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Abstract— The Fish School Search (FSS) is a recently 

proposed meta-heuristic, which is inspired by the collective 
behavior of fish schools during their search for food. This 
optimization technique has been showing promising results 
when applied to benchmarking problems. Moreover, the 
FSS has been especially designed to tackle complex 
problems, especially ones with large search spaces like they 
are found in the area of Supply Chain Management. As 
such, the Supply Chain Network Planning (SCNP) problem 
was chosen as an NP-hard optimization problem to 
evaluate the applicability of the FSS in this problem 
domain. Additionally, other state-of-the-art meta-heuristics 
used for optimization problems (Particle Swarm 
Optimization and Differential Evolution), as well as a state-
of-the art mathematical optimization technique were 
applied to solve the same planning problem in order to 
determine the relative performance of the FSS algorithm 
for this class of problems. 

 Keywords—Fish School Search, Meta-heuristics, 
Computational Intelligence, Supply Chain Management, Supply 
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I.  MOTIVATION 

In the research domain of meta-heuristics new variants and 
algorithms are proposed and published at a consistently high 
rate. This is motivated by the need for improved solution 
techniques for NP-hard planning problems, to which several 
real world applications belong to. Conceived by Bastos and 
Lima Neto in 2007, the Fish School Search (FSS) is such a 
novel meta-heuristic, first published in 2008 [1]. It has been 
developed as a general optimization technique and incorporates 
a new way to deal with the tradeoff between exploration and 
exploitation of a search space, based on the contracting and 
expanding behavior of a fish school on the search for food. To 
test the applicability of this algorithm on real world problems, 
the SCNP was chosen as a problem, which is NP-hard and 
contains a high number of local optima. Exact mathematical 
solution techniques can be used to solve such a problem, but 
can entail runtimes unsuitable for the timespans, in which real 
world planning tasks have to be performed in. 

A supply chain is defined as a network of organizations, 
which are connected by the flow of materials, information and 
financial resources in different processes and activities, which 

produce values in form of products and services and are driven 
by the demands of the final customer [2][3]. Modern supply 
chains show an ever increasing complexity due to several 
influences such as heterogeneity in customer needs, shorter 
product lifecycles and a globalization of the supplier base [4]. 
The management of such complex inter-organizational 
networks is a key capability for today’s companies. In this 
context, SCNP aims at the determination of an optimal 
allocation of demands and capacities in inventory, 
transportation and production facilities for a tactical time 
horizon, consisting out of several planning periods, aiming to 
fulfill customer demands timely and at minimal costs [5]. It is 
assumed, that all information, which is required to create a plan 
for the whole supply chain, is centrally available for the 
decision maker. The main decision variables in SCNP are the 
planned production and inventory volumes in each facility and 
the transportation volumes between the different facilities. 
Here, a facility is e.g. a production plant or a warehouse. The 
outcome of SCNP is a master plan, which is a framework for 
the tactical and operational supply, production and distribution 
planning of each organization within the supply chain. Solution 
methods for the SCNP are available in commercial information 
systems, such as Advanced Planning Systems [3].  

SCNP is performed within a planning horizon of typically 
months and as such aggregated data is used for the planning 
decisions in each facility, e.g. each production facility is 
described by a single capacity value which is determined by the 
bottleneck capacity in its internal production network. 
Therefore, the decisions for a single production facility within 
the SCNP (excluding the transportation volume decisions) can 
be broken down to a Capacitated Lot-Sizing Problem (CLSP) 
with setup costs The CLSP with setup costs has been proven to 
be NP-hard [6]. As the SCNP contains several facilities, which 
can be broken down to such problems, it is NP-hard as well. 

To assess the relative performance of the FSS algorithm, 
two more established meta-heuristics, the Particle Swarm 
Optimization and the Differential Evolution algorithms, are 
also applied onto the SCNP. To assess the total quality of the 
generated solutions, they are compared to the optimal solution 
generated by an exact mathematical solution technique.  

This paper is structured as follows: firstly, a mathematical 
problem formulation of a specific SCNP is described. In 
Section III, the four different solution techniques, which are 
applied to the SCNP, are shortly depicted. Within Section IV 



the implementation approach for the application of the three 
different meta-heuristics for the SCNP is shown. Section V 
presents the results of the application upon a small test 
scenario. Finally, the paper will be summarized in Section VI 
and future research tasks will be outlined. 

