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Abstract — A data set is named imbalanced when the classes 

have not approximately equally representations. Classification 

algorithms are sensitive of this imbalance and tend to valorize the 

majority classes and ignore the minority classes, which is a 

problem when the minority classes are the classes of interest. In 

this paper we propose two specializations to an efficient and 

robust classification algorithm inspired by ACO metaheuristic 

called Ant-Miner. These specializations modify how rules are 

constructed and evaluated. We compare the results with 

standard Ant-Miner and C4.5 algorithm. The results show that 

the proposed algorithms are competitive, finding rules for the 

minority classes and improve the simplicity of the discovered rule 

list.  

Keywords — class imbalance, classification algorithms, ACO, 

Ant-Miner. 

I. INTRODUCTION 

The class imbalance problem emerged when machine 
learning matured from an embryonic science to an applied 
technology, broadly used in the worlds of business, industry 
and scientific research [1]. This increase in interest gave rise to 
two workshops held in 2000 at AAAI (Association of the 
Advancement of Artificial Intelligence) conference [2], in 2003 
at ICML (International Conference on Machine Learning) 
conference [3] and a special edition of ACM SIGKDD 
Explorations in 2004 [4] [5] [6]. 

 In practical applications, the ratio of the small to the large 
classes can be drastic such as 1 to 100, 1 to 1.000, 1 to 10.000 
and sometimes even greater. In the classification task, a data 
set is deemed imbalanced when there are more cases of some 
class than the others. In such cases, standard classifiers tend to 
be overwhelmed by the large classes and ignore the small ones, 
because the cases of minority class have low representation on 
the training set. In many real data sets, it is the minority class 
that is of primary interest. Classifiers and metrics that do not 
take this into account generally do not perform well in these 
situations [1] [4] [22]. 

Several techniques to solve the class imbalance problem 
have been proposed both at the data and algorithmic levels. At 
data levels (preprocessing), these solutions include many forms 
of sampling [6] [7] and feature selection [23]. At the 
algorithmic level, solutions include: hybrid classifiers, adjust 
cost of learning a class, bias adjusting, learning from one class, 
appropriate evaluation metric [4] [25].  

This paper proposes two specializations to a competitive 
and robust classification algorithm inspirited by the Ant 
Colony Optimization (ACO), developed by Parpinelli in 2002 
[8], called Ant-Miner classification algorithm. The 
specializations tackle the imbalance issue, finding rules to 
minority classes (interest class) a priori improving its predictive 
accuracy and simplicity. 

The reminder of this paper is organized as follows. Section 
II the class imbalance problem are shortly explained. Section 
III describes standard Ant-Miner. Section IV explains the Ant-
Miner specializations. Section V the setup and results of 
experiments are discussed. Section VI concludes this paper. 

II. THE CLASS IMBALANCE PROBLEM 

Classifiers algorithms aim to obtain a model with high 
prediction accuracy and a good generalization capability. Thus, 
the inductive bias benefits the covering of the majority 
examples and the minority examples can be completely ignored 
by the model. Therefore, the models or results classifiers show 
low predictive accuracy with respect to the minority class 
(called, positive class) [4] [5]. 

Other characteristic of the imbalance problem is the 
presence of rare cases. Rare cases can lead the occurrence of 
small disjunts. Small disjunts are rules that cover few cases, 
this rules can have more errors than large disjunts [5]. 

A number of solutions to the class imbalance problem were 
proposed. One of the most common techniques for dealing with 
rarity is sampling. The basic idea is to minimize the 
imbalanced by altering the distribution of training examples. 
Another method to cope with imbalanced data sets is to use 
more appropriate evaluation metrics. Depending on the 
problem a method can be more efficient than others. It is 
possible to use more than one method simultaneously. Three 
methods are described below. 

A. Using a More Appropriate Inductive Bias 

Most classifier algorithms use bias induction favoring 
generalization instead of specialization because the 
specialization leads to overfitting problems. This bias can 
adversely impact the ability to learn rare examples. The 
maximum-generality bias works well for large disjuncts but not 
for small disjuncts [4]. Weiss [4] cite some studies with this 
approach, one of them use CN2 algorithm with the maximum 
specificity bias. It was shown that the approach improves the 
performance on small disjuncts set but degrades the 



performance on large disjuncts set yielding poorer overall 
performance.  

