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Abstract—Attention allocation strategies represent key capabil-
ities of human beings, which are strictly connected with action
selection and execution mechanisms, while intrinsic motivations
directly affect the allocation of attentional resources. In this paper
we propose a model of Reinforcement Learning (RL), where
both these capabilities are involved. RL is deployed to learn
how to allocate attentional resources in a behavior-based robotic
system, while action selection is obtained as a side effect of the
resulting motivated attentional behaviors. Moreover, the influence
of intrinsic motivations in attention orientation is obtained by
introducing internal rewards associated with curiosity drives.
In this way, the learning process is affected not only by goal-
specific rewards, but also by intrinsic motivations depending on
the internal state of the system.

I. INTRODUCTION

THE concepts of attention and motivations are of great
interest in adaptive robotic systems. These mechanisms

can be exploited to guide, activate, and coordinate multiple
concurrent behaviors linking their variability to the circum-
stances in which they are activated. Beyond their role in
perception orientating and filtering, attentional mechanisms
are considered as key capabilities of human beings, which are
strictly connected with action selection and execution [Norman
and Shallice, 1986]. On the other hand, intrinsic motivations
directly affect the modulation and the control of attentional
resources, and affect action selection process. For example,
curiosity is considered the main drive for human beings to
explore novel situation and to learn complex behaviors from
experience [Berlyne, 1954], [Litman, 2005]. Moreover, recent
studies have shown that both attention and curiosity are strictly
related to the dopaminergic system responsible for action
driving. It is widely accepted, indeed, that dopamine affects
both the reward exciting, fundamental in the learning process,
and the demand of more attention by novel stimuli [Nieoullon,
2002], [Jepma et al., 2012].

The Reinforcement Learning [Montague et al., 1996] rep-
resents the main technique adopted as a computational model
of the dopamine-like reward system. Recent works incorporate
models for novelty and curiosity, within Motivated RL algo-
rithms [Baranes et al., 2013], [Singh et al., 2010], [Kaplan
and Oudeyer, 2003], to allow behavior adaptation and action
selection in response to the changing experiences of a robot.
Typically, within these approaches, RL is used to directly

model and optimize action selection strategies. Differently
from these approaches, starting from a previous work [Di
Nocera et al., 2012], we propose a model of action selection,
which is indirectly provided by the learning of attentional allo-
cation strategies by means of intrinsically motivated RL, where
the states exploration policy is modulated by the curiosity.
We refer to the model of attentional mechanisms proposed
by [Burattini et al., 2010], while for the curiosity model we
take inspiration from the model considered by [Litman, 2005].
As for the Motivated RL we consider an additional internal
rewarding system, whose purpose is to drive the agent to
progress in learning [Berlyne, 1954]. In the following section
we give a brief introduction on models that underlie the
mechanisms of attention and curiosity adopted in this work.
Whereupon, we present our Motivated RL model, where the
learning of the attentional strategies is driven by curiosity.
Finally, we detail our approach by describing a case study of a
simulated survival domain. Our main aim is to investigate the
impact of curiosity on attentional shifting and, consequently,
on action selection.

II. BACKGROUND

A. Attentional Shifting System

In this work, we refer to the attentional allocation frame-
work introduced in [Burattini et al., 2010]. In contrast with
typical work on visual attention [Itti and Koch, 2001], Burattini
et al. approach is not concerned with the orientation of the
attention in the space (i.e. the field of view), instead it is
about executive attention [Posner et al., 1980] and the temporal
distribution of attentional resources needed to monitor and
control multiple processes. This model of attention is inspired
by [Pashler and Johnston, 1998], where the attentional load
due to the accomplishment of a particular task is defined as
the quantity of attentional time units devoted to that particular
task, and by [Senders, 1964], where attentional allocation
mechanisms are related to the sampling rate needed to monitor
multiple parallel processes. Burattini et al. [Burattini et al.,
2010] propose, in fact, a frequency-based model of attention
allocation for regulating the sensors sampling rates and be-
haviors activations. Such an attentional allocation mechanism
is able to increase/decrease the arousal level of each behavior
with respect to salient internal/external stimuli, by changing



the activation frequencies of the behaviors and, consequently,
their priorities.

