
Online Method for Regression with an Incremental
Strategy

Roberto C. S. N. P. Souza∗†, Saul C. Leite†, Carlos C. H. Borges†, Raul Fonseca Neto†
∗Department of Computer Science, Federal University of Minas Gerais,

nalon@dcc.ufmg.br
†Department of Computer Science, Federal University of Juiz de Fora,

{saul.leite, raulfonseca.neto}@ufjf.edu.br, cchb@lncc.br

Abstract—In this contribution, we introduce an online method
for regression composed of two parts. The first is based on a
stochastic gradient descent approach combined with the idea of
tube used in support vector regression. This algorithm can be used
in primal or in dual variables. The latter formulation allows the
introduction of kernels and soft margins. The second part consists
of an incremental strategy algorithm which is introduced in order
to find sparse solutions. Also, when soft margin is not desirable,
this incremental strategy may be used to obtain the “minimal
tube” containing the data. The algorithm is very simple to
implement and avoids quadratic optimization. Numerical results
show that the method works well in comparison to a standard
implementation of the SV-regression.

I. INTRODUCTION

A regression problem consists of finding an unknown rela-
tionship between given points xi ∈ Rn and their corresponding
target values yi ∈ R. This problem is usually formulated as
one of finding a function f : Rn → R, which maps points to
target values, that minimizes a certain loss function. This is the
case of the classical regression formulation proposed by Gauss,
which minimizes the sum of the quadratic deviation between
targets and the estimated function [1]. This approach presents
the best estimative for empirical risk minimization principle,
when the noise related to the real sample of data follows a
normal distribution.

In [2], Vapnik adapted the ideas of the support vector ma-
chines, originally introduced for binary classification problems
[3], to the regression problem. Thus, a formulation based on
the ε-insensitive loss function was derived and the concept of
tube was introduced in this scenario. The derived method is
known as the support vector (SV-) regression. This method
has become quite popular due to its flexibility, specially with
respect to the use of kernels [4]. In its standard formulation, the
SV-regression requires the solution of a quadratic optimization
problem, which may be computationally expensive for large
problems and some time dependent applications.

For classification problems, considerable attention has been
given to finding simple and efficient algorithms to construct
large margin classifiers that avoid the complexity of quadratic
programming, a few examples of the vast literature includes
[5], [6], [7], [8], [9], [10], [11]). Most of them consider
classification problems. The regression problem is discussed
briefly in [8] and an algorithm for regression is derived using
a modified version of the ε-insensitive loss function, although
no numerical examples of the proposed method are given there.
The idea is to adapt the size of the tube ε as the algorithm

iterates through the data. This process, however, may result
in a solution which is not sparse, since several points in the
training set may contribute to the final solution. In [12], Bi and
Bennet proposed a geometric interpretation for the regression
problem transforming it in a binary classification problem for
a given ε value. In principle, one could use this technique to
extend online algorithms for classification to the regression
problems. However, this procedure produces a duplicate set
points, making it less attractive to practical application.

In this work, we propose an online algorithm which uses
the stochastic gradient descent approach, similar to Rosen-
blatt’s Perceptron [13], to regression problems. The method
can be used in primal or in dual variables, making it more
flexible for different types of problems. In dual variables,
the algorithm allows the introduction of kernels and margin
flexibility. In addition, we introduce an incremental strategy
algorithm, which can be combined with the method in order
to find sparse solutions. Also, when margin flexibility is not
desirable this incremental strategy algorithm may be used to
obtain an approximation to the “minimal tube” containing the
data. It is important to mention that this minimal tube cannot
be found using the standard SV-regression approach.

The paper is structured as follows. Section II introduces the
regression problem. In section III, the framework for online
algorithms is presented and the proposed algorithm is derived
in primal variables. Section IV derives the algorithm in dual
variables. In section V, we introduce the incremental strategy
algorithm. Furthermore, some numerical tests and results are
shown in section VI to support the theory. Finally, section VII
presents some conclusions.