Our work uses bias adjusting to improve the performance 
of the small disjuncts without affecting the performance of the 
large disjuncts. 

B. Sampling Methods  

Sampling methods aim to change the data distributions on 
the training set thus increasing the predictive accuracy of the 
models. A sampling can be obtained with deleting cases of the 
majority class (undersampling) or adding cases of the minority 
class (oversampling) [1] [5] [13]. There are both simple and 
advanced methods. 

C. More Appropiate Evaluation Metrics 

The ROC analysis (Receiver Operating Characteristics) is a 
graph method for visualizing, organizing and selecting 
classifiers based on their performance. ROC analysis is able to 
make more accurate machine learning evaluations, mainly 
when applied in data set with class imbalance [11] [12]. 

ROC graphs are two-dimensional graphs in which true 
positive (TP) rate is plotted on the Y axis and false positive 
(FP) rate is plotted on the X axis. A ROC graph depicts relative 
trade-offs between benefits (true positives) and cost (false 
positives). Given the confusion matrix, we can find the 
measures, as follow: 

TP rate = 
                              

               
 = 

  

   
 

 

FP rate = 
                                

               
 = 

  

   
 

Several points in ROC space are important to note. The 
lower left point (0, 0) represents the strategy of never issuing a 
positive classification; such a classifier commits no false 
positive errors but also gains no true positive. The opposite 
strategy, of unconditionally issuing positive classifications,     
is represented by the upper right point (1, 1). The point (0, 1) 
represents perfect classification.  

Some classifiers, such as a Naive Bayes or a neural 
network, naturally yield an instance probability or score. Such 
a ranking or scoring classifier can be used with a threshold to 
produce a discrete classifier. Each threshold produces a 
different point in ROC space, generating a ROC curve. To 
compare classifiers, the curve ROC is reduced to a single scalar 
value. A common method is calculating the area under the 
ROC curve, abbreviated AUC [11] [12] [25].  

III. ANT-MINER OVERVIEW 

The Ant-Miner, developed by Parpinelli et al. [8] is a 
classification algorithm based on the ACO (Ant Colony 
Optimization) metaheuristic [14], in which each ant 
incrementally builds/modifies a solution to a certain problem. 
Each detail on the original algorithm can be found in [8]. 

The rules generated are expressed in the form of IF-THEN 
rules, as follows:  

IF (term1 AND term2 AND … termn) THEN (class).  

The antecedent part (IF part) contains a set of terms 
“conditions”, usually connected by a logical conjunction 
operator (AND). Each term is a triple (attribute, operator, 
value), such as (sex=male). Each term is labeled with a 

heuristic value (η) and pheromone value ( ). The rule 
consequent (THEN part) specifies the class predicted for cases 
whose predictor attributes satisfy all the terms specified in the 
rule antecedent. The Ant-Miner follows a sequential covering 
approach to discover a list of classification rules covering all 
the training cases.  

The Algorithm 1 describes the pseudo code of Ant-Miner 
algorithm. 

 

Algorithm 1: Ant-Miner pseudo-code 

 Initially the DiscoveryRuleList is empty; the TrainingSet 
has all the training cases. Each iteration of the while loop of 
Algorithm 1, corresponding to a number of executions of the 
repeat-until loop (number of the ants) that discovers a set of 
candidate classification rules. The best rule is added to the 
DiscoveryRuleList and the training cases that are covered 
correctly by this rule (i.e., cases satisfying the rule antecedent 
and having the class predicted by the rule consequent) are 
removed from the training set. This process is performed 
iteratively while the number of uncovered training cases is 
greater than a user-specified threshold (max_uncovered_cases) 



A. Pheromone Initialization 

Let termij be a rule condition of the form Ai = Vij, where Ai 
is the i

th
 attribute and Vij is the j

th
 value of the domain of Ai. In 

the beginning all the terms have the same amount of 
pheromone; this value is inversely proportional to the total 
number of terms, defined as follow: 

  τij(t=0)  = 
 

∑    
   

             (1) 

where: a is the total number of attributes and bi is the number 
of possible values that can be taken on by attribute Ai.  

