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Abstract— This paper presents the
development of a hybrid neuro-fuzzy model for the terarchical
coordination of multiple intelligent agents. The man objective
of the models is to have multiple agents interacintelligently
with each other in complex systems. We developed dwnew
models of coordination for intelligent neuro-fuzzy multiagent
systems that use MultiAgent Reinforcement Learning
Hierarchical Neuro-Fuzzy with a market-driven coordination
mechanism (MA-RL-HNFP- MD) and a MultiAgent
Reinforcement Learning Hierarchical Neuro-Fuzzy wih graph
coordination (MA-RL-HNFP-GC). After setting options and
using the MA-RL-HNFP_MA family of models, the
coordination systems were tested in two case studiévolving
the implementation of a benchmark game of predatoprey.
The tests showed that the new system habe ability to
coordinate actions between agents with a convergencate
nearly 30% greater than that of the original versia.

. INTRODUCTION

research and fulfiling a number of conditions and sub-goals, ttwi

different agents playing different roles. Theseiemments
require elaborate coordination mechanisms and @reat
knowledge of the environment on the part of therajoe
[8][13].

Without coordination, the benefits of distributedkeution
of tasks disappear and the group of agents canndesfe
into a chaotic and incoherent collection of indidl
behaviors [9]. Several problems can occur in a M out
coordination, such as conflicts over resource acoms
misuse, redundancy, and increased waiting timeicpéarly
when the activity of an agent depends on the camoplef
activities by other agents [13].

A good coordination system should avoid or minintize
occurrence of these problems by optimizing the aofe
resources and the time required to achieve thectwgs
[14]. Effective coordination between agents opergtin a
shared environment contributes to improving theliuaf

here are many advantages to using multiple agenthe solutions achieved and to improved performaince
Through parallel computing, multiple agents can kvorsolving tasks [15]. The aim of this paper is toeext the
together to better exploit the decentralized stnecbf a  MultiAgent Reinforcement Learning Hierarchical Neur

given task and accelerate its completion [1][2]d&idnally,

agents can exchange experiences by communicatihg
observe and learn from the most skilled agentsgdd, serve
as teachers for other agents [5]. The multiagemstesy
(MAS) can also provide a high degree of scalabigause
it can add new agents when needed and assign tikiziex
of failed agents to other agents [6]. The MAS diésd in
this study also demonstrates the understanding
intelligence [7]. Because intelligence is strongihjked to
interaction, the best way to create intelligent hiaes could
be to build social networks of machines. Coordoratis a
key feature of a MAS that performs some activitpishared
environment [8]. Coordination is closely related

knowledge sharing between agents, and its mairctigeis
to coordinate the actions of each individual aderdchieve
the ultimate goal of the MAS [9].

mechanisms of most MASs can be classified as iibpli
These

(centralized) or explicit (distributed) [10].
mechanisms are useful in simple environments, iithvthe
mechanism has a single goal [11][12]. However, éhamre
environments in which the ultimate goal is achieusd
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The CoorOIIn"jltlor::(RL-NFP). These cells are arranged in a hierarthica

Fuzzy (MA-RL-HNFP) model by combining its advantage
With those of existing coordination strategies tdrass
complex environments and multiple objectives, inwero
performance, and enhance communication betweentsagen
The main objective of this work is the developmand
implementation of strategies for multiagent cooadiion
using the hybrid neuro-fuzzy models of the MA-RL-AR
fAmily. These models enable efficient and optimal
coordination, which leads to improved communication
among agents in complex environments and allowsn ttee
complete multiple objectives.

