
Application of the Fish School Search for the Supply
Chain Network Planning Problem

Bernd Hellingrath, Dennis Horstkemper, Diego de S.
Braga, Luis Filipe de A. Pessoa

Westfälische Wilhelms-Universität Münster

Leonardo-Campus 3, D-48149 Münster, Germany
{bernd.hellingrath, dennis.horstkemper,diego.siqueira,

filipe.pessoa}@wi.uni-muenster.de

Fernando Buarque de Lima Neto, Marcelo Gomes
Pereira de Lacerda

University of Pernambuco (UPE)

Rua Benfica, 455, 50750-410 – Recife, Brasil
{fbln, mgpl}@ecomp.poli.br

Abstract— The Fish School Search (FSS) is a recently

proposed meta-heuristic, which is inspired by the collective
behavior of fish schools during their search for food. This
optimization technique has been showing promising results
when applied to benchmarking problems. Moreover, the
FSS has been especially designed to tackle complex
problems, especially ones with large search spaces like they
are found in the area of Supply Chain Management. As
such, the Supply Chain Network Planning (SCNP) problem
was chosen as an NP-hard optimization problem to
evaluate the applicability of the FSS in this problem
domain. Additionally, other state-of-the-art meta-heuristics
used for optimization problems (Particle Swarm
Optimization and Differential Evolution), as well as a state-
of-the art mathematical optimization technique were
applied to solve the same planning problem in order to
determine the relative performance of the FSS algorithm
for this class of problems.

 Keywords—Fish School Search, Meta-heuristics,
Computational Intelligence, Supply Chain Management, Supply
Chain Network Planning, Bio-inspired Methods

I. MOTIVATION

In the research domain of meta-heuristics new variants and
algorithms are proposed and published at a consistently high
rate. This is motivated by the need for improved solution
techniques for NP-hard planning problems, to which several
real world applications belong to. Conceived by Bastos and
Lima Neto in 2007, the Fish School Search (FSS) is such a
novel meta-heuristic, first published in 2008 [1]. It has been
developed as a general optimization technique and incorporates
a new way to deal with the tradeoff between exploration and
exploitation of a search space, based on the contracting and
expanding behavior of a fish school on the search for food. To
test the applicability of this algorithm on real world problems,
the SCNP was chosen as a problem, which is NP-hard and
contains a high number of local optima. Exact mathematical
solution techniques can be used to solve such a problem, but
can entail runtimes unsuitable for the timespans, in which real
world planning tasks have to be performed in.

A supply chain is defined as a network of organizations,
which are connected by the flow of materials, information and
financial resources in different processes and activities, which

produce values in form of products and services and are driven
by the demands of the final customer [2][3]. Modern supply
chains show an ever increasing complexity due to several
influences such as heterogeneity in customer needs, shorter
product lifecycles and a globalization of the supplier base [4].
The management of such complex inter-organizational
networks is a key capability for today’s companies. In this
context, SCNP aims at the determination of an optimal
allocation of demands and capacities in inventory,
transportation and production facilities for a tactical time
horizon, consisting out of several planning periods, aiming to
fulfill customer demands timely and at minimal costs [5]. It is
assumed, that all information, which is required to create a plan
for the whole supply chain, is centrally available for the
decision maker. The main decision variables in SCNP are the
planned production and inventory volumes in each facility and
the transportation volumes between the different facilities.
Here, a facility is e.g. a production plant or a warehouse. The
outcome of SCNP is a master plan, which is a framework for
the tactical and operational supply, production and distribution
planning of each organization within the supply chain. Solution
methods for the SCNP are available in commercial information
systems, such as Advanced Planning Systems [3].

SCNP is performed within a planning horizon of typically
months and as such aggregated data is used for the planning
decisions in each facility, e.g. each production facility is
described by a single capacity value which is determined by the
bottleneck capacity in its internal production network.
Therefore, the decisions for a single production facility within
the SCNP (excluding the transportation volume decisions) can
be broken down to a Capacitated Lot-Sizing Problem (CLSP)
with setup costs The CLSP with setup costs has been proven to
be NP-hard [6]. As the SCNP contains several facilities, which
can be broken down to such problems, it is NP-hard as well.

To assess the relative performance of the FSS algorithm,
two more established meta-heuristics, the Particle Swarm
Optimization and the Differential Evolution algorithms, are
also applied onto the SCNP. To assess the total quality of the
generated solutions, they are compared to the optimal solution
generated by an exact mathematical solution technique.

