
Ant-Miner Specializations to tackle Imbalanced

Data Sets

Murilo Zangari de Souza¹, Aurora Trinidad Ramirez Pozo¹, Wesley Romão²

Universidade Federal do Paraná¹

Universidade Estadual de Maringá²

{murilo.zangari, auroratrinidad, wesley.uem }@gmail.com

Abstract — A data set is named imbalanced when the classes

have not approximately equally representations. Classification

algorithms are sensitive of this imbalance and tend to valorize the

majority classes and ignore the minority classes, which is a

problem when the minority classes are the classes of interest. In

this paper we propose two specializations to an efficient and

robust classification algorithm inspired by ACO metaheuristic

called Ant-Miner. These specializations modify how rules are

constructed and evaluated. We compare the results with

standard Ant-Miner and C4.5 algorithm. The results show that

the proposed algorithms are competitive, finding rules for the

minority classes and improve the simplicity of the discovered rule

list.

Keywords — class imbalance, classification algorithms, ACO,

Ant-Miner.

I. INTRODUCTION

The class imbalance problem emerged when machine
learning matured from an embryonic science to an applied
technology, broadly used in the worlds of business, industry
and scientific research [1]. This increase in interest gave rise to
two workshops held in 2000 at AAAI (Association of the
Advancement of Artificial Intelligence) conference [2], in 2003
at ICML (International Conference on Machine Learning)
conference [3] and a special edition of ACM SIGKDD
Explorations in 2004 [4] [5] [6].

 In practical applications, the ratio of the small to the large
classes can be drastic such as 1 to 100, 1 to 1.000, 1 to 10.000
and sometimes even greater. In the classification task, a data
set is deemed imbalanced when there are more cases of some
class than the others. In such cases, standard classifiers tend to
be overwhelmed by the large classes and ignore the small ones,
because the cases of minority class have low representation on
the training set. In many real data sets, it is the minority class
that is of primary interest. Classifiers and metrics that do not
take this into account generally do not perform well in these
situations [1] [4] [22].

Several techniques to solve the class imbalance problem
have been proposed both at the data and algorithmic levels. At
data levels (preprocessing), these solutions include many forms
of sampling [6] [7] and feature selection [23]. At the
algorithmic level, solutions include: hybrid classifiers, adjust
cost of learning a class, bias adjusting, learning from one class,
appropriate evaluation metric [4] [25].

This paper proposes two specializations to a competitive
and robust classification algorithm inspirited by the Ant
Colony Optimization (ACO), developed by Parpinelli in 2002
[8], called Ant-Miner classification algorithm. The
specializations tackle the imbalance issue, finding rules to
minority classes (interest class) a priori improving its predictive
accuracy and simplicity.

The reminder of this paper is organized as follows. Section
II the class imbalance problem are shortly explained. Section
III describes standard Ant-Miner. Section IV explains the Ant-
Miner specializations. Section V the setup and results of
experiments are discussed. Section VI concludes this paper.

II. THE CLASS IMBALANCE PROBLEM

Classifiers algorithms aim to obtain a model with high
prediction accuracy and a good generalization capability. Thus,
the inductive bias benefits the covering of the majority
examples and the minority examples can be completely ignored
by the model. Therefore, the models or results classifiers show
low predictive accuracy with respect to the minority class
(called, positive class) [4] [5].

Other characteristic of the imbalance problem is the
presence of rare cases. Rare cases can lead the occurrence of
small disjunts. Small disjunts are rules that cover few cases,
this rules can have more errors than large disjunts [5].

A number of solutions to the class imbalance problem were
proposed. One of the most common techniques for dealing with
rarity is sampling. The basic idea is to minimize the
imbalanced by altering the distribution of training examples.
Another method to cope with imbalanced data sets is to use
more appropriate evaluation metrics. Depending on the
problem a method can be more efficient than others. It is
possible to use more than one method simultaneously. Three
methods are described below.

A. Using a More Appropriate Inductive Bias

Most classifier algorithms use bias induction favoring
generalization instead of specialization because the
specialization leads to overfitting problems. This bias can
adversely impact the ability to learn rare examples. The
maximum-generality bias works well for large disjuncts but not
for small disjuncts [4]. Weiss [4] cite some studies with this
approach, one of them use CN2 algorithm with the maximum
specificity bias. It was shown that the approach improves the
performance on small disjuncts set but degrades the

performance on large disjuncts set yielding poorer overall
performance.

