

,

Abstract— This paper presents the research and
development of a hybrid neuro-fuzzy model for the hierarchical
coordination of multiple intelligent agents. The main objective
of the models is to have multiple agents interact intelligently
with each other in complex systems. We developed two new
models of coordination for intelligent neuro-fuzzy multiagent
systems that use MultiAgent Reinforcement Learning
Hierarchical Neuro-Fuzzy with a market-driven coordination
mechanism (MA-RL-HNFP- MD) and a MultiAgent
Reinforcement Learning Hierarchical Neuro-Fuzzy with graph
coordination (MA-RL-HNFP-GC). After setting options and
using the MA-RL-HNFP_MA family of models, the
coordination systems were tested in two case studies involving
the implementation of a benchmark game of predator-prey.
The tests showed that the new system has the ability to
coordinate actions between agents with a convergence rate
nearly 30% greater than that of the original version.

I. INTRODUCTION

here are many advantages to using multiple agents.
Through parallel computing, multiple agents can work
together to better exploit the decentralized structure of a

given task and accelerate its completion [1][2]. Additionally,
agents can exchange experiences by communicating [3],
observe and learn from the most skilled agents [4], and serve
as teachers for other agents [5]. The multiagent system
(MAS) can also provide a high degree of scalability because
it can add new agents when needed and assign the activities
of failed agents to other agents [6]. The MAS described in
this study also demonstrates the understanding of
intelligence [7]. Because intelligence is strongly linked to
interaction, the best way to create intelligent machines could
be to build social networks of machines. Coordination is a
key feature of a MAS that performs some activity in a shared
environment [8]. Coordination is closely related to
knowledge sharing between agents, and its main objective is
to coordinate the actions of each individual agent to achieve
the ultimate goal of the MAS [9]. The coordination
mechanisms of most MASs can be classified as implicit
(centralized) or explicit (distributed) [10]. These
mechanisms are useful in simple environments, in which the
mechanism has a single goal [11][12]. However, there are
environments in which the ultimate goal is achieved by

Leonardo Forero and Marley M.B.R. Vellasco are with the Department

of Electrical Engineering, Pontifical Catholic University of Rio de Janeiro
(PUC-Rio), Brazil (email: {mendonza, marley}@ele.puc-rio.br).

Karla Figueiredo and Eugenio silva with the Department of Computer
Science, Universidade Estadual da Zona Oeste (UEZO), Rio de Janeiro,
Brazil (email: karla.figueiredo@gmail.com eugenio@ele.puc-rio.br)

This work was supported by CNPq and FAPERJ.

fulfilling a number of conditions and sub-goals, with
different agents playing different roles. These environments
require elaborate coordination mechanisms and greater
knowledge of the environment on the part of the operator
[8][13].

Without coordination, the benefits of distributed execution
of tasks disappear and the group of agents can degenerate
into a chaotic and incoherent collection of individual
behaviors [9]. Several problems can occur in a MAS without
coordination, such as conflicts over resource access or
misuse, redundancy, and increased waiting time, particularly
when the activity of an agent depends on the completion of
activities by other agents [13].

A good coordination system should avoid or minimize the
occurrence of these problems by optimizing the use of
resources and the time required to achieve the objectives
[14]. Effective coordination between agents operating in a
shared environment contributes to improving the quality of
the solutions achieved and to improved performance in
solving tasks [15]. The aim of this paper is to extend the
MultiAgent Reinforcement Learning Hierarchical Neuro-
Fuzzy (MA-RL-HNFP) model by combining its advantages
with those of existing coordination strategies to address
complex environments and multiple objectives, improve
performance, and enhance communication between agents.
The main objective of this work is the development and
implementation of strategies for multiagent coordination
using the hybrid neuro-fuzzy models of the MA-RL-HNFP
family. These models enable efficient and optimal
coordination, which leads to improved communication
among agents in complex environments and allows them to
complete multiple objectives.

II. RLF-HNFP MODEL

The RL-HNFP model is composed of one or various
standard cells called RL-neuro-fuzzy politree partitioning
(RL-NFP). These cells are arranged in a hierarchical
structure in the form of a tree in accordance with the type of
partition being used. Binary Space Partitioning (BSP)
[15][16] divides the space in two repeatedly. Politree
partitioning is a generalization of the quadtree method [15].
In this partitioning method, the subdivision of the n-
dimensional space is accomplished in m=2n subdivisions.