RLF-HNFPMODEL

The RL-HNFP model is composed of one or various
standard cells called RL-neuro-fuzzy politree piaming

structure in the form of a tree in accordance \tht type of
partition being used. Binary Space Partitioning PBS
[15][16] divides the space in two repeatedly. Peét
partitioning is a generalization of the quadtreghud [15].
In this partitioning method, the subdivision of the
dimensional space is accomplished in fistthdivisions.
Figure 1a shows an example of a two-dimensionaltinp
partitioned using BSP. Politree partitioning can be
represented by a tree structure. Figure 1b shotypieal
example of politree partitioning (with n inputs)ierarchical
partitioning is flexible and minimizes the exporiehtule
growth problem because it creates new rules locally



according to its learning process. This type otipaning is
considered recursive because it uses a recursoeess to
generate partitions. With such partitioning, thesuténg
models have a hierarchy in their structure and thasge
hierarchical rules. The outputs of the cells inltheer levels
are the consequents of the cells in higher levels.
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Figure 1. (a) BSP Tree representing BSP partitipnifio) generic tree
representation of politree partitioning.

RL-HNFP models can be created based on the
interconnection of the basic cells described abde. cells
form a hierarchical structure that results in thées that
comprise the agent's reasoning. A neuro-fuzzy learn
process is generally divided into two parts: suiet
identification and parameter adjustment. RL-HNFHgens
these learning tasks in a single algorithm. It exiasof six
main steps: generate a root cell, calculate global
reinforcement, back-propagate the reinforcementecse
actions, update Q-values, and partitioning. A pesistudy
provides details about how each step works [17].

lll. MULTIAGENT RL-HNFPMODEL
The main idea of the multiagent version of the RNMHP

An RL-NFP cell is a mini-neuro-fuzzy system thatfamily of algorithms is to ensure that all agents able to

performs n-dimensional partitioning of a given spao

explore different tasks or different state-actiorairp

accordance with the membership functions. The RENFsimultaneously, thus speeding up learning and agevee

cell generates a precise (crisp) output after
defuzzification process [17][18]. Each cell recasivall
inputs considered in the problem and the valugagh input

th®r an optimal policy. There are many approachest th

involve multiple agents, a goal to be learned, domtion
among agents, and learning homogeneity. With therstcof

variable (¥) is read by one of the agent’s sensors. It is thefultiagent RL-HNFP (MA-RL-HNFP), it became possible

inferred in the antecedents’ fuzzy sets (lopfx) - and high

to broaden the RL-HNFP model in different ways to

- M(x)). Figure 2 depicts an example of the resultardontemplate the greatest possible variety of apfitios.

partition of a RL_NFP cell with two inputs - &and %,
resulting in four sub-partitions (Quadtree partitiag).
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Figure 2 — Internal representation of the RL-NFHsce
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In this paper, different types of MA-RL-HNFP system
derived from the original system are presented, wamed
describe their behavior, particularities, and ofyes.
Additionally, the differences between models innterof
coordination and learning dynamics are explainetie T
proposed MA-RL-HNFP systems differ in two main agpe
learning dynamics and the coordination mechanisrmangm
agents. For MASs, learning occurs one of two wayth or
without the sharing of the learning structure.

When the structure is shared, the learning stradtithe
same for every agent. The learning structure fonstias a
“group intelligence”, which is used by all agends flecision
making and serves as a knowledge repository. Ireroth

The consequents of the cell partitions may be @& thyords, each agent can execute a specific actiendistinct

singleton type (a constant) or the output fromagetof a
previous level. Although a singleton consequensimple,

state of knowledge. Subsequent agents can access th
information provided by the previous agents in iegle

this consequent is not known in advance becausé eagructure, choose the action to be performed, autte the
singleton consequent is associated with an adianhtas not  Q values according to the received information.

been defined a priori. Each partition has a sepaxsible

This type of model, in which multiple agents use same

actions (& &, ... a), in which each action is associated withstructure, is used when agents need to learn tie $ask

a Q-value function. The Q-value is defined as tma sf the
expected values of the rewards obtained by theutioecof
action a in state s, in accordance with a policyrprther
details of RL theory are presented in a previoudys{19].
The linguistic interpretation of the mapping impkemed

by the RL-NFP cell is given by rules. Each ruleresponds
to one of the polipartitions generated by the pedit
partitioning and has the following structure:

* Rule 1:If x € pand % €p, theny =a

* Rule2:lfx€pand %€ g theny =g

* Rule3:Ifx € pand % €ptheny =3

* Ruled:lfx€pand %€ wtheny =3

and seek cooperation. If all of the agents compsieg the
exact same “intelligence”, there would be no losers
winners.