Our work uses bias adjusting to improve the performance
of the small disjuncts without affecting the performance of the
large disjuncts.

B. Sampling Methods

Sampling methods aim to change the data distributions on
the training set thus increasing the predictive accuracy of the
models. A sampling can be obtained with deleting cases of the
majority class (undersampling) or adding cases of the minority
class (oversampling) [1] [5] [13]. There are both simple and
advanced methods.

C. More Appropiate Evaluation Metrics

The ROC analysis (Receiver Operating Characteristics) is a
graph method for visualizing, organizing and selecting
classifiers based on their performance. ROC analysis is able to
make more accurate machine learning evaluations, mainly
when applied in data set with class imbalance [11] [12].

ROC graphs are two-dimensional graphs in which true
positive (TP) rate is plotted on the Y axis and false positive
(FP) rate is plotted on the X axis. A ROC graph depicts relative
trade-offs between benefits (true positives) and cost (false
positives). Given the confusion matrix, we can find the
measures, as follow:

TP rate =

 =

FP rate =

 =

Several points in ROC space are important to note. The
lower left point (0, 0) represents the strategy of never issuing a
positive classification; such a classifier commits no false
positive errors but also gains no true positive. The opposite
strategy, of unconditionally issuing positive classifications,
is represented by the upper right point (1, 1). The point (0, 1)
represents perfect classification.

Some classifiers, such as a Naive Bayes or a neural
network, naturally yield an instance probability or score. Such
a ranking or scoring classifier can be used with a threshold to
produce a discrete classifier. Each threshold produces a
different point in ROC space, generating a ROC curve. To
compare classifiers, the curve ROC is reduced to a single scalar
value. A common method is calculating the area under the
ROC curve, abbreviated AUC [11] [12] [25].

III. ANT-MINER OVERVIEW

The Ant-Miner, developed by Parpinelli et al. [8] is a
classification algorithm based on the ACO (Ant Colony
Optimization) metaheuristic [14], in which each ant
incrementally builds/modifies a solution to a certain problem.
Each detail on the original algorithm can be found in [8].

The rules generated are expressed in the form of IF-THEN
rules, as follows:

IF (term1 AND term2 AND … termn) THEN (class).

The antecedent part (IF part) contains a set of terms
“conditions”, usually connected by a logical conjunction
operator (AND). Each term is a triple (attribute, operator,
value), such as (sex=male). Each term is labeled with a

heuristic value (η) and pheromone value (). The rule
consequent (THEN part) specifies the class predicted for cases
whose predictor attributes satisfy all the terms specified in the
rule antecedent. The Ant-Miner follows a sequential covering
approach to discover a list of classification rules covering all
the training cases.

The Algorithm 1 describes the pseudo code of Ant-Miner
algorithm.

Algorithm 1: Ant-Miner pseudo-code

 Initially the DiscoveryRuleList is empty; the TrainingSet
has all the training cases. Each iteration of the while loop of
Algorithm 1, corresponding to a number of executions of the
repeat-until loop (number of the ants) that discovers a set of
candidate classification rules. The best rule is added to the
DiscoveryRuleList and the training cases that are covered
correctly by this rule (i.e., cases satisfying the rule antecedent
and having the class predicted by the rule consequent) are
removed from the training set. This process is performed
iteratively while the number of uncovered training cases is
greater than a user-specified threshold (max_uncovered_cases)

A. Pheromone Initialization

Let termij be a rule condition of the form Ai = Vij, where Ai
is the i

th
 attribute and Vij is the j

th
 value of the domain of Ai. In

the beginning all the terms have the same amount of
pheromone; this value is inversely proportional to the total
number of terms, defined as follow:

 τij(t=0) =

∑

 (1)

where: a is the total number of attributes and bi is the number
of possible values that can be taken on by attribute Ai.