Figure 1a shows an example of a two-dimensional input
partitioned using BSP. Politree partitioning can be
represented by a tree structure. Figure 1b shows a typical
example of politree partitioning (with n inputs). Hierarchical
partitioning is flexible and minimizes the exponential rule
growth problem because it creates new rules locally

INTELLIGENT MULTIAGENT COORDINATION BASED ON
NEURO-FUZZY MODELS WITH HIERARCHICAL

REINFORCEMENT LEARNING

Leonardo A. Forero, Marley M. B. R. Vellasco, Karla Figueiredo and Eugenio Silva

T

according to its learning process. This type of partitioning is
considered recursive because it uses a recursive process to
generate partitions. With such partitioning, the resulting
models have a hierarchy in their structure and thus have
hierarchical rules. The outputs of the cells in the lower levels
are the consequents of the cells in higher levels.

Figure 1. (a) BSP Tree representing BSP partitioning, (b) generic tree
representation of politree partitioning.

An RL-NFP cell is a mini-neuro-fuzzy system that

performs n-dimensional partitioning of a given space in
accordance with the membership functions. The RL-NFP
cell generates a precise (crisp) output after the
defuzzification process [17][18]. Each cell receives all
inputs considered in the problem and the value of each input
variable (xi) is read by one of the agent’s sensors. It is then
inferred in the antecedents’ fuzzy sets (low - ρ(xi) - and high
- µ(xi)). Figure 2 depicts an example of the resultant
partition of a RL_NFP cell with two inputs – x1 and x2 ,
resulting in four sub-partitions (Quadtree partitioning).

Figure 2 – Internal representation of the RL-NFP cells.

The consequents of the cell partitions may be of the
singleton type (a constant) or the output from a stage of a
previous level. Although a singleton consequent is simple,
this consequent is not known in advance because each
singleton consequent is associated with an action that has not
been defined a priori. Each partition has a set of possible
actions (a1, a2, ... a1), in which each action is associated with
a Q-value function. The Q-value is defined as the sum of the
expected values of the rewards obtained by the execution of
action a in state s, in accordance with a policy p. Further
details of RL theory are presented in a previous study [19].

The linguistic interpretation of the mapping implemented
by the RL-NFP cell is given by rules. Each rule corresponds
to one of the polipartitions generated by the politree
partitioning and has the following structure:

• Rule 1: If x1 Є ρ1and x2 Єρ2 then y = ai
• Rule 2: If x1 Є ρ1and x2 Є µ2 then y = aj
• Rule 3: If x1 Є µ1and x2 Є ρ2 then y = ap
• Rule 4: If x1 Є µ1and x2 Є µ2 then y = aq

RL-HNFP models can be created based on the

interconnection of the basic cells described above. The cells
form a hierarchical structure that results in the rules that
comprise the agent’s reasoning. A neuro-fuzzy learning
process is generally divided into two parts: structure
identification and parameter adjustment. RL-HNFP performs
these learning tasks in a single algorithm. It consists of six
main steps: generate a root cell, calculate global
reinforcement, back-propagate the reinforcement, select
actions, update Q-values, and partitioning. A previous study
provides details about how each step works [17].

III. MULTIAGENT RL-HNFP MODEL

The main idea of the multiagent version of the RL-HNFP
family of algorithms is to ensure that all agents are able to
explore different tasks or different state-action pairs
simultaneously, thus speeding up learning and convergence
for an optimal policy. There are many approaches that
involve multiple agents, a goal to be learned, coordination
among agents, and learning homogeneity. With the advent of
multiagent RL-HNFP (MA-RL-HNFP), it became possible
to broaden the RL-HNFP model in different ways to
contemplate the greatest possible variety of applications.

In this paper, different types of MA-RL-HNFP systems
derived from the original system are presented, and we
describe their behavior, particularities, and objectives.
Additionally, the differences between models in terms of
coordination and learning dynamics are explained. The
proposed MA-RL-HNFP systems differ in two main aspects:
learning dynamics and the coordination mechanism among
agents. For MASs, learning occurs one of two ways: with or
without the sharing of the learning structure.