II. PRELIMINARIES

Let Xm := {xi}mi=1, where xi ∈ Rn, be the set of training
points and let Ym := {yi}mi=1, with yi ∈ R the corresponding
set of target values. Let Zm := {(y, x) : y ∈ Ym and x ∈ Xm}
be the training set. The general problem of regression can be
stated as follows: suppose that the pairs zi := (yi, xi) ∈ Zm
are independent samples of a random vector Z := (Y,X),
where Y and X are correlated and have an unknown joint
distribution PZ . Given Zm, the problem is to find an unknown
relationship between points and their respective targets, given
by a function f : Rn → R over a certain class C of functions,
which minimizes the expected risk: EZ [`(Y,X, f)], where the
expectation is taken over the distribution PZ and ` : R×Rn×
C → R is a loss function, which penalizes deviations between
functional and target values. An approach in this case is to use

Zm to estimate PZ , however, this generally turns out to be a
more challenging task than the original problem. Therefore,
it is common to consider the reduced problem of finding a
function f ∈ C which minimizes the empirical risk given the
training set Zm, that is:

Remp[Zm] :=
1

m

m∑
i=1

`(yi, xi, f).

Since we are interested in applying the so-called “kernel trick”
later on, we restrict our class of functions C to linear functions
of the form: f(w,b)(x) := 〈w, x〉 + b, where w ∈ Rn is the
normal vector and b ∈ R is the bias term.

The most common choice for ` is the squared loss given
by `2(y, x, f) := (y− f(x))2, which gives origin to the least-
square regression. The rationale behind this approach is to
minimize the sum of residuals δyi := yi − f(xi) in such a
way that yi = f(xi) + δyi.

Another common choice for the loss function, which is
used in the SV-regression, is called the ε-insensitive (or ε-
tube) loss. It is given by `ε(y, x, f) := max{0, |y−f(x)|−ε},
where ε is interpreted as the radius of this tube. This way, this
loss function penalizes solutions which leaves training points
outside of this tube. A favorable feature of this loss function is
that it gives sparse solutions when formulated in dual variables.
In respect to this loss function, let us introduce some notation
and terminology which will be used later on. For each fixed
ε > 0, define the following set: V(Zm, ε) := {(w, b) ∈ Rn+1 :
|yi−〈w, xi〉− b| ≤ ε,∀(xi, yi) ∈ Zm}, which we call version
space. When this set is not empty, we say that the problem
accepts a tube of size ε, or an ε-tube.

III. ONLINE FRAMEWORK FOR REGRESSION

In the online learning setting, one constructs the candidate
functions (usually called hypothesis) f ∈ C minimizing the
empirical risk by examining one training example (yi, xi) at
a time. This way, one starts with an initial hypothesis f0 and,
at each iteration t, the algorithm examines one example and
updates its current hypothesis ft according to some specific
update rule.

In order to derive this update rule, we follow the ideas of
the Perceptron algorithm [13] and use an stochastic gradient
descent approach. In view of the empirical risk defined in the
previous section, let us define the following cost:

J(f) :=
∑

(yi,xi)∈Zm

`(yi, xi, f),

which should be minimized in respect to f . This way, for each
pair of points (yi, xi), the following update rule is applied to
the current hypothesis ft:

ft+1 ←− ft − η∂f `(yi, xi, f) (1)

where η > 0 is usually called learning rate and ∂f denotes
the gradient of the loss function with respect to f .

An important aspect of this approach is that if `(·) ≥ 0,
which is true for most loss functions, the above updates need
only take effect in case `(yi, xi, f) > 0. Otherwise, the current
hypothesis ft already achieves the minimum for the example
(yi, xi) and no change needs to be made, i.e. ft+1 = ft. In

this sense, loss functions that are based on the idea of tube are
well suited for this scheme, since the example will only affect
the current hypothesis if it is outside of the tube.