The model consists in a Behavior-based architecture [Arkin,
1998], [Brooks, 1986], where each behavior is endowed with
an attentional mechanism represented by an internal adaptive
clock [Burattini and Rossi, 2008].

Fig. 1. Schema theory representation of an attentional behavior.

The schema theory representation of an attentional behavior
is illustrated in Figure 1. This is characterized by a Perceptual
Schema (PS), which elaborates sensor data, a Motor Schema
(MS), producing the pattern of motor actions, and an attentive
control mechanism, called Adaptive Innate Releasing Mech-
anism (AIRM), based on a combination of a clock and a
releaser. The releasing mechanism works as a trigger for the
MS activation (e.g., the view of a predator releases the escape
behavior), while the clock regulates sensors sampling rate and,
consequently, the rate of possible behaviors activations. The
period pbt of each clock ranges in an interval [pbmin, p

b
max]

specific for each behavior b. The clock enables the data
flow σbt from sensors to PS by means of a trigger function
ρ(t, pbt) ∈ 0, 1 every pbt time units. A monitoring function
f(σbt , p

b
t−1) : Rn → N adjusts the current clock period pbt ,

according to both internal states and environmental changes.
In Section III we will detail our approach, showing how

we can learn the attentive monitoring function by means of
a RL technique, taking also into account the influence of the
curiosity intrinsic motivation.

B. Intrinsic Motivations: Curitosity

Curiosity is an appetitive state involving the recognition,
pursuit, and intense desire to investigate novel information
and experiences that demand ones attention. In literature,
we find two main theoretical accounts of curiosity: the opti-
mal arousal [Litman and Jimerson, 2004] and curiosity-drive
[Berlyne, 1950]. The curiosity-drive model assumes that the
main drive of curiosity is the reduction of uncertainty: novel
and ambiguous stimuli cause a need for a coherence restore
that reduces the uncertainty. This reduction is considered as
rewarding. This model is supported by studies showing that
unusual situations are associated with approaching behaviors
and attentional states (e.g., see the Loewenstein’s knowledge
gap/approach gradient [Loewenstein, 1994]). However, the
curiosity-drive model cannot explain why biological organ-
isms initiate exploratory behaviors without any stimuli. These
situations are instead well explained by the optimal-arousal
model (e.g., see the Spielberger and Starr model [Spielberger
and Starr, 1994]). Following this model, the biological systems
are associated with an homeostatic regulation of their arousal

level: when the arousal level is understimulated, the organ-
ism is motivated to increase the arousal and look for novel
situations; in contrast, when the organisms is overstimulated
additional stimuli are evaluated as negative and associated with
an avoidance behavior. While in the curiosity-drive model the
reward is associated with uncertainty reduction, in the optimal
arousal model, the induction of curiosity is directly rewarding.
Also this model is not completely satisfactory, because the gain
of new knowledge could reduce the feeling of interest. This
could be considered counter-productive if we assume that the
arousal state should be maintained (see [Litman, 2005]).

A combination of these two approaches is proposed by
[Litman, 2005] with interest/deprivation model of curiosity.
Here, both the satiation and the activation of curiosity can
be rewarding: the interest-based curiosity is driven by novel
stimuli and opportunity of learning, whereas deprivation-based
curiosity is driven by the uncertainty and lack of knowledge.
The interest/deprivation model of curiosity is related to the
neuroscience of the wanting and liking systems [Berridge,
2003], which are hypothesized to underlie motivation and
affective experience for a broad class of appetites. In this case,
wanting is associated with deprivation and need of knowledge,
while liking is associated with the expected pleasure due to
learning and knowledge acquisition.