This paper is structured as follows: firstly, a mathematical
problem formulation of a specific SCNP is described. In
Section III, the four different solution techniques, which are
applied to the SCNP, are shortly depicted. Within Section IV

the implementation approach for the application of the three
different meta-heuristics for the SCNP is shown. Section V
presents the results of the application upon a small test
scenario. Finally, the paper will be summarized in Section VI
and future research tasks will be outlined.

II. MATHEMATICAL MODEL OF THE PLANNING PROBLEM

A common way to model planning problems such as the
SCNP is a mathematical formulation. As most variables within
the SCNP represent real world objects, which are indivisible,
the SCNP is a mixed-integer problem, which also constitutes it
as NP-hard in this formulation [7]. Furthermore, the general
SCNP, as described in the introduction, is often customized to
fit to a real world decision scenario. With the final purpose of
applying the FSS on a problem of real world size in mind, such
a customized model was chosen for further investigation. It
considers an automotive supply chain, in which several
suppliers, who produce according to the Built-to-Order (BTO)
principle, deliver intermediate goods to an Original Equipment
Manufacturer (OEM), who in turn produces final goods which
are requested by its customers. This decision situation focuses
on the alignment of production and inventory capacities, which
are regarded as the main bottleneck in such a supply chain, as
well as demands between all members of the supply chain.
Therefore, capacitated transportation links, warehouses and
distribution centers are in a first step omitted from this model,
as they are not the in the center of investigation in this decision
situation. The following mathematical model formulation, as it
was presented by Hellingrath and Küppers [8], is adapted from
the works of Pibernik and Sucky [9]. It is assumed, that the
production, storage and transportation processes are occurring
on different levels of the supply chain. The final level of the
supply chain represents the customers, which have specific
demands for final products. Table 1 describes the meaning of
the used variables and parameters.

The objective function (1) of the model describes a
minimization of all costs that occur as a result of the
determination of the optimal allocation of demands and
capacities within the supply chain: It includes production
costs, which are split into product and facility specific setup
costs for each production lot and volume, product and facility
specific manufacturing costs for each produced item, periodic
costs for adjustment measures in each facility, with which the
capacities in a facility can be adapted to the existing demand,
as well as transportation and inventory holding costs.
Furthermore, the model contains a factor called “demand
fulfillment”. It is used to determine the relative amount of
fulfilled customer demand and can therefore also be used to
calculate the unfulfilled demands. The amount of the latter is
multiplied with fictional backorder costs as a penalty. The
constraint (2) and (3) ensure the correct flow of materials
throughout the network, i.e. products can only be delivered to
a customer, when they are either already stored in inventory or
can be produced within the same period, which in turn can
only be done when the required amount of intermediate
products is available is well. Constraint (4) represents the need
to fulfill final customer demand by the last stage of the node
and is used to determine the “demand fulfillment” factor.

Constraint (5) provides that maximum capacities for the
production of goods have to be met in each facility. A similar
formulation is considered in constraint (6) and describes that
inventory capacities have to be met as well. To simplify the
model description, further constraints for the non-negativity of
variables and the correct setting of helping variables have been
omitted from this representation.

݉݅݊෍෍෍ ෍ ቎ܲܳ௜,௞,௧
௡ ∙ ௜,௞ݐݏܥ݀݋ݎܲ

௡ ൅	ݖ௜,௞,௧
௡ ∙ ௜,௞ݐݏܥݔ݅ܨ	

௡

௡ఢே೔௞ఢ௄೔

ூ

௜ୀଵ

்

௧ୀଵ

൅ ෍ ௜,௞,௧ݕ
௙ 	 ∙ ௜,௞ݐݏܥܲ	

௙

௙ఢி೔,ೖ

൅ ෍ ܶܳ௜,௞,௟,௧
௡ 	 ∙ ௜,௞,௟ݐݏܥݏ݊ܽݎܶ	

௡

௞ఢ௄೔శభ

൅	ܳܫ௜,௞,௧
௡ 	

∙ 	 ௜,௞ݐݏܥݒ݊ܫ
௡ ൅	 ෍ ௜,௞,௧ܳܫ

௠

௠ఢே೔షభ	

	 ∙ 	 ௜,௞ݐݏܥݒ݊ܫ
௠ ቏

൅෍ ෍ሺ1 െ ݀ ௡݂,௧ሻ ∙ ௡ݐݏܥܱܤ
௡ఢே಺

்

௧ୀଵ

(1)