A. Fixed Radius Perceptron (FRP)

Let us now apply the ideas introduced in the previous
section to the loss function `ε, restricting our class of functions
C to linear functions f(w,b)(x). Then the condition `ε(·) > 0 to
update the hypothesis f(wt,bt) after example (yi, xi) becomes:

|yi − 〈wt, xi〉 − bt| > ε. (2)

For the update rule, the gradient in equation (1) is taken in
respect to the parameters (w, b) that compose the function
f(w,b). Therefore we have:

wt+1 ←− wt + η sign(yi − 〈wt, xi〉 − bt)xi
bt+1 ←− bt + η sign(yi − 〈wt, xi〉 − bt), (3)

where sign(x) := x/|x|, for x ∈ R\{0}. We call this algorithm
Fixed ε-Radius Perceptron (εFRP). Similar ideas has been
presented in [8], using a similar loss function. The algorithms
are similar when the parameter ν, used in [8], is set to zero.
The εFRP algorithm is presented in details in Algorithm 1.

Algorithm 1 εFRP in primal variables
Input: Zm, winit, binit, η, ε, T
Output: (w, b)
w0 ← winit, b0 ← binit, t← 0
repeat

for i = 1, . . . ,m do
if |yi − 〈wt, xi〉 − b| > ε then
wt+1 ← wt + η (sign(yi − 〈wt, xi〉 − bt)xi)
bt+1 ← bt + η (sign(yi − 〈wt, xi〉 − b))

end if
end for
t← t+ 1

until no mistakes were made or t > T

IV. ALGORITHM IN DUAL VARIABLES

Suppose now that the training examples are in some
abstract space X . In addition, suppose that the functions f ∈ C
accept the following representation: f = fH + b, for some
fH ∈ H and b ∈ R, where H is a reproducing kernel Hilbert
space (RKHS) (e.g., [4]). Let 〈·, ·〉H and k : X×X → R be the
associated inner product and reproducing kernel, respectively.
Then, the reproducing property of k implies that for any f ∈ H
one has that k(x, ·) ∈ H and 〈f, k(x, ·)〉H = f(x) for all x ∈
X . Another interesting property of RKHS is that any f ∈ H
can be written as linear combination of the k(x, ·). This fact
is very useful for learning algorithms since one can write the
hypothesis at iteration t as:

ft(x) =

m∑
i=1

αt,ik(xi, x) + bt (4)

for some αt := (αt,1, . . . , αt,m)′ ∈ Rm, bt ∈ R, x ∈ X and
xi ∈ Xm. In this sense, we can define wt :=

∑m
i=1 αt,ik(xi, ·)

and interpret the function ft, given in equation (4), as:

ft(x) = 〈wt, k(x, ·)〉H + bt, (5)

by the reproducing property of k. Let || · ||H be the norm
induced by the inner product 〈·, ·〉H, i.e. ||f ||2H := 〈f, f〉H for
all f ∈ H. Then, the norm of wt can be written as:

||wt||2H :=

m∑
i=1

m∑
j=1

αt,iαt,jk(xi, xj),

by the reproducing property.

Usually, in practice, the above construction of the function
class C is established by choosing a function k : X ×X → R,
which intuitively measures similarities between points in X . If
this function k attends Mercer’s condition (e.g. [4]), it can be
shown that there is a corresponding reproducing kernel Hilbert
space H that has k as it associated kernel. When X = Rn,
one possible choice for k is the inner product 〈·, ·〉 of Rn. This
leads us to the linear representation of f used in the previous
sections.

In this sense, given the above representation of wt as the
linear combination

∑m
i=1 αt,ik(xi, ·), we can derive the update

rule for the εFRP in dual variables αt by examining the update
rule given by (3). For a mistake in the example (yi, xi) the
update rule for wt becomes:

m∑
i=1

αt+1,ik(xi, ·)←−
m∑
i=1

αt,ik(xi, ·) + η sign(yi − ft(xi))k(xi, ·),

which implies the following update rule for the dual variable
αt:

αt+1,i ←− αt,i + η sign(yi − ft(xi)) (6)

The εFRP algorithm in dual variables is given by Algorithm
2.