Similar to the RL-HNFP model, learning also occurs
cyclically. First, the agents access the structorenake a
decision, explore the state-action pairs of theirenment,
receive the return, and transfer “what they haeened” to
the knowledge structure, which processes the irdtiom of
the explored state-action pair and received retalne. A
new cycle is then performed for another agent, whian
explore a completely distinct space in the envirentnThe
main difference is the agent’s rotation in its @xption of



the environment. The full training process is daddinto
seven steps, as depicted in Figure 3.

However, in a competitive environment, there isneed
for an agent to provide knowledge to its rivals.eihthe
other method of learning involves each agent kepfiis

own structure separate from the other agents in the

environment. In this case, each agent specialize¥f ito a

specific task. This approach seeks to solve problem

involving both cooperation and competition amondtipie

agents. To make agents cooperate, there must be a

coordination mechanism or central agent that reseand
combines the information from each RL-HNFP struetdn

competitive problems, the agents may use their own

structures independently, with the goal of learrangpecific
task and competing against other agents that anallgq
“equipped” with an RL-HNFP learning structure.

IV. COORDINATION IN MULTIAGENT SYSTEMS

Coordination is defined as "the act of working tihge
harmoniously towards achieving an agreement ancraam
goal" [13]. Working together, in turn, depends dme t
application or problem at hand. Coordination is amant in
competitive, cooperative, and mixed environments. al
competitive environment, coordination focuses omflaxt
resolution and negotiation. In a collaborative eowiment,
coordination
including ways to solve global problems in a dimited
manner by creating teams and agents that workdopg to
optimize the achievement of goals. CoordinatiorMiASs
seeks to efficiently organize the intelligent babawf a set
of autonomous agents. The goal in such a systéondsfine
strategies or ways of coordinating the differenillskand
behaviors of the agents such that they can jotaltg action
and solve problems efficiently.

Coordination in MASs involves coordination betwebe
agents and the coordination of actions of an agdatny
problems can occur in a MAS that lacks a coordiggati
mechanism or has one that is not appropriate:

e Conflicts between features or system

demands;

« Redundancy in the tasks of agents;
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Figure 3 —Learning algorithm of the MA-RL-HNFP made

focuses on cooperation among agents,

A. Market-driven coordination

This approach considers a group of agents whoskigota
complete the tasks successfully while trying to imime
total costs. Each agent will seek to minimize comtsl
maximize its individual private profit. The idea ofethod-
oriented MASs is based on the interaction of agémta
distributed manner, which allows agents to haveatgre
bargaining power and information. Thus, agents rhast a
mechanism that allows for communication amongsinthe
[20].

As soon as the MAS has a goal, the goal is decoeapos

resourd@to smaller tasks. Then, an auction is held faheaf these

tasks and is associated with a gain (reward) far tisk. In
each auction, the participating agents calculatectimated

« Increases in waiting time when the activity of acost to accomplish the task and offer a price te th

agent depends on the activities of other agents.

Thus, the main purpose of coordination is to avoid
minimize these problems while optimizing the resesrand
time to perform complex tasks. Such tasks can bepteted
though a single agent does not have all of theuress that
are necessary to complete the task or meet seudrajoals
to achieve the overall goal [1][2].

There are several coordination mechanisms. Inphyier,
two models are chosen that provide excellent resalthe
coordination of MASs in different applications [12hd are
the most frequently used in the current literatditee first is

auctioneer.

At the end of the auction, the bidder (agent) witle
lowest price offered will be given the right of kasxecution
and receive a gain. An agent can open anothercautisell
the task that he won. Two or more agents can wagkther
to accomplish a task that would be difficult forsiagle
agent. To develop the market-driven strategy, & foostion
must be defined for all of the resources needed to
accomplish the task. Each of these resources cae aa
different weight depending on the importance ofhesm
perform the task [20].

market-driven coordination, and the second is graphg Graph coordination

coordination.