B. Heuristic Value 

Each termij has a value ηij of a heuristic function that is an 

estimate of the quality of this term, with respect to its ability to 

improve the predictive accuracy of the rule. Parpinelli et al. [8] 

calculates this value based on Information Theory that 

involved the entropy associate for each termij. Liu et al. [15] 

shows an easier form to calculate the value ηij since the 

pheromone     compensates the smaller errors of ηij. 

 

                      ηij = 
                    

     
                                 (2) 

where: Tij is the total number that the termij occurs in the 

training set; majority_classTij is the total number that occurs 

the majority class with the termij in the training set. 

C. Rule Construction 

The probability that termij is chosen to be added to the 

current partial rule is: 

               Pij = 
   ( )      

∑ ∑    
  
 ( )                 

 
 

                             (3) 

where: ηij is a problem-dependent heuristic value for termij; 

τij is the amount of pheromone currently available (at time t) 

on the termij; a is the total number of attributes; bi is the total 

number of values in the domain of attribute i; I is the set of 

attributes that are not yet used by the ant; 

D. Quality of Rule 

The quality of a rule is measured using the following 

equation: 

         Q = (
  

       
)  (

  

       
)                         (4) 

 

where: TP (true positives) the number of cases covered by the 

rule that have the class predicted by the rule; FP (false 

positives) the number of cases covered by the rule that have a 

class different from the class predicted by the rule; FN (false 

negatives) the number of cases that are not covered by the rule 

but that have the class predicted by the rule; TN (true 

negatives) the number of cases that are not covered by the rule 

and that do not have the class predicted by the rule; 

E. Pheromone Update 

After each ant completes the construction of its rule and 

measured its quality, the terms that occur in the rule have its 

pheromone updating: 

τij(t+1)  = τij(t) + τij(t) × Q ,                            (5) 

 

The amount of pheromone associate with each termij that 

does not occur in the current rule has to be decreased, to 

simulate the pheromone evaporation in real ant colony 

systems. The reduction of pheromone of an unused term is 

performed by dividing the value of each τij by the summation 

of all τij. 

Parpinelli et al. [8] evaluated the Ant-Miner with six data 

sets from UCI (University of California at Irvine). The 

algorithm was compared with others classification algorithms 

and achieves good results. The results showed that the Ant-

Miner is a promising technique for classification rule 

discovery. Several researches and modifications have been 

proposed to improve its efficiency, including:  Ant-Miner2 

[15], Ant-Miner3 [16], Unordered Rule Set Ant-Miner [24], 

Ant-Miner+ [17], cAnt-Miner [18], Multiple pheromone types 

Ant-Miner [19]. 

IV.    THE SPECIALIZATIONS  

Most of Ant-Miner extensions aim to improve the 

predictive accuracy. We change de bias of the algorithm that 

helps to find rules to minority classes because classification 

algorithms are sensitive to imbalanced data sets. The 

specializations are called Ant-MinerCI (Class Imbalanced) 

and Ant-MinerCIP (Class Imbalanced Precision), the only 

difference between the two algorithms proposed is how the 

rule quality is calculated. 

A. Heuristic Value 

Standard Ant-Miner and other specializations calculate 

the heuristic value for each termij according with how often 

the term occurs with the majority class, so that the ants tend 

to find the paths (terms) that lead to the majority class more 

interesting.  

In our specializations, the heuristic value of each termij is 

not calculated with the majority class, it is calculated with 

the interest class. The interest class can either be the 

minority class or not, defined by Equation (6). 

   ηij =  
          

     
                                    (6)  (6)     (6) 

where:     is how often that the termij occurs in the training 

set;          is how often the interest class occurs with each 

termij.  

The idea is that the ants have a preference for terms that 

are most relevant to find rules for the interesting class.  

B. Rules Construction 

Standard Ant-Miner, the rule consequent (class) is chosen 

after the antecedent part construction. In the Ant-Miner+ 

[17], the consequent is probabilistically chosen first. The 

consequent is selected according to the pheromone value 



associated, and this pheromone indicates which class 

contributed the most to the rule construction.  