Wanting
Liking Low High

Low LL: Ambivalent LH: Need for uncertainty
disinterest clarification

High HL: Curiosity as a HH: Curiosity as a
feeling of “interest” feeling of “deprivation”

TABLE I
LITMAN’S CLASSIFICATION OF CURIOSITY STATES WITH RESPECT TO
HIGH AND LOW LEVELS OF LIKING AND WANTING [LITMAN, 2005].

In Table I we show the Litman classification [Litman, 2005].
In this paper, we exploit a model of curiosity that is inspired
by the Litman’s combination of wanting and liking. In our
approach, the interpretation of these two are different and
related to our behavior-based architecture (see Section III-c).

III. MOTIVATED RL FOR ATTENTIONAL SHIFTING

Following the approach presented in [Di Nocera et al.,
2012], we design a new method for learning the attentional
shifting strategies by exploiting a RL algorithm [Sutton and
Barto, 1998], where also intrinsic motivations are considered.
Our aim is to understand how intrinsic motivations, such as
curiosity, could affect the learning process. In particular, a
Q-learning with a softmax (Boltzman) exploratory policy is
used to tune and adapt the sensors sampling frequencies, while
action selection is obtained as a side effect.

a) The Action Space: ASb is the set of possible periods
of activation P = {p1, . . . , pn}, which can be assigned to
the behavior b. Thus, an action ab is an assignment of the
clock period pb for each behavior b in every state, determining
the behavior activation frequency. The idea is that the system
does not directly learn the action to be executed, but it learns



attentional policies for adapting the activation frequencies of
each behavior, providing an action selection that indirectly
emerges from a particular configuration of the behaviors
attentional values. Furthermore, different attentional shifting
strategies will be learned depending on the level of curiosity
of the agent.

b) The State Space: SSb is defined as follows. The state
sb is determined by a triple (cb, pb, σb), where cb represents
the level of curiosity of the behavior, pb is for the current clock
period, and σb is the current perceptive state of a behavior b.
In particular the behaviors attentional monitoring periods pb

range in a predefined set of four possible values [pb1, p
b
2, p

b
3, p

b
4]

for each behavior. The perceptive state σb is considered to be a
partitioning of the total perceptive domain in equidimensional
intervals (i.e., each perceptive state is a sub-range of the
input signal). Finally, cb ranges in [LL,LH,HL,HH] meta-
spaces defining the relation between wanting and liking values
inspired by the curiosity model definition of Litman [Litman,
2005] (see section II-B). Therefore, the attentional allocation
policy πb : SSb → ASb represents a mapping between the
current state sb and the next value for the attentional period
pb, and should be learned by means of the QL algorithm.

c) Extrinsic and Intrinsic Rewards: Once defined the
Action and State spaces, we define the reward as follows:

Rb = (1− w) ∗Rbe + (w) ∗Rbi (1)

where Rbe is the extrinsic reward computed considering
the observed state, and Rbi represents the intrinsic reward
evaluated considering the satisfaction of an observation with
respect to a particular curiosity state. The value of Rbi is thus
computed as level of liking. The w value represents the level of
wanting, an internal unmotivated desire to explore something
(nothing particular or something specific depending on liking
level). Our assumption is that the level of wanting depends on
a sort of (global) energy state of the agent (see section IV). The
idea is that the robotic agent can explore new situations, guided
by curiosity, only when the system is in a wellness state,
while, when the system is under a certain wellness threshold,
attentional shifting strategies maintain attention focused on
priority behaviors (e.g., EAT and DRINK) rather than on
secondary ones (unaware exploration of new states).

Wanting
Liking Low High

Low Rb
e >> Rb

i Rb
e < Rb

i
High Rb

e > Rb
i Rb

e << Rb
i

TABLE II
WANTING AND LIKING RELATIONS AND THE ASSOCIATED RELATIONS

BETWEEN INTRINSIC AND EXTRINSIC REWARDS.