B. Heuristic Value

Each termij has a value ηij of a heuristic function that is an

estimate of the quality of this term, with respect to its ability to

improve the predictive accuracy of the rule. Parpinelli et al. [8]

calculates this value based on Information Theory that

involved the entropy associate for each termij. Liu et al. [15]

shows an easier form to calculate the value ηij since the

pheromone compensates the smaller errors of ηij.

 ηij =

 (2)

where: Tij is the total number that the termij occurs in the

training set; majority_classTij is the total number that occurs

the majority class with the termij in the training set.

C. Rule Construction

The probability that termij is chosen to be added to the

current partial rule is:

 Pij =
 ()

∑ ∑

 ()

 (3)

where: ηij is a problem-dependent heuristic value for termij;

τij is the amount of pheromone currently available (at time t)

on the termij; a is the total number of attributes; bi is the total

number of values in the domain of attribute i; I is the set of

attributes that are not yet used by the ant;

D. Quality of Rule

The quality of a rule is measured using the following

equation:

 Q = (

) (

) (4)

where: TP (true positives) the number of cases covered by the

rule that have the class predicted by the rule; FP (false

positives) the number of cases covered by the rule that have a

class different from the class predicted by the rule; FN (false

negatives) the number of cases that are not covered by the rule

but that have the class predicted by the rule; TN (true

negatives) the number of cases that are not covered by the rule

and that do not have the class predicted by the rule;

E. Pheromone Update

After each ant completes the construction of its rule and

measured its quality, the terms that occur in the rule have its

pheromone updating:

τij(t+1) = τij(t) + τij(t) × Q , (5)

The amount of pheromone associate with each termij that

does not occur in the current rule has to be decreased, to

simulate the pheromone evaporation in real ant colony

systems. The reduction of pheromone of an unused term is

performed by dividing the value of each τij by the summation

of all τij.

Parpinelli et al. [8] evaluated the Ant-Miner with six data

sets from UCI (University of California at Irvine). The

algorithm was compared with others classification algorithms

and achieves good results. The results showed that the Ant-

Miner is a promising technique for classification rule

discovery. Several researches and modifications have been

proposed to improve its efficiency, including: Ant-Miner2

[15], Ant-Miner3 [16], Unordered Rule Set Ant-Miner [24],

Ant-Miner+ [17], cAnt-Miner [18], Multiple pheromone types

Ant-Miner [19].

IV. THE SPECIALIZATIONS

Most of Ant-Miner extensions aim to improve the

predictive accuracy. We change de bias of the algorithm that

helps to find rules to minority classes because classification

algorithms are sensitive to imbalanced data sets. The

specializations are called Ant-MinerCI (Class Imbalanced)

and Ant-MinerCIP (Class Imbalanced Precision), the only

difference between the two algorithms proposed is how the

rule quality is calculated.

A. Heuristic Value

Standard Ant-Miner and other specializations calculate

the heuristic value for each termij according with how often

the term occurs with the majority class, so that the ants tend

to find the paths (terms) that lead to the majority class more

interesting.

In our specializations, the heuristic value of each termij is

not calculated with the majority class, it is calculated with

the interest class. The interest class can either be the

minority class or not, defined by Equation (6).

 ηij =

 (6) (6) (6)

where: is how often that the termij occurs in the training

set; is how often the interest class occurs with each

termij.

The idea is that the ants have a preference for terms that

are most relevant to find rules for the interesting class.

B. Rules Construction

Standard Ant-Miner, the rule consequent (class) is chosen

after the antecedent part construction. In the Ant-Miner+

[17], the consequent is probabilistically chosen first. The

consequent is selected according to the pheromone value

associated, and this pheromone indicates which class

contributed the most to the rule construction.

In Ant-MinerCI, during the first iteration to find the best

rule, the algorithm selects the consequent first, however not

in a probabilistic way, instead it selects the interest class,

thus the ants obligatorily select terms to add to the partial

rule that maximize the rule quality that has a consequent the

interest class. In other words, the ants converge to shorter

paths (best rules) with the interest class. This interest class

must be set by the user before the algorithm starts the rules

construction.