This type of coordination uses graphs to relatensgto
each other and coordinate their actions in a specif



situation. In most applications, it is rare thakmiy have enumeration process becomes computationally impedct
interdependent actions, i.e., in a few situatidins,actions of However, several problems in the action of an adent
an agent require that the actions of other ageate lheen depend solely on a small group of agexi(g rather than on
previously performed. The problem of global cooation is all agents. Thus, the overall function returns R{& linear
now replaced by problems of coordination sites vi#lwver combination of local functions, as shown in thedwaing

agents. equation:
This decomposition can be represented by graphs in
which each node is an agent and each edge inditetesvo R(a) =XiL: fij(aj, aj) (1)

agents must coordinate their actions. This techmidg

referred to as a coordination graph (CG) [12]. Each The graph representation was chosen to facilithge t
dependency corresponds to a local function, whesigas a modeling of the problem by making it possible tpresent
specific value to each of the different combinasioof any dependency [12]. To solve the coordination femm the
actions of the agents involved. Figure 4 shows a Cgraph representation finds the best joint actior @rgmax
structure for eight agents (numbered circles). Bach R(a) using variable elimination [12].

connection, a dependence function between the sgent When an agent is selected for elimination, all fiorns
specified. For example, the edge between agentsd12a that have a return or dependence associated walr th
represented by:f, is a function that contains all possiblevertices are removed. Then, a callback functionditmmal
actions of agent 1 with agent 2. is calculated @(a)), which returns the maximum value that
the agent is able to contribute to the system fametion of
each combination of actions with its neighbors. Thkback
function conditional also returns a better respdiusetion
(B(a)), which returns the corresponding action fbis
maximized value. The agent communicates this ciomdit
reward function to one of its neighbors and is then
eliminated.

The neighbor agent creates a new dependency
(connection) between the agent and those involmethé
conditional function, and the next agent in theeoirt is
then selected for elimination. This process is atge until a
single agent remains. This agent sets its actiamagimize
the final function returns. This individual actigpart of the
joint action good, and the associated value fun&io
Figure 4 - CG for eight agents. conditional return is equal to the desired value=atrgmax
R(a). A second pass in reverse order is then pegdrin
which each agent calculates its optimal action thase its
X conditional strategy and the actions of its neighlaoe fixed
isTh [12]. An example of this method is shown in Figbrevhere
four agents are represented with their dependenEiash
) ) Y node in the graph is an agent, and the actionsgehtal
actions is generated through CGs, but to find iicdial depend on the actions of agents 2 and 3. The aotibagent

stocks that produce optimal system performance, tlﬁedepend solely on the actions of agent 1. The@stof
coordination is measured using the method of Vmiabagenthepend on the actions of agents 1 and 4

elimination [12]. This method can be described
mathematically by a function that coordinates tektions
shown by the graphs.

The idea of variable elimination is to calculate a
coordinated action involving a group of n agentshvthe
purpose of maximizing a revenue function. The pobtan
be described as follows: each agent i selects dividual
action a from a set of actions ;Aand the resulting joint
action a = (a... &) generates a callback function R(a). The
problem is to find the optimal action that maxinszthe
callback function a* = argmaR(a). Figure 5 Example of the CG pair deletion variable

The deceptively simple approach to solve the coatihn
problem is to enumerate all possible joint actiand choose
the one that maximizes R(a). In most real applcet; this

The overall function is the sum of all local fumets. To
calculate the action that maximizes the overalcfiom, the
variable elimination algorithm can be used [12]
algorithm is briefly presented below.

The graphical representation of the dependenciegert




V. MULTIAGENT REINFORCEMENTLEARNING NEURO- VI. MULTIAGENT HIERARCHICAL NEURO-FUZZY MODEL

FUZZY MODEL WITH MA RKET-DRIVEN COORDINATION WITH COORDINATION BY GRAPHS
The agents within a community group of the appilarat
have a role, and they perform some actions relaietthis This model proposes the integration of the MA-RLHN

role. Their roles define the behavior of each iidlial model with CG. The model involves a central methogp

agent. For example, in football, in an attack dibm the whose objective is to coordinate the agents. Thiera of

role of the attacker is given to the player beditimned to any particular agent depend on the actions of anabent.

take advantage of the situation. The model is divided into two stages. In the fstige, the
RL-HNFP-MA model, which was used in the previous

: learning model, undertakes the role specificatibaroagent

Choice of paper in every situation, as shown in Figure 9. Afterafyéng the

— — — role of each agent, the second stage begins, viheraction

— o is chosen for each individual agent by variablenglation.