These mechanisms will imply that, when the situation is
critical the Rbi intrinsic reward value will be neglected with
respect to the Rbe extrinsic reward value, while Rbi will gain
more influence in determining the reward value as much as
the agent will be in a wellness state. Relations between Rbi ,
Rbe and wanting, liking values are synthesized in Table II.

IV. CASE STUDY

To test our approach we introduce the following Survival
Domain. The robot must survive for a predefined amount of
time within an environment avoiding obstacles and recharging
energy by eating and drinking. We consider simulated envi-
ronments of 16m2. Obstacles, water, and food locations are
cubes of size 0.5m × 0.5m × 0.5m, respectively of black,
blue, and green color (see Figure 7-left). An experiment ends
in a positive way if the robot is able to survive till the end of
the test (max time), while it fails in three cases: the robot
collides with an obstacle or dies of hunger or thirst. We test
our approach using a simulated Pioneer3-DX mobile robot
endowed with a blob camera and 16 sonar sensors (using the
Player/Stage tool http://playerstage.sourceforge.net/).

A. Internal Needs Functions

We assume that the robot is endowed with internal drives. In
our case study, we consider three internal needs: huger, thirst,
and sensation of safety. The Hunger function is to compute
the need for food:

Hunger(t) =Hunger(t− 1) + k × (nb act)

− (ef × food consumed).
(2)

Here, the hunger increases the need for food at each ma-
chine cycle by a k value for each active behavior (nb act),
and decreases it when a quantity of food is ingested
(food consumed), depending on the energy power of the
food (ef ). An analogous Thirst function is used to compute
the need for water:

Thirst(t) =Thirst(t− 1) + k × (nb act)

− (ew × water consumed).
(3)

Finally, a Safety function computes the need of safety and
depends on the current degree of danger:

Safety(t) =
min(σat )

σamax
× pamax − pat
pamax − pamin

, (4)

where the level of safety is calculated with respect to the
minimum distance between the robot current position and an
obstacle (σat ). When the distance decreases and the AVOID
activation period (pat ) is relaxed the safety decreases; vicev-
ersa, the safety increases when the activation period of the
avoid is suitably balanced with respect to the distance from
an obstacle.

B. Attentional Behaviour-Based Architecture

We consider three behaviors to model the robotic system:
AVOID, EAT and DRINK (see Figure 2). The domain for
AVOID spans in the interval [0, σamax]; the domain of DRINK
is [0, σdmax], where σdmax represents the maximum value for
the thirst function; the EAT domain is in [0, σemax], where
σemax is the maximum state of hunger the robotic system can
assume. The perceptive state of each behavior is obtained as
a discretization of the perceptive domain using 4 equidimen-
sional intervals [σb1, σ

b
2, σ

b
3, σ

b
4] used for indexing the learning

state space by means of the triple (cb, σb, pb). In the case



study, assuming the minimum clock period as 1 machine cycle,
the possible period set for the AVOID, EAT and DRINK is:
pa, pe, pd = {1, 4, 8, 12}.

Fig. 2. Attentional Behavior-Based Architecture with intrinsic motivations.

d) Extrinsic Rewarding function: We assume the reward
always positive except for a strong penalty if the system is not
able to survive. For the other cases the reward is computed,
for each behavior, considering two additive components. The
first evaluates the impact of frequent activation of a specific
behavior. The higher the frequency, the smaller is the obtained
reward. This component is equal to zero if pbt = pbmin.
The second component is related to the specific behavior.
In particular, concerning AVOID, each activation is rewarded
directly proportional to the distance from the obstacle.

Rae(t) =

{
1
2 ∗

[
pat −p

a
min

pamax−pamin
+ (

σa
t −σ

a
min

σa
max−σa

min
)
]
, if !crash

penalty, otherwise
(5)

As for EAT behavior, for each activation, the reward is
inversely proportional to the current hunger value. A system
that is hungrier takes a smaller reward.