The process to add terms to the current rule stops when

one of the following conditions is met:

1. Any term to be added to the rule would make the rule

cover a number of cases that is smaller than a user-

specified threshold, called min_cases_per_rule;

2. All attributes have been already used by the current ant;

In Ant-MinerCI there is one more condition to stop the

terms addition, which is max_no_antec. Such parameter

limits the number of antecedent that a rule can have, since

rules that have a large number of terms in the antecedent part

can difficult the comprehensibility of the rules.

After the first iteration of the while loop, the best rule

Rbest among all the Ri (that have the interest class) is selected

and added at the discovered rules list. The next iterations of

the while loop the algorithm can find rules for every class.

The formula to calculate the rule quality in Ant-MinerCI is

the same that standard Ant-Miner, Q=sensitivity×specificity,

defined before as Equation (4).

The discovered ordered rule list by the algorithm will

have at least one discovered rule for the interesting class,

even if the interest class is the minority class, which is the

most difficult discovery.

It is important that first discovered rule should be the

interest class, because the first discovered rule is related to

the entire training set. Hence, the discovered rule Rn is

conditioned by the Rn-1 previous discovered rules.

C. Ant-MinerCI Parameters

The conventional parameters of Ant-Miner are:

no_of_ants (the maximum number of candidate rules),

min_cases_per_rule (each rule must cover a minimum

number of cases from the training set and this parameter

helps to avoid overfitting), max_uncovered_cases (the

maximum number of cases uncovered from the training set),

no_rules_converg (the number of consecutives equals rules,

then the algorithm concludes that the ants have converged).

Beyond the conventional parameters, the Ant-MinerCI

has two others: interesting_class (the user specifies which is

the interest class and that will be used to discover the first

rule), max_no_antec (the maximum number of terms that a

rule can have in the antecedent part).

D. The Ant-MinerCIP Algorithm

It has the Ant-MinerCI modifications but the evaluation

rules are different. The discovered rules from the minority

classes have few covered cases considering all the training

cases. When the function Q=sensitivity×specificity is used,

the tendency is that the rules have a reasonable number of

covered cases considering all the training cases.

For example: A data set that has class “Positive” and the

class “Negative”. The distribution of this data set is 96% to

class Negatives” and 4% to class “Positive”. Most rule

induction algorithms probably will find rules only to

“Negative” class, but the most interesting is at 4% of class

“Positive”. Even the rules discovered by Ant-MinerCI for the

minority class, this rules can have a low predictive accuracy

using Q=sensitivity×specificity. Suppose that this data set

has 20.000 cases. An ant finds a rule Ri (for class “Positive”)

that cover 200 cases, and among these cases, TP=180,

FP=20, FN=609 and TN=19191. Using Q=sensitivity×

specificity, has the following value:

Q = (

) (

) (

) (

)=0,2278 (7)

The value from Equation (8) is the quality value to Ri, the

probability for this rule to be chosen as the best rule by

algorithm is low, even if this rule has a predictive accuracy

of 90%. This happens because the algorithm selects the best

rule when the Q value is high, in other words, the algorithm

select the rule that has high coverage (recall). In this case,

that there is a rare class, the discovered rules for this class

can have a low predictive accuracy, which harms all the

predictive accuracy.

The Ant-MinerCIP algorithm uses the precision formula

directly, Equation (8), which evaluates rule quality, since the

precision aims to analyze only the covered cases by the rule.

The lower the FP number covered by the rule, better the

precision.

 Precision = (

) (8)

Thus, the precision metric does not harm the discovery of

rules to the minority class, as well as for other classes. A

situation that can be happen is that the rule may be too

adjusted, which characterizes overffiting. To avoid this

problem, the min_cas_per_rule parameter must be used,

which matches the minimum value of cases that a rule can

cover. Thus adjusting this parameter may avoid overffiting.

V. RESULTS AND ANALYSIS

A. Specializations Algorithms Evaluation

Two algorithms are used to compare with the

specializations: C4.5 and GUI-Ant-Miner. The C4.5 [21] is a

rule induction algorithm that uses de decision tree

representation. The GUI-Ant-Miner [20] is the standard

version of Ant-Miner with a better interface for user

interaction.