When the structure is shared, the learning structure is the
same for every agent. The learning structure functions as a
“group intelligence”, which is used by all agents for decision
making and serves as a knowledge repository. In other
words, each agent can execute a specific action in a distinct
state of knowledge. Subsequent agents can access the
information provided by the previous agents in the single
structure, choose the action to be performed, and update the
Q values according to the received information.

This type of model, in which multiple agents use the same
structure, is used when agents need to learn the same task
and seek cooperation. If all of the agents compete using the
exact same “intelligence”, there would be no losers or
winners.

Similar to the RL-HNFP model, learning also occurs
cyclically. First, the agents access the structure to make a
decision, explore the state-action pairs of the environment,
receive the return, and transfer “what they have learned” to
the knowledge structure, which processes the information of
the explored state-action pair and received return value. A
new cycle is then performed for another agent, which can
explore a completely distinct space in the environment. The
main difference is the agent’s rotation in its exploration of

the environment. The full training process is divided into
seven steps, as depicted in Figure 3.

However, in a competitive environment, there is no need
for an agent to provide knowledge to its rivals. Then, the
other method of learning involves each agent keeping its
own structure separate from the other agents in the
environment. In this case, each agent specializes itself to a
specific task. This approach seeks to solve problems
involving both cooperation and competition among multiple
agents. To make agents cooperate, there must be a
coordination mechanism or central agent that receives and
combines the information from each RL-HNFP structure. In
competitive problems, the agents may use their own
structures independently, with the goal of learning a specific
task and competing against other agents that are equally
“equipped” with an RL-HNFP learning structure.

IV. COORDINATION IN MULTIAGENT SYSTEMS

Coordination is defined as "the act of working together
harmoniously towards achieving an agreement and common
goal" [13]. Working together, in turn, depends on the
application or problem at hand. Coordination is important in
competitive, cooperative, and mixed environments. In a
competitive environment, coordination focuses on conflict
resolution and negotiation. In a collaborative environment,
coordination focuses on cooperation among agents,
including ways to solve global problems in a distributed
manner by creating teams and agents that work in groups to
optimize the achievement of goals. Coordination in MASs
seeks to efficiently organize the intelligent behavior of a set
of autonomous agents. The goal in such a system is to define
strategies or ways of coordinating the different skills and
behaviors of the agents such that they can jointly take action
and solve problems efficiently.

Coordination in MASs involves coordination between the
agents and the coordination of actions of an agent. Many
problems can occur in a MAS that lacks a coordinating
mechanism or has one that is not appropriate:

• Conflicts between features or system resource
demands;

• Redundancy in the tasks of agents;
• Increases in waiting time when the activity of an

agent depends on the activities of other agents.
Thus, the main purpose of coordination is to avoid or

minimize these problems while optimizing the resources and
time to perform complex tasks. Such tasks can be completed
though a single agent does not have all of the resources that
are necessary to complete the task or meet several sub-goals
to achieve the overall goal [1][2].

There are several coordination mechanisms. In this paper,
two models are chosen that provide excellent results in the
coordination of MASs in different applications [12] and are
the most frequently used in the current literature. The first is
market-driven coordination, and the second is graph
coordination.

Figure 3 –Learning algorithm of the MA-RL-HNFP model.

A. Market-driven coordination

This approach considers a group of agents whose goal is to
complete the tasks successfully while trying to minimize
total costs. Each agent will seek to minimize costs and
maximize its individual private profit. The idea of method-
oriented MASs is based on the interaction of agents in a
distributed manner, which allows agents to have greater
bargaining power and information. Thus, agents must have a
mechanism that allows for communication amongst them
[20].

As soon as the MAS has a goal, the goal is decomposed
into smaller tasks. Then, an auction is held for each of these
tasks and is associated with a gain (reward) for that task. In
each auction, the participating agents calculate the estimated
cost to accomplish the task and offer a price to the
auctioneer.

At the end of the auction, the bidder (agent) with the
lowest price offered will be given the right of task execution
and receive a gain. An agent can open another auction to sell
the task that he won. Two or more agents can work together
to accomplish a task that would be difficult for a single
agent. To develop the market-driven strategy, a cost function
must be defined for all of the resources needed to
accomplish the task. Each of these resources can have a
different weight depending on the importance of each to
perform the task [20].