II. MATHEMATICAL MODEL OF THE PLANNING PROBLEM 

A common way to model planning problems such as the 
SCNP is a mathematical formulation. As most variables within 
the SCNP represent real world objects, which are indivisible, 
the SCNP is a mixed-integer problem, which also constitutes it 
as NP-hard in this formulation [7]. Furthermore, the general 
SCNP, as described in the introduction, is often customized to 
fit to a real world decision scenario. With the final purpose of 
applying the FSS on a problem of real world size in mind, such 
a customized model was chosen for further investigation. It 
considers an automotive supply chain, in which several 
suppliers, who produce according to the Built-to-Order (BTO) 
principle, deliver intermediate goods to an Original Equipment 
Manufacturer (OEM), who in turn produces final goods which 
are requested by its customers. This decision situation focuses 
on the alignment of production and inventory capacities, which 
are regarded as the main bottleneck in such a supply chain, as 
well as demands between all members of the supply chain. 
Therefore, capacitated transportation links, warehouses and 
distribution centers are in a first step omitted from this model, 
as they are not the in the center of investigation in this decision 
situation. The following mathematical model formulation, as it 
was presented by Hellingrath and Küppers [8], is adapted from 
the works of Pibernik and Sucky [9]. It is assumed, that the 
production, storage and transportation processes are occurring 
on different levels of the supply chain. The final level of the 
supply chain represents the customers, which have specific 
demands for final products. Table 1 describes the meaning of 
the used variables and parameters. 

The objective function (1) of the model describes a 
minimization of all costs that occur as a result of the 
determination of the optimal allocation of demands and 
capacities within the supply chain: It includes production 
costs, which are split into product and facility specific setup 
costs for each production lot and volume, product and facility 
specific manufacturing costs for each produced item, periodic 
costs for adjustment measures in each facility, with which the 
capacities in a facility can be adapted to the existing demand, 
as well as transportation and inventory holding costs. 
Furthermore, the model contains a factor called “demand 
fulfillment”. It is used to determine the relative amount of 
fulfilled customer demand and can therefore also be used to 
calculate the unfulfilled demands. The amount of the latter is 
multiplied with fictional backorder costs as a penalty. The 
constraint (2) and (3) ensure the correct flow of materials 
throughout the network, i.e. products can only be delivered to 
a customer, when they are either already stored in inventory or 
can be produced within the same period, which in turn can 
only be done when the required amount of intermediate 
products is available is well. Constraint (4) represents the need 
to fulfill final customer demand by the last stage of the node 
and is used to determine the “demand fulfillment” factor. 

Constraint (5) provides that maximum capacities for the 
production of goods have to be met in each facility. A similar 
formulation is considered in constraint (6) and describes that 
inventory capacities have to be met as well. To simplify the 
model description, further constraints for the non-negativity of 
variables and the correct setting of helping variables have been 
omitted from this representation. 

݉݅݊෍෍෍ ෍ ቎ܲܳ௜,௞,௧
௡ ∙ ௜,௞ݐݏܥ݀݋ݎܲ

௡ ൅	ݖ௜,௞,௧
௡ ∙ ௜,௞ݐݏܥݔ݅ܨ	

௡

௡ఢே೔௞ఢ௄೔

ூ

௜ୀଵ

்

௧ୀଵ

൅ ෍ ௜,௞,௧ݕ
௙ 	 ∙ ௜,௞ݐݏܥܲ	

௙

௙ఢி೔,ೖ

൅ ෍ ܶܳ௜,௞,௟,௧
௡ 	 ∙ ௜,௞,௟ݐݏܥݏ݊ܽݎܶ	

௡

௞ఢ௄೔శభ

൅	ܳܫ௜,௞,௧
௡ 	

∙ 	 ௜,௞ݐݏܥݒ݊ܫ
௡ ൅	 ෍ ௜,௞,௧ܳܫ

௠

௠ఢே೔షభ	

	 ∙ 	 ௜,௞ݐݏܥݒ݊ܫ
௠ ቏

൅෍ ෍ሺ1 െ ݀ ௡݂,௧ሻ ∙ ௡ݐݏܥܱܤ
௡ఢே಺

்

௧ୀଵ

 

(1)

Subject to: 