The algorithms were evaluated using public-domain data

sets from University of California at Irvine repository. Table

I describes the data sets, number of cases, the number of

attributes, number of classes and the proportion of the

minority class (positive class). From the seven data sets, only

one has continuous attributes, but its values were categorized

(preprocessing). The data sets Letter-a and Letter-vowel

were constructed based on the original data set Letter [6].

For a fair comparison, no adjustments were made in the

algorithms parameters to optimize its performance, because

each data set can have its optimum parameters set. Table II

shows the parameters values, in consonance with [8].

Table I. Data sets used to evaluate the algorithms

Data sets No. of cases No. of

attributes

No. of

classes

Positive

(%)

Ljubljana breast

cancer
286 9 2 29.7

Wisconsin

breast cancer
683 9 2 34.4

tic-tac-toe 958 9 2 34.6

dermatology 366 34 6 5.5

Votes 435 16 2 38.6

Letter-a 20.000 17 2 4

Letter-vowel 20.000 17 2 19.4

 Table II. Parameters value
Parameters Values

no_of_ants 1000

min_cases_per_rule 10

max_uncovered_cases 15

no_rules_converg 10

max_no_antec 4

class_of_interest minority class

We used two test methods, hold out and cross-validation.

Table III shows the results using ROC analysis with AUC

and hold out method, because [25] concludes that hold out

are sufficient to achieve good model selection for AUC.

Table III. AUC Ant-MinerCI x Ant-MinerCIP x GUI-Ant-Miner x C4.5

 Area Under Curve (AUC)

Data Sets Ant-

MinerCI

Ant-

MinerCIP

GUI-Ant-

Miner

C4.5

Ljubljana breast

cancer
0.658 0.639 0.612 0.639

Wisconsin breast

cancer
0.951 0.99 0.951 0.983

tic-tac-toe 0.914 0.892 0.914 0.984

Dermatology 0.921 0.956 0.956 0.998

Vote 0.986 0.986 0.992 0.986

Letter-a 0.95 0.965 0.96 0.965

Letter-vowel 0.872 0.944 0.902 0,96

Average ± SD 0.893 ±

0.102

0.91 ±

0.124

0.898 ±

0.13

 0.931 ±

1.129

We use a paired t-test to determine if the performances

are significantly different from each other. Each algorithm

was compared with the top performance with one-tailed.

The means are not significantly different at 90% confidence

level. Nevertheless, the great difference was between C4.5

and Ant-MinerCI.

Table IV shows the mean of number of rules that each set

(model) obtained with cross-validation with 10 partitions.

Table IV. No. of rules Ant-MinerCI x Ant-MinerCIP x GUI-Ant-Miner x C4.5

 Number of Rules

Data Sets Ant-

MinerCI

(µ)

Ant-

MinerCIP

(µ)

GUI-Ant-

Miner

(µ)

C4.5

(µ)

Ljubljana breast

cancer
3.1 9 4.4 4

Wisconsin breast

cancer
5.8 7 7.2 19

tic-tac-toe 6 38.6 6.5 95

dermatology 5 18 6.5 30

Vote 5.1 10.5 4.8 6

Letter-a 4.2 12.8 7.2 37

Letter-vowel 5 67 14 185

As shown in Table III, the average predictive AUC

values of the four algorithms are very similar (no statistical

difference) and they are all lower with significant difference

than C4.5. AUC replace accuracy in measuring and

comparing classifiers as AUC is better measure in general,

mainly with imbalance.

 The number of discovery rules (Table IV) by the C4.5 in

these data sets was higher than the other algorithms. It is

important to note that the Ant-MinerCI and GUI-Ant-Miner

sacrifice the predictive accuracy to build a model with fewer

rules, thus contributing with comprehensibility.

The specializations have a parameter that limits the

number of terms antecedent, finding antecedent with at most

four terms, thus improve de comprehensibility of the rules.

Greater the number of attributes of a data set, the higher

might be the number of terms.

Lastly, analyzing the Ant-MinerCI, Ant-MinerCIP and

GUI-Ant-Miner results, the fact of learning the minority

class first did not decrease the performance (AUC) of the

algorithms.

B. Ant-MinerCI x Ant-MinerCIP

The parameters in this section were the same as the ones

used in previous section, except for the min_cases_per_rule

which now is 50. This parameter is used to avoid overfitting.