B. Graph coordination

This type of coordination uses graphs to relate agents to
each other and coordinate their actions in a specific

situation. In most applications, it is rare that agents have
interdependent actions, i.e., in a few situations, the actions of
an agent require that the actions of other agents have been
previously performed. The problem of global coordination is
now replaced by problems of coordination sites with fewer
agents.

This decomposition can be represented by graphs in
which each node is an agent and each edge indicates that two
agents must coordinate their actions. This technique is
referred to as a coordination graph (CG) [12]. Each
dependency corresponds to a local function, which assigns a
specific value to each of the different combinations of
actions of the agents involved. Figure 4 shows a CG
structure for eight agents (numbered circles). For each
connection, a dependence function between the agents is
specified. For example, the edge between agents 1 and 2,
represented by f12, is a function that contains all possible
actions of agent 1 with agent 2.

Figure 4 - CG for eight agents.

The overall function is the sum of all local functions. To
calculate the action that maximizes the overall function, the
variable elimination algorithm can be used [12]. This
algorithm is briefly presented below.

The graphical representation of the dependencies of agent
actions is generated through CGs, but to find individual
stocks that produce optimal system performance, the
coordination is measured using the method of variable
elimination [12]. This method can be described
mathematically by a function that coordinates the relations
shown by the graphs.

The idea of variable elimination is to calculate a
coordinated action involving a group of n agents with the
purpose of maximizing a revenue function. The problem can
be described as follows: each agent i selects an individual
action ai from a set of actions Ai, and the resulting joint
action a = (a1,… an) generates a callback function R(a). The
problem is to find the optimal action that maximizes the
callback function a* = argmaxa R(a).

The deceptively simple approach to solve the coordination
problem is to enumerate all possible joint actions and choose
the one that maximizes R(a). In most real applications, this

enumeration process becomes computationally impractical.
However, several problems in the action of an agent i
depend solely on a small group of agents ϒ(i) rather than on
all agents. Thus, the overall function returns R(a) as a linear
combination of local functions, as shown in the following
equation:

R(a) =	∑ f��(a�, a�)

��� (1)

The graph representation was chosen to facilitate the

modeling of the problem by making it possible to represent
any dependency [12]. To solve the coordination problem, the
graph representation finds the best joint action a* = argmaxa
R(a) using variable elimination [12].

When an agent is selected for elimination, all functions
that have a return or dependence associated with their
vertices are removed. Then, a callback function conditional
is calculated (∅(a)), which returns the maximum value that
the agent is able to contribute to the system as a function of
each combination of actions with its neighbors. The callback
function conditional also returns a better response function
(B(a)), which returns the corresponding action for this
maximized value. The agent communicates this conditional
reward function to one of its neighbors and is then
eliminated.

The neighbor agent creates a new dependency
(connection) between the agent and those involved in the
conditional function, and the next agent in the ordering is
then selected for elimination. This process is repeated until a
single agent remains. This agent sets its action to maximize
the final function returns. This individual action is part of the
joint action good, and the associated value function’s
conditional return is equal to the desired value a* = argmaxa
R(a). A second pass in reverse order is then performed in
which each agent calculates its optimal action based on its
conditional strategy and the actions of its neighbors are fixed
[12]. An example of this method is shown in Figure 5, where
four agents are represented with their dependencies. Each
node in the graph is an agent, and the actions of agent 1
depend on the actions of agents 2 and 3. The actions of agent
2 depend solely on the actions of agent 1. The actions of
agent 3 depend on the actions of agents 1 and 4.

Figure 5 Example of the CG pair deletion variable.

V. MULTIAGENT REINFORCEMENT LEARNING NEURO-
FUZZY MODEL WITH MARKET-DRIVEN COORDINATION

The agents within a community group of the application
have a role, and they perform some actions related to this
role. Their roles define the behavior of each individual
agent. For example, in football, in an attack situation, the
role of the attacker is given to the player best positioned to
take advantage of the situation.

Figure 6 MA-RL-HNFP- MD model.

The model is divided into two stages. The first step uses

the MA-HNFP model to learn the best role for each agent.
The second step uses the MD concept to choose the best
action to be performed by the agent, as shown in Figure 7.
This action is chosen from the stocks that belong to the set
of actions associated with the role.