Subject to:

௜,௞,௧ܳܫ
௡ ൌ ௜,௞,௧ିଵܳܫ

௡ ൅ ܲܳ௜,௞,௧
௡ െ ෍ ܶܳ௜,௞,௟,௧

௡

௟ఢ௄೔శభ

 ∀	݅, ݊	߳ ௜ܰ, ݇ ߳ ,௜ܭ (2) ݐ

௜,௞,௧ܳܫ
௠ ൌ ௜,௞,௧ିଵܳܫ

௠ െ ෍ ܲܳ௜,௞,௧
௡ ∙ ௜,௠,௡ܨܯܱܤ

௡ఢே೔

			

൅ ෍ ܶܳ௜ିଵ,௟,௞,௧
௠

௟ఢ௄೔షభ

∀	݅,݉	߳	 ௜ܰିଵ, ,௜ܭ	߳	݇ ݐ (3)

෍ ܶܳ௜,௞,௟,௧
௡

௞ఢ௄಺

ൌ ݀ ௡݂,௧ ∙ ூ,௧ܯܦ
௡ ∀	݊	߳	 ூܰ, ݈ ߳ ,ூାଵܭ (4) ݐ

෍ ܲܳ௜,௞,௧
௡

௡ఢே೔

∙ ௞ܿ݌
௡ ൑ ௜,௞,௧ܥܤ

௣௥௢ௗ ൅ ෍ ௜,௞,௧ݕ
௙ 	 ∙ 	 ௜,௞ܥܿ݊݅

௙

௙ఢி೔,ೖ

 ∀ ݅, ݇, (5) ݐ

෍ ௜,௞,௧ܳܫ
௡ ∙ ݅ܿ௞

௡

௡ఢே೔

൅ ෍ ௜,௞,௧ܳܫ
௠

௠ఢே೔షభ

∙ 	 ݅ܿ௞
௠ ൑ ௜,௞,௧ܥܤ

௜௡௩ ∀ ݅, ݇, (6) ݐ

TABLE I. DESCRIPTIONS OF VARIABLES.

Var. Description
ݐ Period

i SC tier (i=1,…,I+1)

Ki Set of nodes on tier i

ܰ݅ Set of products produced on tier i

ܲܳ௜,௞,௧
௡ 	 Production quantity of product n on node k (tier i) in

period t

௜,௞ݐݏܥ݀݋ݎܲ
௡ Production costs of product n (tier i) and node k

௜,௞,௧ݖ
௡ Binary variable indicating that product n is produced on

node k (tier i) in period t

௜,௞ݐݏܥݔ݅ܨ
௡ 	 Changeover costs for the production of product n and

node k (tier i)

௜,௞ܨ Set of adjustment measures available on node k (tier i)

௜,௞,௧ݕ
௙ 	

Binary variable indicating that adjustment measure f is
implemented on node k (tier i) in period t

ܶܳ௜,௞,௟௧
௡ Transport quantity of product n from node k (tier i) to

node l (tier i+1)

௜,௞,௟ݐݏܥݏ݊ܽݎܶ
௡ Transport costs for product n from node k on (tier i) to

node l (tier i+1)

 (Continued..)

(Continued..)

	ܯ Large number

௜,௞,௧ܳܫ
௠ 	 Inventory quantity of intermediate product m on node k

(tier i) in period t

௜,௞ݐݏܥݒ݊ܫ
௠ 	 Inventory holding costs for intermediate product m on

node k (tier i)

݀ ௡݂,௧	
Fulfillment of the final customer demand of final

product n in period t (in percent)

	௡ݐݏܥܱܤ Costs for unfulfilled demand of product n

௜,௞,௧ܳܫ
௡ 	 Inventory quantity of final product n on node k (tier i)

in period t

BOMFi,m,n	
Required quantity of intermediate product m (from tier

i-1) for the production of final product n (bill-of-
material factor)

ூ,௧ܯܦ
௡ 	 Ultimate customer demand for product n in period t

௜,௞ܿ݌
௡ 	 Required production capacity for the production of

product n on node k (tier i)

௜,௞,௧ܥܤ
௣௥௢ௗ	

Production capacity of node k (tier i) in period t (basic
capacity)

௜,௞ܥܿ݊݅
௙ 	

Production capacity increase adjustment measure f on
node k (tier i)

݅ܿ௜,௞
௡ 	 Required inventory capacity of product n on node k

(tier i)