 The goal of Ant-MinerCIP is to discover rules to rare

classes with a better predictive accuracy. Thus, the following

results of this section are focused on the first rule discovered

by each algorithm. For this study were used the data sets that

are more imbalanced from the previous section (Letter-a and

Letter-vowel). Table V shows the data sets distribution.

Table V. Data sets distribution

Data set Classes Distribution (%)

Letter-a (a, others) (4, 96)

Letter-vowel (vowel, others) (19.4, 80.6)

Table VI and Table VII show the results of predictive

accuracy (precision), the coverage (recall) and the number of

terms antecedent of the first rule discovered by the

algorithms with the interesting class (minority class).

Table VI. Precision (%), Recall (%) e No. of antecedent of the first rule for

class “A” from the Letter-a data set (Ant-MinerCI x Ant-MinerCIP)

Letter-a Class Precision

(µ% ± sd%)

Recall

(µ% ± sd%)

No. of terms

antecedent

Ant-MinerCI a 66.07 ± 17.56 39.58 ± 15.31 1.5 ± 0.5

Ant-MinerCIP a 98.74 ± 0.02 10.64 ± 2.78 3.2 ± 1

Table VII. Precision (%), Recall (%) e No. of antecedent of the first rule for

class “vowel” from the Letter-vowel data set (Ant-MinerCI x Ant-MinerCIP)

Letter-

vowel

Class Precision

(µ% ± sd%)

Recall

(µ% ± sd%)

No. of terms

antecedent

Ant-MinerCI vowel 28.43 ± 1.61 31.17 ± 2.2 1.28 ± 0.45

Ant-MinerCIP vowel 100 ± 0 3.58 ± 0.8 3 ± 1.2

Ant-MinerCI uses the function Q=sensitivity×specificity

to evaluate the rules, thus the algorithm finds more general

rules, this means that the rule covers a large number of cases,

consequently the rule has a lower predictive accuracy

because it has a many erroneous cases, which are the FP

(false positive) to the rule. However, the Ant-MinerCIP,

which uses the precision as a function to evaluate the rules,

finds more specific rules, but with a better predictive

accuracy. Even if the rules are more specific, they have at

least 50 cases covered, because this is the threshold chosen.

VI. CONCLUSIONS

The results showed that all algorithms have similar

predictive AUC. Comparing with the standard Ant-Miner the

specializations have the advantage to discovery a rule to

minority class first with better predictive accuracy. Other

advantage is the simplicity of the rules, because the

algorithm limits the number of terms antecedent, which

improve the comprehensibility. The way that the Ant-

MinerCIP calculates the rule quality improves the predictive

accuracy to the minority class. The AUC analysis helped to

evaluate the results more fairly, which showed that the

algorithm specializations are competitive with those in the

literature, mainly when applied imbalanced data sets.

REFERENCES
[1] Chawla, N.V., Japkowicz, N., Kotcz, A.: (Editors) Editorial: Special Issue

on Learning from Imbalanced Data Sets. In: ACM SIGKDD
Explorations vol. 6, pp. 1-6, 2004.

[2] Japkowicz, N.: Proceedings of the AAAI’2000 Workshop on Learning
from Imbalanced Data Sets, AAAI Tech Report WS-00-05. AAAI,
2000.

[3] Chawla, N.V., Japkowicz, N., Kotcz, A.: Proceedings of the ICML’2003
Workshop on Learning from Imbalanced Data Sets, 2003.

[4] Weiss, G.: Mining with Rarity: A Unifying Framework. In: ACM
SIGKDD Explorations, vol. 6, pp. 7-19, 2004.

[5] JAPKOAWICZ, N., JO, T.: Class Imbalances versus Small Disjuncts. In:
ACM SIGKDD Explorations, vol. 6, pp. 40-49, 2004.

 [6] Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A Study of the Behavior
of Several Methods for Balancing Machine Learning Training Data. In:
ACM SIGKDD Explorations, vol. 6, pp. 20-29, 2004.

[7] Liu, X., Wu, J., Zhou, Z.: Exploratory Under-Sampling for Class-
Imbalance Learning. In: IEEE Transactions on Systems, Man and
Cybernetics, Part B, pp. 1-14, 2008.

