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Abstract—The squared error is a measure commonly em-
ployed for training neural networks. Alternative objective func-
tions, directed for classification tasks, may be relevant for training
neural networks classifiers. The present paper discusses why some
types of objective function, used in training neural networks
for classification, have shown better performance compared to
the usual mean squared error (MSE). The study deals with the
concept of winner-takes-all (WTA). For the condition of a trained
network, it is demonstrated through a variance inequality that the
application of the smooth WTA criterion (softmax) in the output
estimates made by a multilayer perceptron (MLP) classifier tends
to reduce the variance of such estimates. However, as the softmax
approximates the abrupt WTA criterion, there is no variance
reduction due to such inequality. On the other hand, considering
a network to be trained, error measures based on the composition
of MSE with WTA are defined to serve as objective function of
particle swarm optimizer in training a MLP for solving logic
gates classification. Experimental results point out that the steeper
is the WTA criterion, the faster is reaching a solution for the
AND gate, moreover, the functions depending on a steeper WTA
were superior to the simple MSE. Curiously, in the case of XOR
problem, the solution was more often reached when using the
pure MSE, whereas most objective functions based on the WTA
criterion were not able to achieve a solution before the maximum
number of evaluations.

I. INTRODUCTION

In a typical supervised approach for training MLP classi-
fier, the learning algorithm consists in minimizing the MSE
using gradient-based methods for adapting the network’s
weights [1]. In training neural networks, the MSE may not
be the most appropriate measure to accomplish specific tasks.
Specifically regarding the classification task, a minor MSE
does not necessarily corresponds to a lower classification error
[2], [3], [4]. Therefore, the optimization of error measures
directed to classification tasks may be relevant for training
neural networks classifiers.

Some disadvantages of the gradient-based methods are: it
can easily get stuck in a local minimum of a multimodal error
surface; it is not appropriated for nondifferentiable functions;
it is necessary to develop a specific procedure for each type of
objective. On the other hand, there is plenty of metaheuristic
algorithms that perform global search, do not require gradient
information and enable simple and straightforward use of
diverse objective function forms without the need to develop
particular training procedures [5].

Particle swarm optimization (PSO) is a population based

metaheuristic method inspired by collective behaviour of bird
flock, in such way it takes advantage of group information.
One of the early applications of PSO was on training MLP
network [6]. With regard to squared error minimization, PSO
converges faster than typical backpropagation, and it achieves
good performance compared to genetic algorithms, adaptive
chaotic PSO and modifications of backpropagation [7], [8],
[9].

In a previous work, we used two alternative objective
functions, specific for classification problems, in training a
MLP through PSO for solving a realistic problem of pixel
classification. Such alternatives, the mean multiclass errors of
type I and II, respectively, MTIE and MTIIE, were compared
to MSE. The convergence was faster with multiclass errors
in relation to MSE usage, when using each one of multiclass
errors resulted in a higher classification accuracy with a lower
number of evaluations. Moreover, the standard deviation of
accuracy was expressively lower during the training process,
when were used the multiclass errors [10].

Concerning representation of classification problems, the
abrupt winner-takes-all (WTA) is a way for mapping the real-
valued outputs to binary symbols representing classes. For the
neurons in the last layer, such criterion consists in the neuron
of maximum output be mapped to 1 and all other to 0 [11]. A
related concept is the softmax function, a smooth version of
abrupt WTA criterion, by means of which it is possible inter-
preting network outputs as probabilities, with the smoothness
degree set by a real parameter [12], [13]. Many classification
evaluation measures are dependent of the abrupt WTA criterion
to discriminate classes, including the multiclass errors and
the global accuracy [10]. Objective functions depending on
the abrupt WTA are non-differentiable and, therefore, are not
suited for using with the typical backpropagation method.