௜,௞,௧ܳܫ
௡ ൌ ௜,௞,௧ିଵܳܫ

௡ ൅ ܲܳ௜,௞,௧
௡ െ ෍ ܶܳ௜,௞,௟,௧

௡

௟ఢ௄೔శభ

 ∀	݅, ݊	߳ ௜ܰ, ݇ ߳ ,௜ܭ (2) ݐ

௜,௞,௧ܳܫ
௠ ൌ ௜,௞,௧ିଵܳܫ

௠ െ ෍ ܲܳ௜,௞,௧
௡ ∙ ௜,௠,௡ܨܯܱܤ

௡ఢே೔

			

൅ ෍ ܶܳ௜ିଵ,௟,௞,௧
௠

௟ఢ௄೔షభ

 
∀	݅,݉	߳	 ௜ܰିଵ, ,௜ܭ	߳	݇ ݐ (3)

෍ ܶܳ௜,௞,௟,௧
௡

௞ఢ௄಺

ൌ ݀ ௡݂,௧ ∙ ூ,௧ܯܦ
௡  ∀	݊	߳	 ூܰ, ݈ ߳ ,ூାଵܭ (4) ݐ

෍ ܲܳ௜,௞,௧
௡

௡ఢே೔

∙ ௞ܿ݌
௡ ൑ ௜,௞,௧ܥܤ

௣௥௢ௗ ൅ ෍ ௜,௞,௧ݕ
௙ 	 ∙ 	 ௜,௞ܥܿ݊݅

௙

௙ఢி೔,ೖ

 ∀ ݅, ݇, (5) ݐ

෍ ௜,௞,௧ܳܫ
௡ ∙ ݅ܿ௞

௡

௡ఢே೔

൅ ෍ ௜,௞,௧ܳܫ
௠

௠ఢே೔షభ

∙ 	 ݅ܿ௞
௠ ൑ ௜,௞,௧ܥܤ

௜௡௩  ∀ ݅, ݇, (6) ݐ

TABLE I.  DESCRIPTIONS OF VARIABLES. 

Var. Description 
ݐ Period 

i SC tier (i=1,…,I+1) 

Ki Set of nodes on tier i 

ܰ݅ Set of products produced on tier i 

ܲܳ௜,௞,௧
௡ 	 Production quantity of product n on node k (tier i) in 

period t 

௜,௞ݐݏܥ݀݋ݎܲ
௡ Production costs of product n (tier i) and node k 

௜,௞,௧ݖ
௡  Binary variable indicating that product n is produced on 

node k (tier i) in period t 

௜,௞ݐݏܥݔ݅ܨ
௡ 	 Changeover costs for the production of product n and 

node k (tier i) 

௜,௞ܨ Set of adjustment measures available on node k (tier i) 

௜,௞,௧ݕ
௙ 	

Binary variable indicating that adjustment measure f is 
implemented on node k (tier i) in period t 

ܶܳ௜,௞,௟௧
௡  Transport quantity of product n from node k (tier i) to 

node l (tier i+1) 

௜,௞,௟ݐݏܥݏ݊ܽݎܶ
௡ Transport costs for product n from node k on (tier i) to 

node l (tier i+1) 
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	ܯ Large number 

௜,௞,௧ܳܫ
௠ 	 Inventory quantity of intermediate product m on node k 

(tier i) in period t 

௜,௞ݐݏܥݒ݊ܫ
௠ 	 Inventory holding costs for intermediate product m on 

node k (tier i) 

݀ ௡݂,௧	
Fulfillment of the final customer demand of final 

product n in period t (in percent) 

	௡ݐݏܥܱܤ Costs for unfulfilled demand of product n 

௜,௞,௧ܳܫ
௡ 	 Inventory quantity of final product n on node k (tier i) 

in period t  

BOMFi,m,n	
Required quantity of intermediate product m (from tier 

i-1) for the production of final product n (bill-of-
material factor) 

ூ,௧ܯܦ
௡ 	 Ultimate customer demand for product n in period t 

௜,௞ܿ݌
௡ 	 Required production capacity for the production of 

product n on node k (tier i) 

௜,௞,௧ܥܤ
௣௥௢ௗ	

Production capacity of node k (tier i) in period t (basic 
capacity) 

௜,௞ܥܿ݊݅
௙ 	

Production capacity increase adjustment measure f on 
node k (tier i) 

݅ܿ௜,௞
௡ 	 Required inventory capacity of product n on node k 

(tier i) 

݅ܿ௜,௞
௠ 	 Required inventory capacity of intermediate product m 

on node k (tier i) 