Ree(t) =

{
1
2 ∗

[
pet−p

e
min

pemax−pemin
+ (1− σe

t

σe
max

)
]
, if !crash

penalty, otherwise
(6)

Finally, each activation of DRINK is rewarded in a way that
is inversely proportional to the current value of thirst:

Rde(t) =

{
1
2 ∗

[
pdt−p

d
min

pdmax−pdmin

+ (1− σd
t

σd
max

)
]
, if !crash

penalty, otherwise
(7)

For our experiments we adopt the following settings:
• penalty: −max cycles maximum penalty (−1500 units

of penalties, where 1500 is the medium number of cycles
for episode);

• max time: maximum time allowed to accomplish the
task (180 seconds);

• σamax: maximum sonar range (1 meter);
• σamin: safety minimum distance (0.4 meters);
• σemax: maximum value for σet (1500 units of charge);
• σemin: minimum value for σet over which the robot needs

to Eat (300 units of charge);

• σdmax: maximum value for σdt (1500 units of charge);
• σdmin: minimum value over which the robot needs to drink

(300 units of charge).
We choose as learning rate α = 0.8, while for what concerns

the SS, we refer to the tests implemented in [Di Nocera et al.,
2012] considering a 24 states setting, since it has been shown
this represents the best regulation in this kind of environment.

C. Motivated Attentional Framework

Intrinsic rewards are modeled by Curiosity, which, accord-
ing to the description of above, we divide into two emotional
components dealing respectively with the feeling of wanting
and liking. We link the first one to the concept of residual
energy for the robot body, while the second one to the level
of novelty in the exploration of the learning states.

We consider a global value E(t) called Energy, that takes
into account all the variables regulated by the three needs
functions defined above.

E(t) =E(t− 1)− eu − enb ∗ (nb act)+
ef ∗ (food consumed) + ew ∗ (water consumed)

(8)

where the current value of the energy E(t) is computed
starting from the previous level of energy E(t − 1), decre-
mented of one unit of energy eu supposed to be the energy
consumed at each machine cycle. Then, we also consider the
energy spent to activate each behavior enb, where nb act is
the number of currently active behaviors. On the other hand,
we assume increments of the energy in correspondence of
consummatory behaviors, such as EAT or DRINK, where the
quantity ef /ew of energy, related to a particular food/water
object, is assumed when these are consumed (i.e. if boolean
conditions related to food consumed and water consumed
are true).

Fig. 3. Energy(t) is the curent energy level; E well: is the level of
energy corresponding to a wellness state of the system; the blackline is for
the minimum amount of energy permitting the system to work.

We model the wanting component of the Curiosity as the
residue of the Energy value (3).

w = Ec = E(t)− E well (9)



That is to say that the robot can show a curious behavior
only when the situation is not critic (i.e. only when the
global energy exceeds the E well threshold, indicating a sort
of wellness state of the system). E well is supposed to be
associated to a state of the system where the regulation of
the periods of activation of the different behaviors is well
balanced and leads to a suitable scheduling of the actions. We
can interpret this residue value Ec as the energy that the system
can spent not giving attention to prior behaviors, but just going
around searching to reduce its curiosity or to move towards
liking things. The second component of the curiosity is the
liking, which we model as quantity related to new situations
and represents the internal reward. In particular, since the
curiosity in our system is interpreted as the exploration within
the learning states space, we can assume that the novelty of a
space is computed as follows:

l = Rbi = 1− NV (σbt )

NV tot
(10)

where, NV is for number of visits and NV (σb
t )

NV tot represents
the number of times the percept σbt has been observed during
the previous NV tot observations. We, thus, maintain a sort
of temporal window of value NV tot. In this way, on the
one hand, we have an idea of how new is the observation;
on the other hand, considering a finite temporal window, we
simulate a sort of lapsing mechanism of the novelty of the
states observations. The model of the temporal window can
be compared to the Itti’s model of surprise [Baldi and Itti],
by interpreting the temporal window as the approximation of
a statistic on the percept. That is to say that if the system
is not observing a percept for NV tot times, the stimulus
becomes likable again. While, if the system observes that
particular perceptual state σbt many times (i.e. NV tot), the
stimulus associated becomes boring. The Curiosity modeled
as above (depending on both liking and indirectly from global
Energy value of the system) will affect the learning progress by
providing an internal reward (details will be provided in next
paragraphs) based on the wanting and linking combination.