The abilities to solve classification problems (accuracy) and
to produce classifiers with lower variance (precision) are the
two main issues of present paper. The aim is not to assess
training algorithms, but rather to discuss the impact of WTA
with different degrees of smoothness on objective functions
related to classification tasks. This paper discusses possible
reasons why mean multiclass errors, besides other objective
functions using abrupt WTA, yielded better accuracy and
precision when compared to MSE. The present work involves
an analytical study about variances inequality in the condition
of a trained network when the smooth WTA is used or not. As
also, an experimental approach is carried out to evaluate the



classification accuracy when objective functions with different
degrees of smoothness in WTA criterion are employed.

The next sections are organized as follows: the section
II contains some basic concepts related to MLP training via
PSO for classification tasks. In section III, related works are
reviewed. The section IV deal with a variances inequality
analysis through derivatives. Section V defines some objective
functions that are after employed in an experimental study
described in section VI. Experimental evidences are presented
in section VII. The conclusions are done in section VIII.

II. BASIC CONCEPTS

A. Particle Swarm for Multilayer Perceptron Training

In PSO, the i-th particle is associated to a position vector
xi ∈ Rn and a velocity vi ∈ R. By applying PSO algorithm to
evolve a neural network, each particle position vector contains
neural network’s weights and represents a point in the search
space. It is considered that the network structure is fixed, and
just the network weights are adapted. In this way, each position
visited by a particle defines a network setting that is evaluated
for all input patterns in training dataset. Thus, the error metric
used to evaluate the network performance corresponds to the
value of objective function for the respective particle.

During PSO evolution, the update on velocity of a given
particle is influenced by global best position g ∈ Rn and its
own best position pi ∈ Rn, according to equation

vi,j = wvi,j + c1rp(pi,j − xi,j) + c2rg(gj − xi,j), (1)

where w is the inertia weight, c1 and c2 are real parameters,
rp and rg are uniform random number in [0, 1] and indexes i
and j indicate, respectively, particles and coordinates in search
space [14]. Moreover, positions are updated as follows

xi,j = xi,j + vi,j . (2)

Some rules of thumb can be used for limiting the particles’
velocities and retaining them inside a predefined search space
[10], [15].

B. Classification Representation and Multilayer Perceptron

The MLP can be used in supervised classification prob-
lems. In this way, input layer receives instances of feature
vector x, and the output layer is responsible for indicating the
class. The representation of examples can be made according
to 1-of-C encoding. Formally, let x ∈ RN be an instance of
the input data for the MLP, and let d = {di; i = 1, . . . , C}
be an indicator vector of label assigned for each class Ci, the
1-of-C encoding is such that:

di =

{
1, if x ∈ Ci,
0, otherwise.

(3)

The output layer of the MLP have to correspond to the scheme
1-of-C. Thus, the number of neurons in the output layer is
equal to the number of classes. Furthermore, the values of
each neuron at output layer should be in the range [0, 1].
A differentiable activation function that produces values in
such range is usually employed as required by the gradient

based optimization methods. Nevertheless, there is a need to
employ a discriminant criterion for indicating the output class.
A possible choice is the Winner-Takes-All (WTA) criterion,
according to which is assigned value of 1 (one) to the largest
neuron in the output layer indicating the resulting class, and
the other outputs receive 0 (zero) [11]. The WTA is related to
the bayesian discriminant criterion, whether the output values
can be interpreted as a posteriori probabilities [16].

III. RELATED WORKS

A. Two Categories of Objective Function

It is common to separate objective functions into two types:
those based on quadratic error as sum and average of squared
errors; and others based on Information Theory, for example,
cross-entropy, maximum mutual information and Kullback-
Liebler divergence [16], [11], [17].

It was proved that both types of objective functions are
able to approximate the output of a MLP network to the a
posteriori probabilities P (Ci|X), for each class Ci given the
input random vector X, in classification problems using the
1-of-C encoding [16], [18].

B. The Softmax Function

The softmax function was proposed by Bridle [12] as a
manner to permit the interpretation of network outputs as
probabilities, since the use of logistic activation by itself does
not guarantee that the sum of all outputs is 1 (one). Softmax
preserves the order of input values and is a differentiable
indicator of maximum, that is, a smooth approximation of the
WTA criterion [13]. For a set of variables {zi, i = 1, . . . , C},
the softmax function for each variable is defined as a normal-
ized exponential transformation:

f(zi) =
exp(αzi)∑C
i=1 exp(αzi)

, (4)

in which the parameter α > 0 is the steepness degree, that is,
the larger α, the more abrupt is the function variation [11].