[8] Parpinelli, R.S., Lopes, H.S., Freitas, A.A.: Data Mining With an Ant
Colony Optimization Algorithm. In: IEEE Transactions on Evolutionary
Computation, vol. 6, pp.321–332, 2002.

[9] Kubat, M., Matwin, S.: “Addressing the curse of imbalanced training sets:
One-sided selection.” In Proceedings of the 14th International
Conference on Machine Learning, pp. 179-186, 1997.

[10] Chawla, N. V., Hall, L. O., Bowyer, K. W., Kegelmeyer, W. P.:
“SMOTE: Synthetic Minority Oversampling Technique”. In: Journal of
Artificial Intelligence Research, vol. 16, pp. 321-357, 2002.

[11] Prati, R. C., Batista, G. E. A. P. A., Monard, M. C.: “Curvas ROC para
avaliação de classificadores” In: IEEE Latin America Transactions,
vol.6, no. 2, pp. 215-222, 2008

[12] Fawcett, T.: “ROC Graphs – Notes and Practical Considerations.”
Kluwer Academic Publishers, Netherlands, 2004.

[13] He, H., Garcia, E.: Learning from Imbalanced Data. In: IEEE
Transactions on Knowledge and Data Engineering, vol. 21, pp. 1263-
1284, 2009.

[14] Dorigo, M., Di Caro, G.: The Ant Colony Optimization meta-heuristic.
In: New Ideas in Optimization, pp.11-32, 1999.

[15] Liu, B., Abbass, H.A., Mckay, B.: Density based Heuristic for Rule
Discovery with Ant-Miner. In: The Sixth Australia-Japan Joint
Workshop on Intelligent and Evolutionary System, pp. 180-184, 2002.

[16] Liu, B., Abbass, H.A., Mckay, B: Classification Rule Discovery with Ant
Colony Optimization. In: In Proc. IEEE/WIC International Conference
on Intelligence Agent Technology, pp. 83–88, 2003.

[17] Martens, D., Backer, M. D., Haesen, R., Vanthienen, J., Snoeck, M.,
Baesens, B.: Classification with ant colony optimization. In: IEEE
Transactions on Evolutionary Computation. vol. 11, pp. 651–665, 2007.

[18] Otero, F., Freitas, A., Johnson, C.G.: Cant-Miner: an Ant Colony
Classification algorithm to cope with continuous attributes. In: Ant
Colony Optimization and Swarm Intelligence. Lecture Notes in
Computer Science, vol. 5217, pp. 48-59, 2008.

[19] Salama, K.M., Abdelbar, A.M., Freitas, A.A.: Multiple Pheromone Types
and other Extensions to the Ant-Miner Classification Rule Discovery
algorithm. In: Swarm Intelligence, vol. 6234, pp 1-34, Lecture Notes in
Computer Science, 2010.

[20] Meyer, F.; Parpinelli, R.S.: Gui Ant-Miner: uma versão atualizada do
minerador de dados baseado em colônias de formigas. In: I Congresso
Sul Catarinense de Computação: UNESC – Criciúma, 2005.

[21] Quinlan, J.R.: C4.5: Programs for Machine Learning. San Francisco:
Morgan Kaufmann, 1993.

[22] Chawla, N.V: Data Mining for Imbalanced Datasets: An Overview. In:
Data Mining and Knowledge Discovery Handbook, Sringer US, 2nd ed.,
pp 875-886, 2010.

[23] Pappa, G. L.; Freitas, A. A.; Kaestner, C. A. A.: Attribute Selection with
a Multiobjective Genetic Algorithm, In: Proc. of 16th Brazilian
Symposium on Artificial Intelligence, pp 280-290, 2002.

[24] Smaldon, J; Freitas, A.A: A New Version of the Ant-Miner Algorithm
Discovering Unordered Rules Sets, In: GECCO, pp. 43-50, 2006.

[25] Caruana, R., J; Mizil, A. N.: An Empirical Evaluation of Supervised
Learning for ROC Area, In: Proceedings of the 1st Workshop on ROC
Analysis in AI (ROCAI), pp. 01-08, 2004.