Algorithm 2 εFRP in dual variables
Input: Zm, αinit, binit, η, ρ, T
Output: α, b
α0 ← αinit, b0 ← binit, t← 0
calculate f0(xj), for j = 1, . . . ,m
repeat

for i = 1, . . . ,m do
if |yi − ft(xi)| > ε then
αt+1,i ← αt,i + η (sign(yi − ft(xi)))
bt+1 ← bt + η (sign(yi − ft(xi)))

end if
end for
calculate ft+1(xj), for j = 1, . . . ,m
t← t+ 1

until no mistakes were made or t > T

A. Margin Flexibility

The complex nature of data frequently leads to problems
where noise are present. In such cases, an accurate represen-
tation of the training set may result in a hypothesis with a
poor generalization performance. It is then important to have
some mechanism to weigh the trade-off between an accurate
representation of the outlining data and the generalization
capability of the hypothesis. In the setting of ε-tube loss
function, one common approach is to consider soft margins,
where one allows some of the most outlining training points
to cross the tube boundaries.

An early formulation of soft margin was proposed for
a linear programming scheme in [14]. Few years later in
[2], Vapnik adapted the concept of soft margin to support
vector machines. In this approach, slack variables are added
to the problem’s constraints to allow margin violation. These
slack variables are then penalized in the cost function and
a parameter C is introduced as a measure of the trade-off
between the number and magnitude of margin violations and
the accurate representation of the training data.

Another common approach to soft margins is to simply add
a constant λdiag > 0 to the diagonal of the kernel matrix [4]:

K̃ := K + λdiagI,

where the kernel matrix is defined as K ∈ Rm×m with
components Kij := k(xi, xj), for xi, xj ∈ Xm. It can be
shown that this approach is equivalent to the introduction of
slack variables in SVM formulation when they are penalized
quadratically [4]. In fact, it is possible to establish a direct
relationship between this constant λdiag and the parameter C,
which is given by λdiag = 1/2C (see for instance [15]).

In order to consider margin flexibility for the proposed
method, we follow a similar idea and add a constant λdiag
to the diagonal of the kernel matrix. It is interesting to see the
effect of this constant λdiag on the εFRP algorithm. For the
modified kernel matrix, notice that the condition for a point
(yi, xi) to be inside of the tube at iteration t can be written
as:

−ε ≤ yi −
m∑
j=1

αt,jK̃ij − bt ≤ ε,

or equivalently, using the definition of K̃:

−ε+ αt,iλdiag ≤ yi −
m∑
j=1

αt,jKij − bt ≤ ε+ αt,iλdiag.

Notice that αt,i will most likely have the same sign of yi −
ft(xi), by the update rule given by equation (6). This implies
that the desired flexibility of the margin constraint is achieved
by adding a slack αt,iλdiag to the problem’s constraints.

V. INCREMENTAL STRATEGY

In this section, we present an incremental strategy al-
gorithm (ISA), similar to the one introduced in [11]. This
incremental strategy may be used combined with εFRP in
order to find sparse solutions and also can be useful to find
the minimal tube containing the data.

Given a training set Zm and a fixed constant ε, the εFRP
algorithm can be seen as one that finds a point (w, b) inside the
version space V(Zm, ε). Suppose that one is able to construct
a tube radius ε̃ such that ε̃ < ε from a solution (w, b) ∈
V(Zm, ε) in such a way that the new version space V(Zm, ε̃)
is not empty. Then one can use the εFRP algorithm to find a
sequence of strictly decreasing tube radii ε0, ε1, . . . , εn such
that the corresponding version spaces are not empty.

One application of such a strategy is to identify support
vectors, or points that are the most outlining among the training
set. Suppose for instance that a radius εf is desired for a given
problem. Then one can proceed in the following fashion: first

one chooses a large ε0 and progressively decreases this radius
up to a final radius εn such that εn ≤ εf . This way, as the
radius shrinks, only the most outlining training points will have
an effect on the hypothesis, contributing to the sparsity of the
solution.

In the case where soft margins are not desired, one can use
the above strategy to approximate the minimal tube containing
the data, that is:

ε∗ := inf{ε : V(Zm, ε) 6= ∅}.

This can be done by iteratively producing new radii εn up to
a final iteration N where εN ≈ ε∗.