௜,௞,௧ܥܤ
௜௡௩ 	 Inventory capacity of node k (tier i) in period t (basic 

capacity) 

III. APPLIED SOLUTION METHODS 

A. Fish School Search 

Fish School Search (FSS), as proposed in 2008 [1], is a 
meta-heuristic search algorithm that was designed with 
inspiration in the collective foraging behavior of natural fish 
schools. The success of the search process is represented by 
the weight of the fishes, in a way that the heavier the 
individual is, the better the search results it made so far are. 
The weight of the fish is updated throughout the feeding 
process. A second means to encode success in FSS is the 
radius of the school (smaller radiuses mean better results). All 
the mechanisms are explained in the following sections.  

Individual Movement Operator 

In the Individual Movement Operator, each fish moves 
randomly and independently towards localities of improved 
solutions. This operator is executed only if the new position is 
better than the previous one. This movement is described by 
(7), where ݔ௜௝ሺݐ ൅ 1ሻ is the new value in the position vector of 
the individual ݅ within the dimension ݆, ݔ௜௝ሺݐሻ is the old value, 
 ሻ is the stepݐ௜௡ௗሺ݌݁ݐݏ is a random value between 0 and 1 and ݎ
size on time ݐ. The new step size is calculated through (8), 
where ݌݁ݐݏ௜௡ௗ೔೙೔೟ and ݌݁ݐݏ௜௡ௗ೑೔೙ೌ೗ are the initial and final step 

sizes and ݅ݏ݊݋݅ݐܽݎ݁ݐ is the maximum number of iterations. 
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௦௧௘௣೔೙೏೔೙೔೟ି௦௧௘௣೔೙೏೑೔೙ೌ೗

௜௧௘௥௔௧௜௢௡௦
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Feeding Operator 

As mentioned before, the feeding operator is responsible 
for the weight update of all fishes. This operator is executed 
only if the fitness of a given fish increases during the 
individual movement. This process is defined by (9) where Δ ௜݂ 
is the fitness variation after the individual movement of the 
fish	݅, and max	ሺΔ݂ሻ is the maximum fitness variation in the 
whole population. 

௜ܹሺݐ ൅ 1ሻ ൌ ௜ܹሺݐሻ ൅
୼௙೔

୫ୟ୶	ሺ୼௙ሻ
. (9) 

Collective Instinctive Movement Operator 

The Collective Instinctive Movement Operator is the first 
collective movement in the algorithm (i.e. it endows 
coherence for the search). This operator is defined by (10), 
where N is the population size, Δݔ௞ and Δ݂ሺݔ௞ሻ is the position 
variation and the fitness variation of the individual of index in 
the individual movement.  
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Collective Volitive Movement Operator 

In this step, the population must contract or expand, using 
the barycenter of the fish school as a reference. It is calculated 
according to (11), where ௜ܹሺݐሻ is the weight of the fish ݅ at the 
time ݐ. The total weight of the whole population must be 
calculated in order to decide if the fish school will contract or 
expand. If the total weight increased after the last individual 
movement, the school as a whole will contract. Otherwise, the 
population will expand. This mechanism automatically 
switches between exploration and exploitation behaviors. The 
contraction and expansion processes are defined by (12) and 
(13), respectively, in which ݌݁ݐݏ௩௢௟is the volitive step size 
constant. 
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ݐపሬሬሬԦሺݔ ൅ 1ሻ ൌ ሻݐపሬሬሬԦሺݔ െ ሺ0,1ሻ݀݊ܽݎ௩௢௟݌݁ݐݏ
ቀ௫ഢሬሬሬԦሺ௧ሻି஻ണሬሬሬሬԦሺ௧ሻቁ
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B. Other Solution Methods 

Two different and established meta-heuristics were also 
applied on the same planning problem to evaluate the relative 
effectiveness of the FSS. Differential Evolution (DE) is a 
stochastic population-based optimization algorithm, developed 
by Rainer Storn and Kenneth Price [10]. It was developed as a 
part of evolutionary computing in order to optimize nonlinear 
and non-differentiable functions in a continuous space. The 
parameterization of the algorithm can be self-adaptive [11]. A 
great advantage of DE is the use of low parameters (i.e. 
population size, differential weight and crossover probability).  
The Particle Swarm Optimization (PSO) algorithm, proposed 
by Kennedy and Eberhart 0, is an adaptive meta-heuristic 
based on the behavior of several individuals (i.e. particles). In 
PSO, each particle aims at to find solutions to a given problem 



from their social interactions, based on the collective 
knowledge of the swarm and its own experience. PSO is fast 
and capitalizes on information shared within the neighboring 
strategy used. Additionally, the mathematical model was 
solved by CPLEX, a state of the art commercial solver, using 
well known algorithms such as the simplex algorithm and 
branch & bound [3][14][15]. It was used to determine the 
optimal solution value of the planning problem to measure the 
quality of the solutions generated by all meta-heuristics.  