݅ܿ௜,௞
௠ 	 Required inventory capacity of intermediate product m

on node k (tier i)

௜,௞,௧ܥܤ
௜௡௩ 	 Inventory capacity of node k (tier i) in period t (basic

capacity)

III. APPLIED SOLUTION METHODS

A. Fish School Search

Fish School Search (FSS), as proposed in 2008 [1], is a
meta-heuristic search algorithm that was designed with
inspiration in the collective foraging behavior of natural fish
schools. The success of the search process is represented by
the weight of the fishes, in a way that the heavier the
individual is, the better the search results it made so far are.
The weight of the fish is updated throughout the feeding
process. A second means to encode success in FSS is the
radius of the school (smaller radiuses mean better results). All
the mechanisms are explained in the following sections.

Individual Movement Operator

In the Individual Movement Operator, each fish moves
randomly and independently towards localities of improved
solutions. This operator is executed only if the new position is
better than the previous one. This movement is described by
(7), where ݔ௜௝ሺݐ ൅ 1ሻ is the new value in the position vector of
the individual ݅ within the dimension ݆, ݔ௜௝ሺݐሻ is the old value,
 ሻ is the stepݐ௜௡ௗሺ݌݁ݐݏ is a random value between 0 and 1 and ݎ
size on time ݐ. The new step size is calculated through (8),
where ݌݁ݐݏ௜௡ௗ೔೙೔೟ and ݌݁ݐݏ௜௡ௗ೑೔೙ೌ೗ are the initial and final step

sizes and ݅ݏ݊݋݅ݐܽݎ݁ݐ is the maximum number of iterations.

ݐపሬሬሬԦሺݔ ൅ 1ሻ ൌ ሻݐపሬሬሬԦሺݔ ൅ ሻ, (7)ݐ௜௡ௗሺ݌݁ݐݏ	ݎ

ݐ௜௡ௗሺ݌݁ݐݏ ൅ 1ሻ ൌ ሻݐ௜௡ௗሺ݌݁ݐݏ െ
௦௧௘௣೔೙೏೔೙೔೟ି௦௧௘௣೔೙೏೑೔೙ೌ೗

௜௧௘௥௔௧௜௢௡௦
	(8)

Feeding Operator

As mentioned before, the feeding operator is responsible
for the weight update of all fishes. This operator is executed
only if the fitness of a given fish increases during the
individual movement. This process is defined by (9) where Δ ௜݂
is the fitness variation after the individual movement of the
fish	݅, and max	ሺΔ݂ሻ is the maximum fitness variation in the
whole population.

௜ܹሺݐ ൅ 1ሻ ൌ ௜ܹሺݐሻ ൅
୼௙೔

୫ୟ୶	ሺ୼௙ሻ
. (9)

Collective Instinctive Movement Operator

The Collective Instinctive Movement Operator is the first
collective movement in the algorithm (i.e. it endows
coherence for the search). This operator is defined by (10),
where N is the population size, Δݔ௞ and Δ݂ሺݔ௞ሻ is the position
variation and the fitness variation of the individual of index in
the individual movement.

ݐపሬሬሬԦሺݔ ൅ 1ሻ ൌ ሻݐపሬሬሬԦሺݔ ൅ ൬
∑ ୼௫ೖണሬሬሬሬሬሬԦ୼௙ሺ௫ೖሬሬሬሬԦሻ
ಿ
ೖసభ

∑ ୼௙ሺ௫ೖሬሬሬሬԦሻ
ಿ
ೖసభ

൰. (10)

Collective Volitive Movement Operator

In this step, the population must contract or expand, using
the barycenter of the fish school as a reference. It is calculated
according to (11), where ௜ܹሺݐሻ is the weight of the fish ݅ at the
time ݐ. The total weight of the whole population must be
calculated in order to decide if the fish school will contract or
expand. If the total weight increased after the last individual
movement, the school as a whole will contract. Otherwise, the
population will expand. This mechanism automatically
switches between exploration and exploitation behaviors. The
contraction and expansion processes are defined by (12) and
(13), respectively, in which ݌݁ݐݏ௩௢௟is the volitive step size
constant.