In order to construct a new radius value εn+1 from the
previous one εn, suppose that the εFRP finds a solution in
V(Zm, εn), namely (wn, bn). Define the corresponding posi-
tive and negative radius as: ε+n = maxi {yi − 〈wn, xi〉 − bn}
and ε−n = maxi {〈wn, xi〉+ bn − yi}.

A desirable feature for the final solution ε∗ is to have the
positive and negative radius balanced. This way, we can update
the radius by setting:

εn+1 =
(ε+n + ε−n)

2
. (7)

Notice that this new radius always yields a feasible solution,
since

−ε−n ≤ yi − 〈wn, xi〉 − bn ≤ ε+n ∀i (8)

and by adding (ε−n − ε+n)/2 to the inequality, a new solution
is obtained by only changing the bias term.

However, in some cases, it is possible to have ε+n ≈ ε−n and
the new radius would not be much different from the previous
value. In order to cope with this, we use the following update
rule for the radius:

εn+1 = min

{
(ε+n + ε−n)

2
, (1− δ/2)εn

}
.

It turns out that by adopting this rule, we might end up with an
empty version space and the εFRP will not converge. Hence we
stipulate a maximum number of iterations T for the εFRP to
converge. If the convergence was not achieved in T iterations
the algorithm then returns the solution for the last solved
problem. Therefore, the value δ should be chosen carefully
in order not to interfere in the incremental process.

In the case that a final radius εf is given and we are only
looking for a more sparse solution, the choice of δ must be
such that δ ≤ 2(1−εf/εn). If an approximation to the minimal
tube containing the data is desired, then this parameter can be
chosen according to the quality of the expected approximation.
That is, if an α-approximation of the minimum radius (i.e. the
final radius is less than (1+α)ε∗, α ∈ (0, 1)) is desired, then δ
should be set to the value of α. In order to see this, suppose that
we have a solution (wn, bn) ∈ V(Zm, εn), for some n ≥ 1,
and a new radius is constructed εn+1 = (1−α/2)εn. Suppose
that this new radius is such that εn+1 < ε∗. Then, εFRP will
not converge and the last feasible solution found in V(Zm, εn)
is returned. This final solution has radius εn, which satisfies:
εn = εn+1

(1−α/2) ≤
ε∗

(1−α/2) < (1 + α)ε∗.

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1

regression
tube

training points

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1

regression
tube

training points

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1

regression
tube

training points

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1

regression
tube

training points

1

Fig. 1. Incremental strategy algorithm process.

Finally, it is important to mention that each final εFRP
solution w is used as a starting point for the next εFRP prob-
lem. This strategy has the advantage that εFRP needs to make
fewer corrections to satisfy the new radius. In addition, for the
first εFRP, we set the initial bias term to b0 = 1

m

∑n
i=1 yi in

order to have better sparsity results. Algorithm 3 presents the
incremental strategy algorithm. We illustrate the incremental
strategy process in Figure 1.

Algorithm 3 Incremental strategy algorithm
Input: Zm, η, δ, ε0, T
Output: last feasible (w, b) and associated εn
w0 ← 0, b0 ← 1

m

∑n
i=1 yi

repeat
wn+1 ← εFRP(zm, wn, bn, η, εn, T)
εn+1 = min

{
(ε+n+ε−n)

2 , (1− δ/2)εn
}

until the convergence of εFRP in T iterations is not achieved

VI. EXPERIMENTAL RESULTS

In this section, we present some numerical experiments
using the proposed method in different artificial datasets. In
order to point out different technical aspects of the method,
this section was divided in three parts.

A. Effectiveness in obtaining sparse solutions

In this group of experiments we tested the εFRP combined
with the ISA (called εFRPISA). This is done in order to eval-
uate the effectiveness in obtaining sparse solutions. Therefore,
we also tested the εFRP (without ISA) and SVM-light ([16])
for comparison.

The training sets were generated from a chosen function
and polluted with Gaussian noise, y = f(·) + 0.2ξ, where
ξ ∼ N(0, 1). For the testing set, we generated new points in
the same range using the same function with no noise. This is
done in order to observe the ability to recover the true function.
The testing set has twice the number of points. Table I presents
details of generated data.