The idea of the proposed approach is to use the MA-
HNFP model to identify the best role to be played by each
agent in a specific environment. Figure 8 shows the block
diagram of the MA-RL-HNFP-MD model, for which the
RL-HNFP structure decides the role that each agent will
have in a given state of the environment. The Market-Driven
model decides what action each agent must perform. This
model was chosen by learning a single structure (knowledge
repository) for the agents of the system because any agent
can assume one of the roles associated with a situation of the
environment.

Figure 7 MA-RL-HNFP-MD model.

VI. MULTIAGENT HIERARCHICAL NEURO-FUZZY MODEL

WITH COORDINATION BY GRAPHS

This model proposes the integration of the MA-RL-HNFP

model with CG. The model involves a central methodology
whose objective is to coordinate the agents. The actions of
any particular agent depend on the actions of another agent.
The model is divided into two stages. In the first stage, the
RL-HNFP-MA model, which was used in the previous
learning model, undertakes the role specification of an agent
in every situation, as shown in Figure 9. After specifying the
role of each agent, the second stage begins, where the action
is chosen for each individual agent by variable elimination.

Figure 8 MA-RL-HNFP-CG model.

This model aims to reduce the number of situations in
which the agents coordinate actions while minimizing the
consumption of system resources. When agents have to
coordinate actions, the agents learn individual actions that
maximize the return to the system.

VII. CASE STUDY

The prey-predator game, also known as the "pursuit
game" [21], is used as a case study. In its most traditional
form, agents participate in a game with four predators and
one prey, which are arranged in an orthogonal grid that is
divided into rows and columns such that each grid cell
cannot be occupied by more than one participant at a time.
The goal is to make the predators capture the prey as quickly
as possible.

The application can be considered collaborative because
there is interaction between the predators for the sole
purpose of capturing the prey. In this case study, MA-RL-
HNFP systems were built by following the specifications,
assumptions, and restrictions outlined below:

• The space consists of a 9×9 grid of orthogonal
positions;

• The four agents (predators) learn a role using MA-
RL-HNFP, with the goal of capturing the prey:

 Role 1: Agent captures the prey to the left;

 Role 2: Agent captures the prey to the right;

 Role 3: Agent captures the prey above him;

 Role 4: Agent captures the prey below him;

• Each role has the same four associated actions,
which are chosen by market-driven coordination or
graph coordination;

• The prey and predators can only move in four
directions; diagonal moves are not allowed;

• Each game round consists of a move by each
participant;

• The participants do not have the concept of
acceleration. Each movement is always performed
on a position immediately above, below, left, or
right of the agent;

• Participants move alternately, not simultaneously;

• Each predator agent can see the positions of the
other agents and prey;

• Predator agents do not know the goals of the other
agents;

• Agents can share the 'knowledge' obtained during
the learning;

• In a collision after a drive, the agent or prey returns
to its original position and the round ends;

• If a participant tries to move off the grid, it returns
to the previous position.

1) Training with the MA-RL-HNFP-MD model

This training covers the following stages of training: the
mapping of the positions (states) in roles (shares) and the
mapping of roles (states) in movements (actions),
culminating in integral learning, including both collective
learning (coordination of agents) and single-agent learning.

The first stage of training in the predator-prey game is to
learn the preferred role (share) of each predator depending
on its position with respect to the prey and other predators.

The reinforcement received by the model after each action
was constructed in a manner inversely proportional to the
distance between the agent and prey, as shown in Equations
(11) and (12).

Distance between the agent and prey:
d = |(Ax – Px)| + |(Ay – Py)| (11)

Reward:
r = 1 - dnorm (12)

Ax and Px are the positions of the agent and the prey and

are attached to the x-axis. Py and Ay are the positions of the
agent and the prey and are associated to the y-axis,
respectively, and dnorm is the distance between the agent and
prey, normalized linearly between zero and one. The training
process was conducted with the prey always fixed in the
position (4, 4). The position of each agent at the beginning
of the game, or after each capture, was also initialized in a
fixed manner. The corners of the grid were positions (0, 0),
(8, 8), (8, 0), and (0 8). The agents needed to get out of the

corners and capture the prey, which was fixed exactly the
center of the grid.

In the second stage of training, once the roles of the
predators are chosen, the predators choose their preferred
actions according to market-driven coordination.