ሻݐఫሬሬሬԦሺܤ ൌ
∑ ௫ഢሬሬሬԦሺ௧ሻௐ೔ሺ௧ሻ
ಿ
೔సభ

∑ ௐ೔ሺ௧ሻ
ಿ
೔సభ

, (11)

ݐపሬሬሬԦሺݔ ൅ 1ሻ ൌ ሻݐపሬሬሬԦሺݔ െ ሺ0,1ሻ݀݊ܽݎ௩௢௟݌݁ݐݏ
ቀ௫ഢሬሬሬԦሺ௧ሻି஻ണሬሬሬሬԦሺ௧ሻቁ

ௗ௜௦௧௔௡௖௘ቀ௫ഢሬሬሬԦሺ௧ሻ,஻ണሬሬሬሬԦሺ௧ሻቁ
, (12)

ݐపሬሬሬԦሺݔ ൅ 1ሻ ൌ ሻݐపሬሬሬԦሺݔ ൅ ሺ0,1ሻ݀݊ܽݎ௩௢௟݌݁ݐݏ
൫௫ഢሬሬሬԦሺ௧ሻି஻ണሬሬሬሬԦሺ௧ሻ൯

ௗ௜௦௧௔௡௖௘ሺ௫ഢሬሬሬԦሺ௧ሻ,஻ണሬሬሬሬԦሺ௧ሻሻ
. (13)

B. Other Solution Methods

Two different and established meta-heuristics were also
applied on the same planning problem to evaluate the relative
effectiveness of the FSS. Differential Evolution (DE) is a
stochastic population-based optimization algorithm, developed
by Rainer Storn and Kenneth Price [10]. It was developed as a
part of evolutionary computing in order to optimize nonlinear
and non-differentiable functions in a continuous space. The
parameterization of the algorithm can be self-adaptive [11]. A
great advantage of DE is the use of low parameters (i.e.
population size, differential weight and crossover probability).
The Particle Swarm Optimization (PSO) algorithm, proposed
by Kennedy and Eberhart 0, is an adaptive meta-heuristic
based on the behavior of several individuals (i.e. particles). In
PSO, each particle aims at to find solutions to a given problem

from their social interactions, based on the collective
knowledge of the swarm and its own experience. PSO is fast
and capitalizes on information shared within the neighboring
strategy used. Additionally, the mathematical model was
solved by CPLEX, a state of the art commercial solver, using
well known algorithms such as the simplex algorithm and
branch & bound [3][14][15]. It was used to determine the
optimal solution value of the planning problem to measure the
quality of the solutions generated by all meta-heuristics.

IV. IMPLEMENTATION APPROACH

The PSO, DE and FSS algorithms, just like all meta-
heuristics, have certain limitations. They were all initially
designed to solve continuous, unconstrained, static and single
solution problems and do not natively include constraints into
their search space. Since the SCNP is a discrete and
constrained problem, there are several challenges that must be
overcome when applying such algorithms onto this problem.

The first challenge is the determination of the information
represented in the solution vector of each individual within the
meta-heuristics. When all variables are included into the vector
the algorithm would need to account for e.g. inventory,
transport and production volumes to be aligned towards each
other (i.e. inventory volumes in one period have to be
consistent with production and transportation volumes of prior
periods). The algorithms do not know the interdependencies of
these variables, so they can create many infeasible solutions.
Therefore, only production (pq) and transportation (tq)
volumes were included into the solution vector. All other
variables are calculated in dependence of these variables and
the known parameters using the equations presented in Section
II. Such an approach was also chosen in the work of Posignon
and Mönch [16] and proofed to be applicable. Figure 1 shows
exemplary the solution vector of an individual of a network
with 4 production facilities for 4 different products containing
4 transportation links (it is assumed, that the transportation
amounts towards the final customer equal its demand). This
vector is repeated for each period in the planning problem.

Figure 1: Solution Representation

All decision variables not represented in the solution vector
of the meta-heuristic are heuristically calculated, i.e. inventory
volumes for final products in a certain facility can be calculated
by adding production volumes and incoming transportation
volumes to the inventory volumes of the same product in the
same facility of the previous period while also subtracting
demands and outgoing transport volumes.

The second challenge is related to the aforementioned fact
that the three algorithms were designed to handle continuous
problems, while the SCNP is a discrete one. In order to satisfy
the need for integer values, although the variables from the
solution representation within the meta-heuristic are used as
continuous variables during the optimization process, they
were rounded to the nearest valid size of non-splittable items in
the production network before being passed to the fitness
function (i.e. objective), which determines the value of a given
solution similar to the objective function presented in Section
II.

The third challenge regards the fact that the algorithms can
find invalid solutions during the optimization process. For
example, a lack of production volumes for a final product,
combined with an outgoing transportation of said product to
satisfy a customer demand leads to a negative inventory level.