) ' Choice of paper
MA RL-HNFP Market Driven ‘ :
Return — | =
_-_ —_— = y, MA RL-HNFP ‘ | ceG
-H-H-"‘"——u_ = — _'—'—"'_'-F'-F - L .|
: y Retun I 1
Choice of action . :
Figure 6 MA-RL-HNFP- MD model = o - = - B
e —

The model is divided into two stages. The firspstses
the MA-HNFP model to learn the best role for eagbra.
The second step uses the MD concept to choosedste b Figure 8 MA-RL-HNFP-CG model
action to be performed by the agent, as shown gurgi 7.

This action is chosen from the stocks that belanthe set | 1ich the agents coordinate actions while miningzthe

of actions associated with the role. consumption of system resources. When agents have t

The idea of the proposed approach is to use the M@pordinate actions, the agents learn individualoast that
HNFP model to identify the best role to be playgdeach —maximize the return to the system.

agent in a specific environment. Figure 8 shows lloek

diagram of the MA-RL-HNFP-MD model, for which the VII. CASE STUDY

RL-HNFP structure decides the role that each ageéfht The prey-predator game, also known as the "pursuit
have in a given state of the environment. The Maikéven  game" [21], is used as a case study. In its masiitional
model decides what action each agent must perfdiiis  form, agents participate in a game with four pretsaiand
model was chosen by learning a single structureviledge one prey, which are arranged in an orthogonal tvd is

repository) for the agents of the system becaugeagent gjvided into rows and columns such that each getl c

Choice of action

This model aims to reduce the number of situations

environment. The goal is to make the predators capture the seyuickly
as possible.

The application can be considered collaborativeabse

- heemi P there is interaction between the predators for sote

- = s purpose of capturing the prey. In this case std#:-RL-

S HNFP systems were built by following the specificas,

RLARTE oy o Apent] % | Siusoo assumptions, and restrictions outlined below:
iy o T e The space consists of a 9x9 grid of orthogonal
| - . it . positions;
T T A e The four agents (predators) learn a role using MA-
T RL-HNFP, with the goal of capturing the prey:
Blathrt-Dyiyes

) Role 1: Agent captures the prey to the left;
Figure 7 MA-RL-HNFP-MD model.

Role 2: Agent captures the prey to the right;
Role 3: Agent captures the prey above him;

Role 4: Agent captures the prey below him;



Each role has the same four associated actiorggrners and capture the prey, which was fixed éxahe
which are chosen by market-driven coordination ogenter of the grid.
graph coordination; In the second stage of training, once the roleghef

predators are chosen, the predators choose thefierped

The prey and predators can only move in foul.inns according to market-driven coordination.
directions; diagonal moves are not allowed;

Each game round consists of a move by each 2) Trainingwiththe MA-RL-HNFP-CG model
participant; Training for the second model is similar to that the

first model and is also divided into two steps. Tingt step
The participants do not have the concept gk the same as that of the first model: we leamtibst role
acceleration. Each movement is always performest each predator, depending on the position (statéh)
on a position immediately above, below, left, ofespect to its prey and the other predators. Insteond
right of the agent; phase of training, once the predator roles are erhothe
preferred action in the model is chosen, and thbi®m is
accomplished via graph coordination.
Each predator agent can see the positions of the
other agents and prey;

Participants move alternately, not simultaneously;

VIl RESULTS

Predator agents do not know the goals of the otherlIn the first set of tests, 1,000 "persecution” destere
agents; conducted, with the predators always dropping o t
. , i _corners of the grid and with the prey fixed. It shibbe
Agents can share the ‘knowledge’ obtained duringeq that 7,000 steps is ideal for catching presabse the
the learning; optimal path is seven steps. In the second setsté,t1,000
"persecution” tests were performed, with the predat

In a collision after a drive, the agent or preyras
to its original position and the round ends;

» If a participant tries to move off the grid, it uets
to the previous position.