2) Training with the MA-RL-HNFP-CG model

 Training for the second model is similar to that for the
first model and is also divided into two steps. The first step
is the same as that of the first model: we learn the best role
of each predator, depending on the position (state) with
respect to its prey and the other predators. In the second
phase of training, once the predator roles are chosen, the
preferred action in the model is chosen, and this action is
accomplished via graph coordination.

VIII R ESULTS

In the first set of tests, 1,000 "persecution" tests were
conducted, with the predators always dropping off the
corners of the grid and with the prey fixed. It should be
noted that 7,000 steps is ideal for catching prey because the
optimal path is seven steps. In the second set of tests, 1,000
"persecution" tests were performed, with the predators
starting in a random places and prey always fixed. Finally, in
a third test 1,000 “persecutions” were performed with
random initial positions for all predators and prey. The
results are shown in the following tables, in which the results
are compared with the original model, MA-RL-HNFP.

Model Prey

start
Predator

start
Coordination Pursuit time

MA-RL-HNFP Fixed Fixed 13,161 0%

MA-RL-HNFP-
MD

Fixed Fixed 9,200 30%

MA-RL-HNFP-
CG

Fixed Fixed 7,620 43%

Table 1 – First test

Model Prey
start

Predator
start

Coordination Pursuit time

MA-RL-HNFP Fixed Random 9,548 0%

MA-RL-HNFP-
MD

Fixed Random 7,355 23%

MA-RL-HNFP-
CG

Fixed Random 6,750 30%

Table 2 – Second test

Model Prey
start

Predator
start

Coordination Pursuit time

MA-RL-HNFP Fixed Random 9,476 0%

MA-RL-HNFP-
MD

Fixed Random 7,210 23%

MA-RL-HNFP-
CG

Fixed Random 5,940 38%

Table 3 – Third test

As can be seen from the tables above, the use of
coordination methods in the MA environment greatly
improved the performance in capturing the prey sooner.
Depending on the initial positions of the agents, the
improvement range from 23% to 43%, when compared to
the original MA-HNFP model.

IX CONCLUSIONS

In this work, two separate systems were developed to
evaluate the two proposed models, MA-RL-HNFP-MD and
MA-RL-HNFP-CG. In both systems, agents use a shared
knowledge structure. The proposed models were tested in a
case study involving the pursuit game. The goal was to show
how a coordination mechanism improves the performance of
MASs and increases the speed of convergence and learning.
The results of the proposed models were compared to the
results obtained with the original MA-RL-HNFP models
[10].

Tests were performed to evaluate the performances of
models that include a mechanism for multiagent
coordination and models with simple coordination. The tests
demonstrated that the former are higher although the
learning is very expensive in computational terms. The
pursuit game is a simple application that has a single goal,
which is to capture the prey. Even with this simple game, we
can observe a difference in the performance of the MA-RL-
HNFP model when a coordination model and hierarchical
structure are used.

In the first test, in which the predators and prey were both
fixed, both models yielded better results than in the other
experiments. In all experiments, market driven coordination
yielded better results than the graph coordination. In all tests,
the results obtained using market-driven coordination were
much better than those obtained using the other systems.

The two coordination methods discussed here are very
expensive in terms of computational effort. The market-
driven coordination method runs approximately four times
faster than the graph coordination method on average. The
market-driven learning method also converges quickly,
which indicates that the method is more promising for future
case studies.

REFERENCES
[1] J.R KOK, J. T HOEN, P. BAKKER, “Utile coordination: Learning

interdependencies among cooperative agents”. In: Proc. IEEE Symp.
Comput. Intell. Games, Colchester, U.K., p.29-36, Abr. 2005.

[2] R. FITCH, B. HENGST, D. SUC, G. CALBERT, “Structural
abstraction experiments in reinforcement learning”. In: Proc. 18th
Aust. Joint Conf. Artif. Intell. (AI-05), Lecture Notes in Computer
Science, vol. 3809, Sydney, Australia, p.164-175, Dez. 2005.

[3] M. TAN, “Multi-agent reinforcement learning: Independent vs.
cooperative agents”. In: Proc. 10th Int. Conf. Mach. Learn. (ICML-
93), Amherst, OH, p.330–337, Jun. 1993.

[4] B. PRICE, and C. BOUTILIER, “Accelerating reinforcement learning
through implicit imitation”. J. Artif. Intell. Res., vol. 19, p.569-629,
2003.