None of the algorithms were designed to naturally include
constraints in their search space. Therefore, another way to
ensure the creation of solutions which adhere to these
constraints has to be chosen. This issue was approached by
including additional penalty costs, which are applied in case of
constraint violations. These penalty costs were not included in
the mathematical model as presented in Section II. There are
three types of constraint violations: A production capacity
violation occurs if the total used production capacity set by the
meta-heuristic is higher than the maximum production capacity
of a given node. An inventory capacity violation results if the
required inventory capacity calculated is higher than the
maximum inventory capacity of a given node. Finally, a
demand violation surfaces if customer’s demand is not
fulfilled. For all three types of violation, firstly, the degree of
infeasibility is calculated, e.g.. the exact amount of
overutilization of a capacity. Afterwards, the final penalty
value is calculated by summing up the products of each
measured degree of infeasibility and a respective penalty cost
factor for each type of constraint violation. Therefore, a
positive gradient is formed within the infeasible areas, in which
the costs of the solutions increase as they get more and more
distant from the borders between the feasible and infeasible
areas. Thus, the individuals will avoid these areas. The penalty
costs have to be sufficiently high, so that the algorithms will
rate the value of a valid solution higher than that of an
infeasible solution.

However, a problem of this approach is the vast amount of
local optima as a result of the additional penalty costs, which
can be seen in the following example: A final customer
demand cannot be satisfied, because a capacity bottleneck
occurs in a facility further upstream in the supply chain. A
solution, in which all facilities in the network create all
required items for this final product was found. However, one
facility cannot produce the needed volumes of an intermediate
product due to capacity constraints and penalty costs occur, as
the inventory volumes become negative. The ideal solution
would be to acknowledge this bottleneck at the last production
node and produce less final products, so that no production and
transportation costs occur for products, which cannot be
produced in the real production system. However, this solution

would be represented by an individual with a vastly different
solution vector. Therefore, the algorithm might be stuck in a
local optimum, while the global optimum is at a completely
different position within the search space.

In general, all costs which are represented in the
mathematical model are also calculated within the
implementation of the fitness function. This way, comparable
solutions can be created and evaluated.

V. EXPERIMENTS

For testing purposes, we used a simple test scenario, which
adheres to the structure of the supply chain shown in Figure 1
in Section IV. The scenario describes a planning problem for
10 periods, in which 4 different products are produced within
4 different facilities with varying final customer demands.
These demands exceed the supply chains capacity in certain
periods in order to force the creation of inventories. The final
customers are directly delivered from the last production
facility. Given that the representation of the solution vector
shown in Figure 1 considers only one period, the
individual/particle needs 10 times more information to
represent 10 periods: A total of 80 dimensions are needed in
order to determine the ideal solution of this optimization
problem. It also contains a vast number of local optima, based
on the reasoning in Section IV as well as on the combinatorial
nature of the problem itself.

The experiment for the meta-heuristics consisted of varying
the number of individuals and iterations (for each algorithm)
and running each solution generation process 30 times. The
search space boundaries were defined as 0 and 500 for every
dimension. The Table II shows the configuration for each
simulation. However, since the FSS calls the fitness function
twice per iteration, the maximum number of iterations allowed
for this algorithm amounts to half of the values of the same
parameter for the PSO and DE algorithms. Additionally, the
planning problem has been solved with CPLEX to determine
the optimal solution value.

TABLE II. EXPERIMENTS DESCRIPTION.

Experiment Population Iterations
Exp_1 10 10000
Exp_2 10 1000
Exp_3 10 100
Exp_4 100 10000
Exp_5 100 1000
Exp_6 100 100
Exp_7 1000 1000
Exp_8 1000 100
Exp_9 10000 1000
Exp_10 10000 100

The two PSO parameters used in the experiments, the social
and cognitive accelerations, were set to 1.3 and 2.8, based on
suggestions from studies performed in [17]. Moreover, the
update strategy is synchronous, since it is more appropriate for
Global PSO [17].

The DE algorithm is quite robust with respect to the
parameters differential weight (dw) and crossover probability
(cp). In these experiments the dw and cp parameter values were

set respectively to 0.35 and 0.2, based on studies performed in
[18] which show this configuration gives a generally good
convergence on a wide range of problems.

In [1] the maximum individual and volitive step sizes of the
FSS were chosen according to the search space length. In this
case, considering that the search space size for each dimension
was set to 500, some experiments showed that the values 50
and 10 for these parameters showed the best results.

