturing the prey sooner. 
Depending on the initial positions of the agents, the 
improvement range from 23% to 43%, when compared to 
the original MA-HNFP model. 

IX  CONCLUSIONS 

In this work, two separate systems were developed to 
evaluate the two proposed models, MA-RL-HNFP-MD and 
MA-RL-HNFP-CG. In both systems, agents use a shared 
knowledge structure. The proposed models were tested in a 
case study involving the pursuit game. The goal was to show 
how a coordination mechanism improves the performance of 
MASs and increases the speed of convergence and learning. 
The results of the proposed models were compared to the 
results obtained with the original MA-RL-HNFP models 
[10]. 

Tests were performed to evaluate the performances of 
models that include a mechanism for multiagent 
coordination and models with simple coordination. The tests 
demonstrated that the former are higher although the 
learning is very expensive in computational terms. The 
pursuit game is a simple application that has a single goal, 
which is to capture the prey. Even with this simple game, we 
can observe a difference in the performance of the MA-RL-
HNFP model when a coordination model and hierarchical 
structure are used. 

In the first test, in which the predators and prey were both 
fixed, both models yielded better results than in the other 
experiments. In all experiments, market driven coordination 
yielded better results than the graph coordination. In all tests, 
the results obtained using market-driven coordination were 
much better than those obtained using the other systems. 

The two coordination methods discussed here are very 
expensive in terms of computational effort. The market-
driven coordination method runs approximately four times 
faster than the graph coordination method on average. The 
market-driven learning method also converges quickly, 
which indicates that the method is more promising for future 
case studies. 
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