Data m Function Range
Exp 101 y = exp(−x2) x ∈ [−1, 1]

Sinc 101 y = sinc(x) x ∈ [−π, π]

TABLE I. SUMMARY OF GENERATED DATASETS.

All tests in this section were performed in the follow-
ing way. First, we calculated the range of the target values
r := maxi=1,...,m yi−mini=1,...,m yi in the training set. Then,
we set the value of ε to 0.1r for the εFRP and SVM algorithms.
The same value was used as stop criterion for εFRPISA.
The learning rate was set to η = 0.01. The capacity control
parameter was set to C = 100 . For dataset Exp dataset we
choose a polynomial kernel k(xi, xj) := (s 〈xi, xj〉+c)d, with
d = 2, s = 1 and c = 0. For dataset Sinc we used a Gaussian
kernel k(xi, xj) := exp(−γ||xi − xj ||2) with γ = 1. In each
case, we save the model and use it to perform the tests. The
results are presented in Table II.

In order to compare results we present the following
criteria: the percentage of support vectors (%sv) and the norm
of the solution. Also, for εFRP and εFRPISA, we present
the total number of iterations (T) and updates (up). As error
criteria, we measure the root mean squared error (RMSE) on
training and testing sets.

Training Testing
%sv norm T/up RMSE RMSE

Exp
εFRP 88.12 0.45083 8082/144055 0.17956 0.02712
εFRPISA 57.42 0.48948 11028/121655 0.17974 0.02681
SVM-light 52.47 0.72483 -/- 0.18008 0.04158

Sinc
εFRP 73.27 4.10598 8221/70484 0.17321 0.07384
εFRPISA 37.62 3.54023 8283/61339 0.17211 0.05920
SVM-light 35.64 3.70680 -/- 0.17344 0.06727

TABLE II. RESULTS REGARDING THE OBTAINING OF SPARSE
SOLUTIONS.

First, notice that the ISA proved to be a good approach to
maintain the sparsity of the solution. In all cases, the εFRPISA
obtained fewer number of support vectors than εFRP leading
to a more sparse solution. Notice that the percentage of support
vectors found by εFRPISA is slightly greater than what was
obtained by SVM-light.

The second observation is that when using ISA the εFRP
has a higher number of iterations as expected, once it starts
with a larger value for ε, however, notice that it needs fewer
number of updates. This indicates that the algorithm updates
only the most important points.

Considering the quality of the fit, εFRP and εFRPISA
achieved good results on the training and testing sets in
comparison with SVM-light.

B. Effectiveness in obtaining the minimal tube

In this section, we tested the εFRPISA without margin
flexibility in order to find an approximation to the minimal
tube containing the data. The tube achieved by εFRPISA was
then used to run SVM-light for comparison. It is important
to mention that this minimal tube cannot be found using the

standard SV-regression approach. Also, we implemented and
tested the NORMA algorithm [8] for regression.

In order to perform the tests, we used the same datasets
presented in the previous section. We set the number of
iterations to T = 1000 and the learning rate to η = 0.01
for εFRPISA and NORMA. Also, we set the regularization
parameter β = 0.01 for NORMA. We used two different values
for the parameter ν to run NORMA. In order to avoid the
margin flexibility we set the parameter C to a large value on
SVM-light. The kernel functions were set in a similar fashion
of previous section. In order to compare the results we present
the following: number of support vectors (sv), the radius of the
tube (ε) and the norm of the solution. In addition, we present
the RMSE criterion measured on the training and testing sets.
Results are presented in Table III.

Training Testing
sv ε norm RMSE RMSE

Exp
εFRPISA 8 0.3967 0.2613 0.18959 0.05585
NORMA (0.1) 19 (11) 0.3100 0.2971 0.18675 0.06257
NORMA (0.2) 26 (20) 0.2600 0.3953 0.18396 0.02767
SVM-light 3 0.3967 0.5068 0.19127 0.05841

Sinc
εFRPISA 16 0.3540 1.9114 0.18993 0.07545
NORMA (0.1) 25 (12) 0.3200 1.1951 0.20303 0.07601
NORMA (0.2) 47 (13) 0.3000 1.3210 0.22478 0.10871
SVM-light 10 0.3540 1.2626 0.19077 0.08690

TABLE III. RESULTS REGARDING THE OBTAINING OF MINIMAL TUBE
CONTAINING THE DATA.