Commonly the softmax activation function is employed
with objective functions based on Information Theory. One
reason is that, in some cases, the derivative of the objective
function, with respect to a given output, leads to the error, that
is, the difference between the obtained output and the desired
output, this fact is called "natural pairing” of objective function
and output unit activation function [13], [11], [19].

C. Evaluations of Squared Error with Softmax

In the following, some works that used the soft version of
the WTA are reviewed. In all of them, the logistic activation
function was employed in the intermediate layers, and different
activation functions were evaluated in the output layer. In
summary, the results of these initiatives suggest that the appli-
cation of softmax is related to higher classification accuracy,
less training time and reduction of dispersion in outputs, so
increasing precision.

Kline et al. [17] argue that the cross-entropy has the follow-
ing advantages: non-Gaussian assumption, greater robustness
to outliers, it should perform better in estimating relatively



small conditional probabilities. Furthermore, these authors
provided experimental evidence that the softmax activation
with cross-entropy tends to produce lower values of average
absolute deviation compared to logistic activation with squared
error.

A marked reduction in training time was found in [20], in
the case which the logistic activation function was employed
together with relative entropy, compared to the sum of squared
error with linear activation. The improved performance was
attributed to a steeper error surface found when using relative
entropy. A similar observation was made later in [21].

In [19], three different combinations of objective and acti-
vation were compared with respect to the mean and variance
of classification accuracy. From worst to best performance,
the results were: logistic activation and squared error, softmax
activation with squared error and softmax activation with cross-
entropy.

IV. VARIANCES INEQUALITY

In this section, the aim is analysing some features of ob-
jective function able to influence the precision of the obtained
classifier. In doing so, it is demonstrated through a variance
inequality that by applying the smooth WTA in the estimates
made by an already trained MLP, it tends to reduce the variance
of these estimates. However, it could be seen that insofar as
the abrupt WTA criterion is approximated, there is no variance
reduction due to such inequality.

The starting assumption is to consider a network already
trained, in which the weights of the MLP are fixed, and the
only source of randomness is intrinsic to the data. This is a
simplifying assumption, a more intricate approach would be
dealing with the random processes involved in the stochastic
optimization as made by the particle swarm technique. In this
manner, it is defined X ∈ RN , a random vector that determines
the distribution of the realization vector x, representing the
input data of a MLP. Let D = {Di; i = 1, . . . , C} be a
random vector representing the desired labels of each class
Ci, an indicator such that:

Di =

{
1, if X = x ∈ Ci;
0, otherwise;

(5)

in according to the 1-of-C scheme. Also let D̂ = {D̂i; i =
1, . . . , C} be a random vector consisting in i outputs of a
MLP obtained after successful training. The assumption of
successful training means that D̂i is an estimator of Di, such
that E[D̂i|X] ≈ E[Di|X]. Note the difference in the fact that
the outputs obtained from the network are restricted to a range,
that is D̂i ∈ [0, 1], which can be assured via logistic function,
while Di can assume only the values {0, 1}. Observe also that
D̂ depends on X too. Suppose that new data, of the same sort
used for training, should be classified. The effect of using the
smooth WTA criterion on the variance of D̂i given such new
data X is the focus of present study.

According to the law of total variance applied to each
output estimator:

V ar(D̂i) = E[V ar(D̂i|X)] + V ar(E[D̂i|X]), (6)

that rewriting as

V ar(E[D̂i|X]) = V ar(D̂i)− E[V ar(D̂i|X)] (7)

and using the fact that variances are positive by definition, we
obtain the inequality:

E[V ar(D̂i|X)] < V ar(D̂i). (8)

Then, it is sufficient reducing the i variances V ar(D̂i)
of the outputs produced by the MLP for also decreasing
V ar(E[D̂i|X]).