V. EXPERIMENTAL RESULTS

In order to observe how the curiosity affects the learning
process we first compare the convergence, in terms of survival
time percentage, of the learning process of a robotic system
endowed with intrinsic motivation (CR = CuriousRobot)
with one that does not (NCR = Not−CuriousRobot). The
plot in Figure 4 shows that during the first 220 episodes the
NCR system is more able to survive in the environment, in
fact, the survival time percentage starts from a value of 92%.
This could be due to the fact that the curiosity, initially, leads
the system to prefer the exploration of novel spaces rather
than goal-directed ones. After a while the CR system starts to
rapidly increase its survival time until it over pass the NCR
system and reach the convergence (100% of the survival time)
at the episode 278, w.r.t. the NCR system that does not reach
the convergence before the episode 382.

Fig. 4. Survival time percentage (averages each 100 episodes). Comparison
between CR and NCR systems.

Figure 5 shows the cumulative rewards for each behavior
during the learning process. As expected, during the first

Fig. 5. Comparison between Curious (red line) and Not-curious (blue line)
Robot rewarding values during learning process.

episodes, the CR fails in the sense that it is not able to
learn suitable attentional strategies for regulating the behaviors
activation. The cumulative rewards related with the CR AVOID
behavior are worst w.r.t the NCR one until the episode
200, then they start to increase and to converge from the
episode 300. Instead, the NCR shows a trend that seems
not satisfactory concerning the cumulative rewards for the
EAT and DRINK behaviors. This could be due to the fact
that the robot is not guided by curiosity to immediately
explore the spaces of the environment where there are food
or water. It just learns to eat or drink when the associated
needs functions exceed certain thresholds. Despite at the end
of the experiments NCR EAT and DRINK rewards converge
to better values, the global cumulative rewards show a faster
convergence for the CR (see Figure 5). Moreover, if we look
at the trend of the needs functions (see Figure 6), we observe
a stable rhythmic path for each function for the CR. We



Fig. 6. Vital Functions Comparison.

interpret the plots, in the case of the CR, as an effective
learned attentional shifting policy of the behaviors EAT and
DRINK. The robot seems to find a rhythmic alternation in
its needs for eating and drinking (the decreasing part of the
two functions corresponds to the consuming of food/water),
while the NCR just waits to become very hungry/thirsty for
searching sources of food/water. Finally, an unexpected result
is that the motivated RL has lead the learning process not
only at exploring new internal learning states, but it has also
affected the spatial exploration of the environment. In Figure 7
we observe that the CR is more explorative (the cumulative
traces of 500 episodes covered the 50% of the total area) with
respect to the NCR (44% of the total area covered).

Fig. 7. The experimental environment and the cumulative paths of the CR
(red line) and NCR (blue line) during the learning process.

VI. CONCLUSIONS

In this work we proposed an intrinsically motivated RL,
where the states exploration policy is modulated by the
curiosity, while rewards are evaluated not only considering
external cues, but also some internal motivations. The collected
results show that the approach is feasible and effective and this
learning process achieves very good results in orchestrating be-
haviors. That is, the curiosity-driven RL, applied to attentional
shifting, allows to improve behaviors coordination and action
selection. It provides the robot with an increased adaptation
skill, permitting the robot to survive in the environment. The
system learns how to dynamically and suitably adapt the
behaviors activation rates in order to balance the regulation of
the needs functions and of the global energy of the system.
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