In Ant-MinerCI, during the first iteration to find the best 

rule, the algorithm selects the consequent first, however not 

in a probabilistic way, instead it selects the interest class, 

thus the ants obligatorily select terms to add to the partial 

rule that maximize the rule quality that has a consequent the 

interest class. In other words, the ants converge to shorter 

paths (best rules) with the interest class. This interest class 

must be set by the user before the algorithm starts the rules 

construction.     

The process to add terms to the current rule stops when 

one of the following conditions is met:  

1. Any term to be added to the rule would make the rule 

cover a number of cases that is smaller than a user-

specified threshold, called min_cases_per_rule; 

2. All attributes have been already used by the current ant; 

In Ant-MinerCI there is one more condition to stop the 

terms addition, which is max_no_antec. Such parameter 

limits the number of antecedent that a rule can have, since 

rules that have a large number of terms in the antecedent part 

can difficult the comprehensibility of the rules. 

After the first iteration of the while loop, the best rule 

Rbest among all the Ri (that have the interest class) is selected 

and added at the discovered rules list. The next iterations of 

the while loop the algorithm can find rules for every class. 

The formula to calculate the rule quality in Ant-MinerCI is 

the same that standard Ant-Miner, Q=sensitivity×specificity, 

defined before as Equation (4). 

The discovered ordered rule list by the algorithm will 

have at least one discovered rule for the interesting class, 

even if the interest class is the minority class, which is the 

most difficult discovery. 

It is important that first discovered rule should be the 

interest class, because the first discovered rule is related to 

the entire training set. Hence, the discovered rule Rn is 

conditioned by the Rn-1 previous discovered rules. 

C. Ant-MinerCI Parameters 

The conventional parameters of Ant-Miner are: 

no_of_ants (the maximum number of candidate rules), 

min_cases_per_rule (each rule must cover a minimum 

number of cases from the training set and this parameter 

helps to avoid overfitting), max_uncovered_cases (the 

maximum number of cases uncovered from the training set), 

no_rules_converg (the number of consecutives equals rules, 

then the algorithm concludes that the ants have converged). 

Beyond the conventional parameters, the Ant-MinerCI 

has two others: interesting_class (the user specifies which is 

the interest class and that will be used to discover the first 

rule), max_no_antec (the maximum number of terms that a 

rule can have in the antecedent part). 

D. The Ant-MinerCIP Algorithm 

It has the Ant-MinerCI modifications but the evaluation 

rules are different. The discovered rules from the minority 

classes have few covered cases considering all the training 

cases. When the function Q=sensitivity×specificity is used, 

the tendency is that the rules have a reasonable number of 

covered cases considering all the training cases.  

For example: A data set that has class “Positive” and the 

class “Negative”. The distribution of this data set is 96% to 

class Negatives” and 4% to class “Positive”. Most rule 

induction algorithms probably will find rules only to 

“Negative” class, but the most interesting is at 4% of class 

“Positive”. Even the rules discovered by Ant-MinerCI for the 

minority class, this rules can have a low predictive accuracy 

using Q=sensitivity×specificity. Suppose that this data set 

has 20.000 cases. An ant finds a rule Ri (for class “Positive”) 

that cover 200 cases, and among these cases, TP=180, 

FP=20, FN=609 and TN=19191. Using Q=sensitivity× 

specificity, has the following value: 

  

Q = (
  

       
)  (

  

       
)  (

   

         
) (

     

          
)=0,2278   (7) 

The value from Equation (8) is the quality value to Ri, the 

probability for this rule to be chosen as the best rule by 

algorithm is low, even if this rule has a predictive accuracy 

of 90%. This happens because the algorithm selects the best 

rule when the Q value is high, in other words, the algorithm 

select the rule that has high coverage (recall). In this case, 

that there is a rare class, the discovered rules for this class 

can have a low predictive accuracy, which harms all the 

predictive accuracy. 

The Ant-MinerCIP algorithm uses the precision formula 

directly, Equation (8), which evaluates rule quality, since the 

precision aims to analyze only the covered cases by the rule. 

The lower the FP number covered by the rule, better the 

precision.  