IV. IMPLEMENTATION APPROACH 

The PSO, DE and FSS algorithms, just like all meta-
heuristics, have certain limitations. They were all initially 
designed to solve continuous, unconstrained, static and single 
solution problems and do not natively include constraints into 
their search space. Since the SCNP is a discrete and 
constrained problem, there are several challenges that must be 
overcome when applying such algorithms onto this problem.  

The first challenge is the determination of the information 
represented in the solution vector of each individual within the 
meta-heuristics. When all variables are included into the vector 
the algorithm would need to account for e.g. inventory, 
transport and production volumes to be aligned towards each 
other (i.e. inventory volumes in one period have to be 
consistent with production and transportation volumes of prior 
periods). The algorithms do not know the interdependencies of 
these variables, so they can create many infeasible solutions. 
Therefore, only production (pq) and transportation (tq) 
volumes were included into the solution vector. All other 
variables are calculated in dependence of these variables and 
the known parameters using the equations presented in Section 
II. Such an approach was also chosen in the work of Posignon 
and Mönch [16] and proofed to be applicable. Figure 1 shows 
exemplary the solution vector of an individual of a network 
with 4 production facilities for 4 different products containing 
4 transportation links (it is assumed, that the transportation 
amounts towards the final customer equal its demand). This 
vector is repeated for each period in the planning problem. 

 

Figure 1: Solution Representation 

All decision variables not represented in the solution vector 
of the meta-heuristic are heuristically calculated, i.e. inventory 
volumes for final products in a certain facility can be calculated 
by adding production volumes and incoming transportation 
volumes to the inventory volumes of the same product in the 
same facility of the previous period while also subtracting 
demands and outgoing transport volumes. 

The second challenge is related to the aforementioned fact 
that the three algorithms were designed to handle continuous 
problems, while the SCNP is a discrete one. In order to satisfy 
the need for integer values, although the variables from the 
solution representation within the meta-heuristic are used as 
continuous variables during the optimization process, they 
were rounded to the nearest valid size of non-splittable items in 
the production network before being passed to the fitness 
function (i.e. objective), which determines the value of a given 
solution similar to the objective function presented in Section 
II.  

The third challenge regards the fact that the algorithms can 
find invalid solutions during the optimization process. For 
example, a lack of production volumes for a final product, 
combined with an outgoing transportation of said product to 
satisfy a customer demand leads to a negative inventory level.  

None of the algorithms were designed to naturally include 
constraints in their search space. Therefore, another way to 
ensure the creation of solutions which adhere to these 
constraints has to be chosen. This issue was approached by 
including additional penalty costs, which are applied in case of 
constraint violations. These penalty costs were not included in 
the mathematical model as presented in Section II. There are 
three types of constraint violations: A production capacity 
violation occurs if the total used production capacity set by the 
meta-heuristic is higher than the maximum production capacity 
of a given node. An inventory capacity violation results if the 
required inventory capacity calculated is higher than the 
maximum inventory capacity of a given node. Finally, a 
demand violation surfaces if customer’s demand is not 
fulfilled. For all three types of violation, firstly, the degree of 
infeasibility is calculated, e.g.. the exact amount of 
overutilization of a capacity. Afterwards, the final penalty 
value is calculated by summing up the products of each 
measured degree of infeasibility and a respective penalty cost 
factor for each type of constraint violation. Therefore, a 
positive gradient is formed within the infeasible areas, in which 
the costs of the solutions increase as they get more and more 
distant from the borders between the feasible and infeasible 
areas. Thus, the individuals will avoid these areas. The penalty 
costs have to be sufficiently high, so that the algorithms will 
rate the value of a valid solution higher than that of an 
infeasible solution. 