The first observation is that NORMA did not yield a
sparse solution when compared to εFRPISA and SVM-light.
In addition, when NORMA achieved a smaller radius value,
it left points outside of the tube. The values in parenthesis
near the support vectors for NORMA represent the number of
points left outside of the tube. Considering the quality of the
fit, the εFRPISA shows good results comparing with NORMA
and SVM-light.

C. Effectiveness in large datasets

In this section we tested the εFRPISA in large data sets.
This is done in order to compare the run time of εFRPISA and
SVM-light.

The training sets were generated from a chosen mathemati-
cal function and the target values were polluted with Gaussian
noise in such way that y = f(·) + 0.1ξ, where ξ ∼ N(0, 1).
A summary about the generated data is presented in Table IV.
Also, Figure 2 illustrates the relation between training points
and target values for used functions.

Data m Function Range
F1 10006 y = sinc(x) x ∈ [−π, π]

F2 10001 y =
∣∣∣ x−1

4

∣∣∣+ ∣∣∣sen(π(1 + x−1
4))

∣∣∣+ 1 x ∈ [−10, 10]

F3 10001 y = sinc(
√
x2
1 + x2

2) xi ∈ [−10, 10]

TABLE IV. SUMMARY OF GENERATED DATASETS.

The experiments were performed in the following fashion:
For the εFRPISA we defined as stop criterion the radius εF1

=

Fig. 2. Dependent relations between points and targets for generated
functions.

0.1, εF2 = 0.2 and εF3 = 0.1. Also, we set the learning rate
to ηF1 = 0.01, ηF2 = 0.03 and ηF3 = 0.02. For all datasets
we used the final radius obtained with εFRPISA to run SVM-
light, ir order to obtain the run time to achieve the same final
radius. The capacity control parameter was set to C = 10 for
all experiments. Also we set the Gaussian kernel parameter to
γ = 1.0.

In order to compare the results we present the following
data obtained from the experiment: percentage of support
vectors (%sv); run time (rt); the tube radius (ε); solution
norm (norm); for εFRPISA we also present the total number
of iterations (T) and the total number of updates (up). The
results are presented in Table V.

%sv T/up ε norm rt
F1

εFRPISA 0.27 103/138 0.49859 0.71759 8.58
εFRPISA 0.33 163/222 0.39910 0.93835 8.66
εFRPISA 0.65 457/1510 0.29898 1.37356 9.63
εFRPISA 5.99 1470/40446 0.19904 5.19886 37.24
εFRPISA 17.97 2103/138435 0.14974 10.29991 106.36
εFRPISA 38.46 2914/381342 0.09949 18.64224 277.73
SVM-light 33.20 -/- 0.09949 1.45873 791.48

F2

εFRPISA 0.69 67/142 0.98938 2.12675 11.26
εFRPISA 0.75 118/205 0.68016 2.54115 11.32
εFRPISA 0.85 167/265 0.49988 2.93399 11.39
εFRPISA 1.73 412/1498 0.29944 3.66530 12.37
εFRPISA 3.91 678/6132 0.24400 4.80350 15.86
εFRPISA 10.34 906/23449 0.19846 7.81095 28.77
SVM-light 5.71 -/- 0.19846 4.54684 32.43

F3

εFRPISA 0.27 75/88 0.49038 0.79215 12.90
εFRPISA 0.33 107/127 0.39383 1.03416 12.93
εFRPISA 0.66 264/643 0.29984 1.38644 13.37
εFRPISA 8.23 1286/24495 0.19981 5.57679 31.92
εFRPISA 19.92 1884/82775 0.14817 11.28930 75.07
εFRPISA 44.96 2462/238715 0.09543 21.20861 190.40
SVM-light 35.55 -/- 0.09543 1.73510 1836.48

TABLE V. RESULTS COMPARING THE εFRPISA AND SVM-LIGHT IN
LARGE DATASETS.