                      Precision = (
  

     
)        (8) 

Thus, the precision metric does not harm the discovery of 

rules to the minority class, as well as for other classes. A 

situation that can be happen is that the rule may be too 

adjusted, which characterizes overffiting. To avoid this 

problem, the min_cas_per_rule parameter must be used, 

which matches the minimum value of cases that a rule can 

cover. Thus adjusting this parameter may avoid overffiting. 

V. RESULTS AND ANALYSIS 

A. Specializations Algorithms Evaluation 

Two algorithms are used to compare with the 

specializations: C4.5 and GUI-Ant-Miner. The C4.5 [21] is a 

rule induction algorithm that uses de decision tree 

representation. The GUI-Ant-Miner [20] is the standard 



version of Ant-Miner with a better interface for user 

interaction. 

The algorithms were evaluated using public-domain data 

sets from University of California at Irvine repository. Table 

I describes the data sets, number of cases, the number of 

attributes, number of classes and the proportion of the 

minority class (positive class). From the seven data sets, only 

one has continuous attributes, but its values were categorized 

(preprocessing). The data sets Letter-a and Letter-vowel 

were constructed based on the original data set Letter [6]. 

For a fair comparison, no adjustments were made in the 

algorithms parameters to optimize its performance, because 

each data set can have its optimum parameters set. Table II 

shows the parameters values, in consonance with [8]. 
 

Table I. Data sets used to evaluate the algorithms 

Data sets No. of cases No. of 

attributes 

No. of 

classes 

Positive 

(%) 

Ljubljana breast 

cancer 
286 9 2 29.7 

Wisconsin 

breast cancer 
683 9 2 34.4 

tic-tac-toe 958 9 2 34.6 

dermatology 366 34 6 5.5 

Votes 435 16 2 38.6 

Letter-a 20.000 17 2 4 

Letter-vowel 20.000 17 2 19.4 

  Table II. Parameters value 
Parameters Values 

no_of_ants 1000 

min_cases_per_rule 10 

max_uncovered_cases 15 

no_rules_converg 10 

max_no_antec 4 

class_of_interest minority class 

We used two test methods, hold out and cross-validation. 

Table III shows the results using ROC analysis with AUC 

and hold out method, because [25] concludes that hold out 

are sufficient to achieve good model selection for AUC.  
 

Table III. AUC Ant-MinerCI x Ant-MinerCIP x GUI-Ant-Miner x C4.5 

 Area Under Curve (AUC) 

Data Sets Ant-

MinerCI 

Ant-

MinerCIP 

GUI-Ant-

Miner 

C4.5 

Ljubljana breast 

cancer 
0.658 0.639 0.612  0.639 

Wisconsin breast 

cancer 
0.951 0.99 0.951  0.983 

tic-tac-toe 0.914 0.892 0.914  0.984 

Dermatology 0.921 0.956 0.956  0.998 

Vote 0.986 0.986 0.992  0.986 

Letter-a 0.95 0.965 0.96  0.965 

Letter-vowel 0.872 0.944 0.902  0,96 

Average ± SD 0.893 ± 

0.102 

0.91 ± 

0.124 

0.898 ± 

0.13 

 0.931 ± 

1.129 

We use a paired t-test to determine if the performances 

are significantly different from each other. Each algorithm 

was compared with the top performance with one-tailed.  

The means are not significantly different at 90% confidence 

level. Nevertheless, the great difference was between C4.5 

and Ant-MinerCI. 

Table IV shows the mean of number of rules that each set 

(model) obtained with cross-validation with 10 partitions. 
 

Table IV. No. of rules Ant-MinerCI x Ant-MinerCIP x GUI-Ant-Miner x C4.5 

 Number of Rules 

Data Sets Ant-

MinerCI 

(µ) 

Ant-

MinerCIP 

(µ) 

GUI-Ant-

Miner 

(µ) 

C4.5 

(µ) 

Ljubljana breast 

cancer 
3.1  9  4.4  4 

Wisconsin breast 

cancer 
5.8  7 7.2  19 

tic-tac-toe 6 38.6 6.5  95 

dermatology 5  18 6.5  30 

Vote 5.1 10.5 4.8 6 

Letter-a 4.2  12.8 7.2  37 

Letter-vowel 5  67 14  185 

As shown in Table III, the average predictive AUC 

values of the four algorithms are very similar (no statistical 

difference) and they are all lower with significant difference 

than C4.5. AUC replace accuracy in measuring and 

comparing classifiers as AUC is better measure in general, 

mainly with imbalance. 