All parameters were set according to the results acquired in
previous experiments. These values were chosen in an attempt
to reach the best values in the final experiments.

VI. RESULTS

Table III shows the results for each approach. The best results
for each experiment are highlighted. The FSS reached better
results in most of the experiments. However, the PSO
outperformed both algorithms in the cases in which there was
a lower value for the maximum number of iterations (i.e. 100
for PSO and DE and 50 for FSS). The fast convergence power
of this algorithm explains this behavior.

Due to the characteristics of the FSS, which allows it to
avoid being trapped in local minima through the expansion and
contraction mechanism, it was able to find the best results
among all the tested algorithms. However, this mechanism
causes a relatively slow convergence, necessitating a higher
amount of iterations to reach good results. Observing the
results in Table III, with more iterations and/or fitness function
calls, the FSS algorithm is able to reach better results than the
other algorithms. Smaller standard deviations also showed that
the FSS is able to have more consistent results.

TABLE III. SIMULATIONS RESULTS. THE BEST RESULTS ARE IN BOLD.

Experiment
PSO

Best Fitness Mean SD
Exp_1 1.01E+07 2.01E+07 6.53E+06
Exp_2 9.49E+06 2.16E+07 6.29E+06
Exp_3 1.79E+07 3.06E+07 6.97E+06
Exp_4 1.51E+06 4.43E+06 2.63E+06
Exp_5 2.00E+06 5.68E+06 2.59E+06
Exp_6 3.41E+06 9.37E+06 3.61E+06
Exp_7 1.59E+06 4.32E+06 1.69E+06
Exp_8 2.42E+06 4.96E+06 1.68E+06
Exp_9 1.64E+06 3.54E+06 1.89E+06
Exp_10 1.79E+06 3.29E+06 1.69E+06

Experiment
DE

Best Fitness Mean SD
Exp_1 1.48E+06 2.16E+06 6.77E+05
Exp_2 2.35E+06 4.13E+06 1.23E+06
Exp_3 3.75E+07 6.36E+07 1.24E+07
Exp_4 1.39E+06 2.33E+06 6.23E+05
Exp_5 2.04E+06 3.98E+06 1.30E+06
Exp_6 3.42E+07 6.52E+07 1.18E+07
Exp_7 1.89E+06 4.38E+06 1.61E+06
Exp_8 2.99E+07 6.63E+07 1.15E+07
Exp_9 1.85E+06 4.37E+06 1.59E+06
Exp_10 2.79E+07 6.59E+07 1.10E+07

(Continued..)

(Continued..)

Experiment
FSS

Best Fitness Mean SD
Exp_1 9.67E+05 1.14E+06 1.07E+05
Exp_2 2.06E+06 3.23E+06 5.00E+05
Exp_3 4.20E+07 5.79E+07 6.01E+06
Exp_4 5.35E+05 5.41E+05 3.87E+03
Exp_5 8.29E+05 1.04E+06 7.47E+04
Exp_6 3.62E+07 4.44E+07 3.65E+06
Exp_7 5.37E+05 5.73E+05 2.98E+04
Exp_8 3.22E+07 3.83E+07 2.13E+06
Exp_9 5.33E+05 5.61E+05 2.61E+04
Exp_10 1.48E+07 1.79E+07 1.63E+06

The DE algorithm found results of substandard quality and
was unable to overcome the other algorithms in the
experiments. Even though the PSO outperformed the other
algorithms in all experiments with low iterations, the results
were still far from optimal. When comparing the best results of
each meta-heuristic with the optimal solution calculated by the
mathematical solver as shown in Table IV, it becomes obvious
that both the PSO and DE algorithms became stuck in local
optima. Therefore, the FSS was the only technique able to find
good solutions, which adhere to all constraints.

TABLE IV. COMPARISON OF THE BEST RESULT FROM EACH APPROACH.

Approach Best Solution
Gap to optimal

solution
CPLEX 5.27E+05 -

FSS 5.33E+05 1%
PSO 1.51E+06 286.43%
DE 1.39E+06 264%

VII. CONCLUSION AND FUTURE RESEARCH

In this work, the applicability of the FSS algorithm on real
world planning problems in the logistics domain was shown
using a small test scenario. The FSS has demonstrated the
ability to circumvent the high number of local optima in this
problem domain. In contrast, the PSO and DE algorithms get
stuck in local optima quickly and are unable to find good
solutions. This proofs that the novel way to deal with the
exploration versus exploitation tradeoff of the FSS allows it to
outperform comparable meta-heuristics.