However, a problem of this approach is the vast amount of 
local optima as a result of the additional penalty costs, which 
can be seen in the following example: A final customer 
demand cannot be satisfied, because a capacity bottleneck 
occurs in a facility further upstream in the supply chain. A 
solution, in which all facilities in the network create all 
required items for this final product was found. However, one 
facility cannot produce the needed volumes of an intermediate 
product due to capacity constraints and penalty costs occur, as 
the inventory volumes become negative. The ideal solution 
would be to acknowledge this bottleneck at the last production 
node and produce less final products, so that no production and 
transportation costs occur for products, which cannot be 
produced in the real production system. However, this solution 



would be represented by an individual with a vastly different 
solution vector. Therefore, the algorithm might be stuck in a 
local optimum, while the global optimum is at a completely 
different position within the search space. 

In general, all costs which are represented in the 
mathematical model are also calculated within the 
implementation of the fitness function. This way, comparable 
solutions can be created and evaluated. 

V. EXPERIMENTS 

For testing purposes, we used a simple test scenario, which 
adheres to the structure of the supply chain shown in Figure 1 
in Section IV. The scenario describes a planning problem for 
10 periods, in which 4 different products are produced within 
4 different facilities with varying final customer demands. 
These demands exceed the supply chains capacity in certain 
periods in order to force the creation of inventories. The final 
customers are directly delivered from the last production 
facility. Given that the representation of the solution vector 
shown in Figure 1 considers only one period, the 
individual/particle needs 10 times more information to 
represent 10 periods: A total of 80 dimensions are needed in 
order to determine the ideal solution of this optimization 
problem. It also contains a vast number of local optima, based 
on the reasoning in Section IV as well as on the combinatorial 
nature of the problem itself. 

The experiment for the meta-heuristics consisted of varying 
the number of individuals and iterations (for each algorithm) 
and running each solution generation process 30 times. The 
search space boundaries were defined as 0 and 500 for every 
dimension. The Table II shows the configuration for each 
simulation. However, since the FSS calls the fitness function 
twice per iteration, the maximum number of iterations allowed 
for this algorithm amounts to half of the values of the same 
parameter for the PSO and DE algorithms. Additionally, the 
planning problem has been solved with CPLEX to determine 
the optimal solution value. 

TABLE II.  EXPERIMENTS DESCRIPTION. 

Experiment Population Iterations 
Exp_1 10 10000 
Exp_2 10 1000 
Exp_3 10 100 
Exp_4 100 10000 
Exp_5 100 1000 
Exp_6 100 100 
Exp_7 1000 1000 
Exp_8 1000 100 
Exp_9 10000 1000 
Exp_10 10000 100 

The two PSO parameters used in the experiments, the social 
and cognitive accelerations, were set to 1.3 and 2.8, based on 
suggestions from studies performed in [17].  Moreover, the 
update strategy is synchronous, since it is more appropriate for 
Global PSO [17]. 

The DE algorithm is quite robust with respect to the 
parameters differential weight (dw) and crossover probability 
(cp). In these experiments the dw and cp parameter values were 

set respectively to 0.35 and 0.2, based on studies performed in 
[18] which show this configuration gives a generally good 
convergence on a wide range of problems. 

In [1] the maximum individual and volitive step sizes of the 
FSS were chosen according to the search space length. In this 
case, considering that the search space size for each dimension 
was set to 500, some experiments showed that the values 50 
and 10 for these parameters showed the best results. 

All parameters were set according to the results acquired in 
previous experiments. These values were chosen in an attempt 
to reach the best values in the final experiments. 

VI. RESULTS 

Table III shows the results for each approach. The best results 
for each experiment are highlighted. The FSS reached better 
results in most of the experiments. However, the PSO 
outperformed both algorithms in the cases in which there was 
a lower value for the maximum number of iterations (i.e. 100 
for PSO and DE and 50 for FSS). The fast convergence power 
of this algorithm explains this behavior. 

Due to the characteristics of the FSS, which allows it to 
avoid being trapped in local minima through the expansion and 
contraction mechanism, it was able to find the best results 
among all the tested algorithms. However, this mechanism 
causes a relatively slow convergence, necessitating a higher 
amount of iterations to reach good results. Observing the 
results in Table III, with more iterations and/or fitness function 
calls, the FSS algorithm is able to reach better results than the 
other algorithms. Smaller standard deviations also showed that 
the FSS is able to have more consistent results. 

TABLE III.  SIMULATIONS RESULTS. THE BEST RESULTS ARE IN BOLD. 