 The number of discovery rules (Table IV) by the C4.5 in 

these data sets was higher than the other algorithms. It is 

important to note that the Ant-MinerCI and GUI-Ant-Miner 

sacrifice the predictive accuracy to build a model with fewer 

rules, thus contributing with comprehensibility.  

The specializations have a parameter that limits the 

number of terms antecedent, finding antecedent with at most 

four terms, thus improve de comprehensibility of the rules. 

Greater the number of attributes of a data set, the higher 

might be the number of terms.  

Lastly, analyzing the Ant-MinerCI, Ant-MinerCIP and 

GUI-Ant-Miner results, the fact of learning the minority 

class first did not decrease the performance (AUC) of the 

algorithms. 

B. Ant-MinerCI x Ant-MinerCIP 

The parameters in this section were the same as the ones 

used in previous section, except for the min_cases_per_rule 

which now is 50. This parameter is used to avoid overfitting.

 The goal of Ant-MinerCIP is to discover rules to rare 

classes with a better predictive accuracy. Thus, the following 

results of this section are focused on the first rule discovered 

by each algorithm. For this study were used the data sets that 

are more imbalanced from the previous section (Letter-a and 

Letter-vowel). Table V shows the data sets distribution. 



Table V. Data sets distribution  

Data set Classes Distribution (%) 

Letter-a (a, others) (4, 96) 

Letter-vowel (vowel, others) (19.4, 80.6) 

Table VI and Table VII show the results of predictive 

accuracy (precision), the coverage (recall) and the number of 

terms antecedent of the first rule discovered by the 

algorithms with the interesting class (minority class). 
 

Table VI. Precision (%), Recall (%) e No. of antecedent of the first rule for 

class “A” from the Letter-a data set (Ant-MinerCI x Ant-MinerCIP) 

Letter-a Class Precision 

(µ% ± sd%) 

Recall 

(µ% ± sd%) 

No. of terms 

antecedent 

Ant-MinerCI a 66.07 ±  17.56 39.58 ± 15.31 1.5 ± 0.5 

Ant-MinerCIP a 98.74 ± 0.02 10.64 ± 2.78 3.2 ± 1 

 
Table VII. Precision (%), Recall (%) e No. of antecedent of the first rule for 

class “vowel” from the Letter-vowel data set  (Ant-MinerCI x Ant-MinerCIP) 

Letter-

vowel 

Class Precision 

(µ% ± sd%) 

Recall 

(µ% ± sd%) 

No. of terms 

antecedent 

Ant-MinerCI vowel 28.43 ± 1.61  31.17 ± 2.2 1.28 ± 0.45 

Ant-MinerCIP vowel 100 ± 0  3.58 ± 0.8 3 ± 1.2 

Ant-MinerCI uses the function Q=sensitivity×specificity 

to evaluate the rules, thus the algorithm finds more general 

rules, this means that the rule covers a large number of cases, 

consequently the rule has a lower predictive accuracy 

because it has a many erroneous cases, which are the FP 

(false positive) to the rule. However, the Ant-MinerCIP, 

which uses the precision as a function to evaluate the rules, 

finds more specific rules, but with a better predictive 

accuracy. Even if the rules are more specific, they have at 

least 50 cases covered, because this is the threshold chosen. 

VI. CONCLUSIONS 

The results showed that all algorithms have similar 

predictive AUC. Comparing with the standard Ant-Miner the 

specializations have the advantage to discovery a rule to 

minority class first with better predictive accuracy. Other 

advantage is the simplicity of the rules, because the 

algorithm limits the number of terms antecedent, which 

improve the comprehensibility. The way that the Ant-

MinerCIP calculates the rule quality improves the predictive 

accuracy to the minority class. The AUC analysis helped to 

evaluate the results more fairly, which showed that the 

algorithm specializations are competitive with those in the 

literature, mainly when applied imbalanced data sets.  
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