[5] J. CLOUSE, “Learning from an automated training agent”. Presented
at the Workshop Agents that Learn from Other Agents, 12th Int. Conf.
Mach. Learn. (ICML-95), Tahoe City, CA, Jul. 1995.

[6] L. BUSONIU, R. BABUSKA, and B. DE SCHUTTER, “A
Comprehensive Survey of Multiagent Reinforcement Learning”. In:
Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions, Volume: 38, Issue: 2, Mar. 2008.

[7] G. WEISS, S. Sen, “Adaptation and Learning in Multi-Agent
Systems”. In: IJCAI "95 workshop, Montréal, Canada, August 21,
1995. Berlin: Springer, 238 p, 1996.

[8] B. GOODWINE, P. ANTSAKLIS, “Multiagent coordination
exploiting system symmetries” American Control Conference (ACC),
Topic(s): Robotics & Control Systems, Page(s): 830 – 835, 2010.

[9] J. O. BERNDT, and O. HERZOG, “Efficient Multiagent Coordination
in Dynamic Environments” IEEE / WIC / ACM International
Conferences on Web Intelligence and Intelligent Agent Technology
(WI-IAT) Lyon, France. IEEE Computer Society, Pages 188-195,
2011.

[10] M. C. FRANÇA, M.M.B.R VELLASCO, K. FIGUEIREDO,;
“Building Multi-agent systems with reinforcement learning
hirearchical neuro-fuzzy modelos”. X Brazilian Congress on
Computational Intelligence (CBIC), 2011.

[11] T. EGUCHI, K.HIRASAWA, J. HU, “A study of evolutionary
multiagent models based on symbiosis.;IEEE Transactions on
Systems, Man, and Cybernetics, Part B 179-193, 2006.

[12] N. VLASIS, “Collaborative multiagent reinforcement learning by
payoff propagation”. Journal of Machine Learning Research, 7:1789-
1828, 2006.

[13] L. P. REIS, and N. LAU; “FC Portugal - High-level Coordination
Methodologies in Soccer Robotics” International Journal of Advanced
Robotic Systems: Soccer Robotics, Edited by Pedro Lima, 2007.

[14] B. P. Sellner, F Heger, "Coordinated Multi-Agent Teams and Sliding
Autonomy for Large-Scale Assembly," Proceedings of the IEEE -
Special Issue on Multi-Robot Systems, Vol. 94, No. 7, July 2006.

[15] F. Souza, M.M.B.R. Vellasco, M.A.C. Pacheco. Hierarchical Neuro-
Fuzzy QuadTree Models. Fuzzy Sets & Systems vol 130/2, 2002, 189-
205.

[16] M.M.B.R. Vellasco, M.A.C. Pacheco, K. Figueiredo, F.J.de Souza,
“Hierarchical Neuro-Fuzzy Systems – Part I”, Encyclopedia of
Artificial Intelligence, Information Science Reference, 2008.

[17] K. Figueiredo. M. Santos, M.M.B.R. Vellasco; M.A.C. Pacheco.
“Modified Reinforcement Learning Hierarchical Neuro-Fuzzy Politree
Model for controlo f autonomous agents”. International Journal of
Simulation Systems, Sciehce & Technology, Vol. 6, No. 10/11, pp. 4-
13, 2005.

[18] M.M.B.R. Vellasco, M.A.C. Pacheco, K. Figueiredo, F.J.de Souza,
“Hierarchical Neuro-Fuzzy Systems – Part II”, Encyclopedia of
Artificial Intelligence, Information Science Reference, 2008.

[19] R.S. SUTTON, and A.G. BARTO, “Reinforcement Learning: An
Introduction”. Cambridge, MA: MIT Press, 1998

[20] H. KOSE, U. TATLIDEDE, C. MERICLI, K. KAPLAN, “Q-Learning
based Market-Driven Multi-Agent Collaboration in Robot Soccer”,
Proceedings, Turkish Symposium On Artificial Intelligence and
Neural Networks, pp.219-228, Izmir, Turkey, June 10-11, 2005.

[21] M. BENDA, V. JAGANNATHAN, “On optimal cooperation of
knowledge sources an Empirical investigation”, Tech. Rep. BCS–
G2010–28, Boeing Advanced Technology Center, Boeing Computing
Services, Seattle, Washington, Jul. 1986.