Experiment 
PSO 

Best Fitness Mean SD 
Exp_1 1.01E+07 2.01E+07 6.53E+06 
Exp_2 9.49E+06 2.16E+07 6.29E+06 
Exp_3 1.79E+07 3.06E+07 6.97E+06 
Exp_4 1.51E+06 4.43E+06 2.63E+06 
Exp_5 2.00E+06 5.68E+06 2.59E+06 
Exp_6 3.41E+06 9.37E+06 3.61E+06 
Exp_7 1.59E+06 4.32E+06 1.69E+06 
Exp_8 2.42E+06 4.96E+06 1.68E+06 
Exp_9 1.64E+06 3.54E+06 1.89E+06 
Exp_10 1.79E+06 3.29E+06 1.69E+06 

Experiment 
DE 

Best Fitness Mean SD 
Exp_1 1.48E+06 2.16E+06 6.77E+05 
Exp_2 2.35E+06 4.13E+06 1.23E+06 
Exp_3 3.75E+07 6.36E+07 1.24E+07 
Exp_4 1.39E+06 2.33E+06 6.23E+05 
Exp_5 2.04E+06 3.98E+06 1.30E+06 
Exp_6 3.42E+07 6.52E+07 1.18E+07 
Exp_7 1.89E+06 4.38E+06 1.61E+06 
Exp_8 2.99E+07 6.63E+07 1.15E+07 
Exp_9 1.85E+06 4.37E+06 1.59E+06 
Exp_10 2.79E+07 6.59E+07 1.10E+07 

   
(Continued..) 



(Continued..)    

Experiment 
FSS 

Best Fitness Mean SD 
Exp_1 9.67E+05 1.14E+06 1.07E+05 
Exp_2 2.06E+06 3.23E+06 5.00E+05
Exp_3 4.20E+07 5.79E+07 6.01E+06
Exp_4 5.35E+05 5.41E+05 3.87E+03 
Exp_5 8.29E+05 1.04E+06 7.47E+04 
Exp_6 3.62E+07 4.44E+07 3.65E+06 
Exp_7 5.37E+05 5.73E+05 2.98E+04 
Exp_8 3.22E+07 3.83E+07 2.13E+06 
Exp_9 5.33E+05 5.61E+05 2.61E+04 
Exp_10 1.48E+07 1.79E+07 1.63E+06

The DE algorithm found results of substandard quality and 
was unable to overcome the other algorithms in the 
experiments. Even though the PSO outperformed the other 
algorithms in all experiments with low iterations, the results 
were still far from optimal. When comparing the best results of 
each meta-heuristic with the optimal solution calculated by the 
mathematical solver as shown in Table IV, it becomes obvious 
that both the PSO and DE algorithms became stuck in local 
optima. Therefore, the FSS was the only technique able to find 
good solutions, which adhere to all constraints. 

TABLE IV.  COMPARISON OF THE BEST RESULT FROM EACH APPROACH. 

Approach Best Solution 
Gap to optimal 

solution 
CPLEX 5.27E+05 - 

FSS 5.33E+05 1% 
PSO 1.51E+06 286.43% 
DE 1.39E+06 264% 

VII. CONCLUSION AND FUTURE RESEARCH 

In this work, the applicability of the FSS algorithm on real 
world planning problems in the logistics domain was shown 
using a small test scenario. The FSS has demonstrated the 
ability to circumvent the high number of local optima in this 
problem domain. In contrast, the PSO and DE algorithms get 
stuck in local optima quickly and are unable to find good 
solutions. This proofs that the novel way to deal with the 
exploration versus exploitation tradeoff of the FSS allows it to 
outperform comparable meta-heuristics. 

In future work, the FSS algorithm needs to be applied to 
real scenarios with test data from practice, including vast 
supply chain networks with explicitly modeled storage and 
distribution facilities as well as additional constraints like 
capacitated transportation links: While the FSS does not 
outperform exact mathematical solvers in solution time or 
quality in small problems, it should compare better solving 
larger problems, because mathematical optimization algorithms 
scale at least exponentially with the size of a problem, while a 
meta-heuristic such as the FSS should scale in a much more 
favorable manner. Additionally, several improvements of the 
implementation can be performed. For example, better ways to 
initialize the variable values at the start of the optimization can 
be determined. Another interesting approach is the inclusion of 

constraints into the search space of the meta-heuristic to avoid 
using penalty costs. 
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