1) Training with the MA-RL-HNFP-MD model

starting in a random places and prey always fikédally, in

a third test 1,000 “persecutions” were performedhwi
random initial positions for all predators and préyhe
results are shown in the following tables, in whileh results
are compared with the original model, MA-RL-HNFP.

This training covers the following stages of traiyi the Model ;;?%’ Pr;g‘?ttor Coordination| ~ Pursuit img
mapping of the positions (states) in roles (shaseg) the
mapping of roles (states) in movements (actions)MA-RLHNFP | Fixed Fixed 13,161 0%
culminating in integral learning, including bothlleative [ MA-RL-HNFP- Fixed Fixed 9,200 30%
learning (coordination of agents) and single-adesutning. MD

The first stage of training in the predator-preyngais to | MA-RL-HNFP- Fixed Fixed 7,620 43%
learn the preferred role (share) of each predatpedding ce
on its position with respect to the prey and othredators.

The reinforcement received by the model after eamtion Table 1 — First test
was constructed in a manner inversely proportidoathe
distance between the agent and prey, as shownuatiegs Model Prey Predator | Coordination| Pursuit time
(11) and (12). start start

MA-RL-HNFP Fixed Random 9,548 0%
Distance between the agent and prey: TR .
d= (A —R)| + I(A - R)l (11) MA RblgNFP Fixed Random 7,355 23%
MA-RL-HNFP- Fixed Random 6,750 30%

Reward: cG

r=1- dworm (12)

A, and R, are the positions of the agent and the prey and Table 2 — Second test
are attached to the x-axis, &d A are the positions of thg——-— Prey Sredator T Coordnation ] Pursuiimd
agent and the prey and are associated to the y-axis start start
respectively, and g is the distance between the agent and i
prey, normalized linearly between zero and one.{fiaing | “AR-HNFP | Fixed Random 9,476 0%
process was conducted with the prey always fixedh& | MA-RL-HNFP- Fixed Random 7,210 23%
position (4, 4). The position of each agent at lteginning MP
of the game, or after each capture, was also lizitih in a | MA-RL-HNFP- Fixed Random 5,940 38%
fixed manner. The corners of the grid were pos#i@ 0), ce

(8, 8), (8, 0), and (0 8). The agents needed tmgebf the



Table 3 = Third test [6] L. BUSONIU, R. BABUSKA, and B. DE SCHUTTER, “A

Comprehensive Survey of Multiagent Reinforcemenarbeng”. In:

As can be seen from the tables above, the use of Systems, Man, and Cybernetics, Part C: Applicatiand Reviews,
coordination methods in the MA environment greaty IEEE Transactions, Volume: 38, Issue: 2, Mar. 2008,

. . . G. WEISS, S. Sen, “Adaptation and Learning in MAlgent
improved the performance in capturing the prey soeon Systems”. In: IJCAI "95 workshop, Montréal, Canadaigust 21,

Depending on the initial positions of the agenthe t 1995. Berlin: Springer, 238 p, 1996.
improvement range from 23% to 43%, when compared {8 B. GOODWINE, P. ANTSAKLIS, “Multiagent coordinatio
the original MA-HNFP model. exploiting system symmetries” American Control Gaehce (ACC),

Topic(s): Robotics & Control Systems, Page(s): 8335, 2010.
[9] J.0O.BERNDT, and O. HERZOG, “Efficient Multiage@bordination
IX CONCLUSIONS in Dynamic Environments” IEEE / WIC / ACM Internatial

. Conferences on Web Intelligence and Intelligent Mtg€echnology
In this work, two separate systems were developed t (WI-IAT) Lyon. France. IEEE Computer Society, Page88-195,

evaluate the two proposed models, MA-RL-HNFP-MD and 2011,

MA-RL-HNFP-CG. In both systems, agents use a shar¢th] M. C. FRANGCA, M.M.B.R VELLASCO, K. FIGUEIREDO,;
knowledge structure. The proposed models weredésta “Building ~ Multi-agent systems with ~ reinforcement afeing
case study involving the pursuit game. The goal wahow hirearchical neuro-fuzzy modelos”. X Brazilian Coegs on