In future work, the FSS algorithm needs to be applied to
real scenarios with test data from practice, including vast
supply chain networks with explicitly modeled storage and
distribution facilities as well as additional constraints like
capacitated transportation links: While the FSS does not
outperform exact mathematical solvers in solution time or
quality in small problems, it should compare better solving
larger problems, because mathematical optimization algorithms
scale at least exponentially with the size of a problem, while a
meta-heuristic such as the FSS should scale in a much more
favorable manner. Additionally, several improvements of the
implementation can be performed. For example, better ways to
initialize the variable values at the start of the optimization can
be determined. Another interesting approach is the inclusion of

constraints into the search space of the meta-heuristic to avoid
using penalty costs.

REFERENCES
[1] C. J. A. B Filho., F. B. de Lima Neto, A. J. C. C.. Lins, A.

I. S. Nascimento., and M. P. Lima, , "A novel search
algorithm based on fish school behavior," Systems, Man
and Cybernetics, SMC 2008. IEEE International
Conference on, 2008, pp. 2646-2651.

[2] Christopher, M., “Logistics and supply chain
management, creating value-adding networks”, Financial
Times Prentice Hall, Harlow, 3rd ed., 2005.

[3] Stadtler, H., Christoph K., eds. “Supply chain
management and advanced planning: concepts, models,
software and case studies.” Springer, 2008.

[4] Bozarth, C. C., Warsing, D., Flynn, B.B., Flynn, E.J.,
“The impact of supply chain complexity on
manufacturing plant performance.” Journal of Operations
Management, 2009, 27. Jg., Nr. 1, pp. 78-93.

[5] Simchi-Levi, D., Kaminsky, P., Simchi-Levy, E.
“Designing and Managing the Supply Chain - Concepts,
Strategies and Case Studies”, Mc graw-Hill, 2008.

[6] Florian, M., Jan K. L, Kan, A.R.. "Deterministic
production planning: Algorithms and
complexity." Management science 26.7 1980, pp. 669-
679.

[7] Nemhauser, G. L., Wolsey, L. A., “Integer and
combinatorial optimization” ,Vol. 18, New York: Wiley,
1988.

[8] Hellingrath, B., Küppers, P., “Multi-Agent Based
Evaluation of Collaborative Planning Concepts in
Heterarchical Supply Chains.” In: Proceedings of the
Logistikmanagement 2011 Bamberg, Germany, 2011, pp.
1-22.

[9] Pibernik, R., Sucky, E., “Master Planning in Supply
Chains.” in:Supply Chain Management und Logistik.
Physica-Verlag HD, 2005. pp. 69-93.

[10] Storn, R., Price, K., “Differential Evolution – A simple
and efficient adaptive scheme for global optimization
over continuous spaces.” International Computer Science
Institute, 1995.

[11] Engelbrecht A., “Computational intelligence: An
introduction.” 2nd ed. John Wiley & Sons, 2007. 597p.

[12] Kennedy, J. ,Eberhart, R. “Particle Swarm Optimization”,
IEEE International Conference on Neural Networks
(Perth, Australia), IEEE Service Center, Piscataway, NJ,
IV, 19985, pp. 1942-1948.

[13] Clerc, M. “The swarm and the queen: towards a
deterministic and adaptive particle swarm optimization”.
Proceedings, 1999 ICEC, Washington, DC, pp 1951-
1957.

[14] Suhl, L, Mellouli, T. “Optimierungssysteme: Modelle,
Verfahren, Software, Anwendungen”. Springer, 2009.

[15] Van Hentenryck, P. “The OPL Optimization
Programming Language.” MIT Press, 1999.

[16] Ponsignon, T., Mönch, L. “Heuristic approaches for
master planning in semiconductor manufacturing.”
Computers & Operations Research 39(3), 2010, p 479–
491.

[17] Carlisle, A.. Dozier, G. “An off-the-shelf PSO.
Proceedings of the Workshop on Particle Swarm
Optimization”. Purdue school of engineering and
technology, Indianapolis, IN, 2001a.

[18] Ursem, R. K, Vadstrup, P. “Parameter Identification of
Induction Motors using Differential Evolution.” In
Proceedings of the Fifth Congress on Evolutionary
Computation (CEC-2003), 2003, pp 790–796.