We present incremental solutions obtained by εFRPISA
during its running time. This is done in order to show that
one has a feasible solution every time a call to FRP algorithm
returns. This technical feature might be interesting for time
dependent applications, where it might not be important to
obtain an exact solution.

In addition, notice that εFRPISA obtained a solution faster
than the SVM-light for every dataset. Also, notice that as the
algorithm approaches the final fixed radius value, the FRP

algorithm takes more time to converge. One explanation for
this behavior is that as the radius shrinks, the version space
becomes more restricted and a solution is more difficult to
achieve.

VII. CONCLUSIONS

In this paper, we introduced a new online learning method
for regression based on the stochastic gradient descent coupled
with the incremental strategy algorithm. The method uses
the ε-insensitive loss function which enables the use of the
support vector approach obtaining sparse solutions. When
formulated in dual variables, it allows the introduction of
kernels and margin flexibility. The algorithm is entirely based
on the Perceptron which makes it simple to understand and
implement. The experimental results show that the algorithm
works well in comparisons with the standard support vector
regression approach.

ACKNOWLEDGMENTS

The authors would like to thank CNPq, CAPES and InWeb
for financial support.

REFERENCES

[1] P. J. Huber, “Robust statistics: A review,” The Annals of Mathematical
Statistics, vol. 43, pp. 1041–1067, 1972.

[2] V. N. Vapnik, The Nature of Statistical Learning Theory. Springer,
1995.

[3] B. Boser, I. Guyon, and V. Vapnik, “A training algorithm for optimal
margin classifiers,” in Proceedings of the 5th Annual ACM Workshop
on Computational Learning Theory. ACM Press, 1992, pp. 144–152.

[4] A. Smola and B. Schölkopf, Learning with Kernels. MIT Press, 2002.
[5] J. A. K. Suykens and J. Vandewalle, “Least squares support vector

machine classifiers,” Neural Processing Letters, vol. 9, pp. 293–300,
1999.

[6] C. Gentile, “A new approximate maximal margin classification algo-
rithm,” Journal of Machine Learning Research, vol. 2, pp. 213–242,
2001.

[7] Y. Li and P. M. Long, “The relaxed online maximum margin algorithm,”
Machine Learning, vol. 46, pp. 361–387, 2002.

[8] J. Kivinen, A. Smola, and R. Williamson, “Online learning with
kernels,” IEEE Transactions on Signal Processing, vol. 52, pp. 2165–
2176, 2004.

[9] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer,
“Online passive-aggressive algorithms,” Journal of Machine Learning
Research, vol. 7, pp. 551–585, 2006.

[10] S. S. Shwartz, Y. Singer, and N. Srebro, “Pegasos: Primal Estimated
sub-GrAdient SOlver for SVM,” in Proceedings of the 24th interna-
tional conference on Machine learning. ACM, 2007, pp. 807–814.

[11] S. C. Leite and R. Fonseca Neto, “Incremental margin algorithm for
large margin classifiers,” Neurocomputing, vol. 71, pp. 1550–1560,
2008.

[12] J. Bi and K. Bennet, “A geometric approach to support vector regres-
sion,” Neurocomputing, vol. 55, pp. 79–108, 2003.

[13] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” Psychological Review, vol. 65,
pp. 386–408, 1958.

[14] K. P. Bennett and O. L. Mangasarian, “Robust Linear Programming Dis-
crimination of Two Linearly Inseparable Sets,” Optimization Methods
and Software, vol. 1, pp. 23–34, 1992.

[15] C. Campbell, “Kernel methods: A survey of current techniques,” Neu-
rocomputing, vol. 48, pp. 63–84, 2002.

[16] T. Joachims, “Making large-scale support vector machine learning
practical,” in Advances in kernel methods, B. Schölkopf, C. Burges,
and A. Smola, Eds. MIT Press, 1999, pp. 169–184.