S . . Computational Intelligence (CBIC), 2011.
how a coordination mechanism improves the perfooeard [11] T. EGUCHI, K.HIRASAWA, J. HU, “A study of evoluticary

MASSs and increases the speed of convergence amdriga multiagent models based on symbiosis.;[EEE Trafwset on
The results of the proposed models were comparetieto Systems, Man, and Cybernetics, Part B 179-193,2006
results obtained with the original MA-RL-HNFP moslel [12] N. VLASIS, “Collaborative multiagent reinforcemegarning by

payoff propagation”. Journal of Machine LearningsBarch, 7:1789-
[10]. 1828, 2006.

Tests were performed to evaluate the performandes [03] L. P. REIS, and N. LAU; “FC Portugal - High-levelo@rdination
models that include a mechanism for multiagent Methodologies in Soccer Robotics” Internationalrdailiof Advanced

. : . . . . Robotic Systems: Soccer Robotics, Edited by Pedna | 2007.
coordination and models with simple coordinatioheTests [14] B. P. Seliner, F Heger, "Coordinated Multi-Agemts and Sliding

demonstrated that the former are higher althougl th ~ Autonomy for Large-Scale Assembly," ProceedingthefIEEE -
learning is very expensive in computational terrbge Special Issue on Multi-Robot Systems, Vol. 94, Rialuly 2006.
pursuit game is a simple application that has gleigoal, [15] F. Souza, M.M.B.R. Vellasco, M.A.C. Pacheco. Hiehézal Neuro-
which is to capture the prey. Even with this simgéene, we ggézy QuadTree Models. Fuzzy Sets & Systems vol2l 2002, 189-
can observe a difference in the performance oMBAeRL-  [16] M.M.B.R. Vellasco, M.A.C. Pacheco, K. Figueireda).Be Souza,

HNFP model when a coordination model and hieraathic “Hierarchical Neuro-Fuzzy Systems — Part I", Enopsdia of

stucture are used T e e S e wx Pachoco
. In the first test, in V\_/hICh the predators and pmgye both “Modified Reinforcement Léarning Hierarchical Nétﬁuzzy Politree
fixed, both models yielded better results thantia bther Model for controlo f autonomous agents”. Internasib Journal of
experiments. In all experiments, market driven dowation Simulation Systems, Sciehce & Technology, Vol. 6, N0/11, pp. 4-
yielded better results than the graph coordinatiorll tests, (18] iﬂ?’Mzgos- Vel MAC. Pacheco, K. Figueiredas e S

H H _Ari . . .M.B.R. Vellasco, .A.C. Pacnheco, K. Flguelreaa,).ae Souza,
the results obtained using market fjrlven coordimativere “Hierarchical Neuro-Fuzzy Systems — Part II", Eropedia of
much better than those obtained using the othéersys Artificial Intelligence, Information Science Refeiee, 2008.

The two coordination methods discussed here arg veto] R.S. SUTTON, and A.G. BARTO, “Reinforcement Leagimn
expensive in terms of computational effort. The kegr 20] ::‘tfggtgclgoﬂ-TC:T":_?SE%‘?I%MCA:'\Z/'E'EEBST& 122%’LAN «O-Laming
driven coordination method_run_s approximately féiores based M:arket-Driven Muiti-Agent Colléboration in IRn Soccer”,
faster than the graph coordination method on aeerdige Proceedings, Turkish Symposium On Artificial Inigdince and

market-driven learning method also converges quickl Neural Networks, pp.219-228, Izmir, Turkey, Junel10 2005.
which indicates that the method is more promisirgfditure  [21] M. BENDA, V. JAGANNATHAN, *On optimal cooperation fo
case studies knowledge sources an Empirical investigation”, TeBep. BQS—
’ G2010-28, Boeing Advanced Technology Center, Bo€amputing
Services, Seattle, Washington, Jul. 1986.
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