Consider the Theorem 1, proposed by Tang and See [22],
which provides a general inequality for variances of functions
of a random variable based on derivatives.

Theorem 1. Let f and g be absolutely continuous functions
on an interval L. Thus, V ar([f(X)]) ≤ V ar([g(X)]) for any
random variable X with P (X ∈ L) = 1 if and only if f and
g satisfy both of the following properties:

• g(x) = g(y) implies f(x) = f(y);

• |f ′| ≤ |g′| almost everywhere.

The first property of Theorem 1 means that f can be written
as a function of g. The second property is true if the places
of the probability space in which |f ′| ≤ |g′| does not happen
have zero measure. In the following, it is demonstrated the
following proposition:

Proposition 1. By applying the softmax function to the outputs
of a MLP, the variance in each output estimator tends to be
smaller or equal, that is:

V ar

(
exp(αD̂i)∑C
j=1 exp(αD̂j)

)
≤ V ar(D̂i). (9)

In order to verify the inequality in (9), let be:

f(D̂i) =
exp(αD̂i)∑C
j=1 exp(αD̂j)

(10)

and
g(D̂i) = D̂i. (11)

Regarding absolute continuity, it can be shown that if
a real-valued function has a bounded first derivative on the
interval [a, b], then such function is absolutely continuous on
[a, b] (see [23, pg. 288]). From what it is verified that the
functions f (10) and g (11) are absolutely continuous.

The first property required by Theorem 1 is satisfied, since
f (10) is a function of g (11). For verifying the second prop-
erty, consider the derivatives of g(d̂i) and f(d̂i), respectively,
g′ = 1 and

f ′ = α
exp(αd̂i)∑C
j=1 exp(αd̂j)

(
1− exp(αd̂i)∑C

j=1 exp(αd̂j)

)
. (12)



For clarity, the function f ′ is renamed such that f ′(d̂i) =
h(d̂i). For obtaining the point where h is maximum, it is
carried out the first derivative test of h:

h′ = α(α+ 1)

(
exp(αd̂i)∑C
j=1 exp(αd̂j)

)3

− α(α+ 2)

(
exp(αd̂i)∑C
j=1 exp(αd̂j)

)2

+ α
exp(αd̂i)∑C
j=1 exp(αd̂j)

,

(13)

taking z = exp(αd̂i)/
∑C
j=1 exp(αd̂j) and rewriting (13), it

is obtained:

h′(z) = αz(z − 1

α+ 1
)(z − 1), (14)

an equation with roots {0, (α + 1)−1, 1}. Moreover, h is in-
creasing on

]
0, (α+ 1)−1

[
, because h′ > 0, and decreasing on]

(α+ 1)−1, 1
[
, since h′ < 0, what implies that z = 1/(α+1)

is the maximum point of h. Replacing eαd̂i/
∑C
j=1 e

αd̂j =
1/(α+ 1) in f ′ (12), the value at the maximum point is

α2

(α+ 1)2
, (15)

what for α non-negative and finite is less that g′ = 1

In the condition in which the softmax function approx-
imates the abrupt WTA criterion, that is, for α → ∞, the
absolute continuity condition is not satisfied. However, as α is
increased, the expression (15) tends to 1, closer and closer to
g′ = 1. Thus, the more softmax approaches the abrupt WTA
criterion, the greater is the variance on the outputs. Then, by
using the abrupt WTA criterion there is no variance reduction
due to such inequality, whereas a smooth WTA criterion may
reduce the variance on outputs.

The previously demonstrated inequality is referent to the
condition of fixed neuron weights and randomness present
only in the data. In the following sections, the neuron weights
are adapted in the training process by PSO and the classifier
performance is experimentally assessed.

V. MEAN SQUARED ERROR WITH WINNER-TAKES-ALL

Let {d̂i, i = 1, . . . , C} be the output estimates of a MLP,
then the abrupt WTA criterion can be defined according to
function:

si(d̂i) =

{
1, if d̂i = max(d̂1, . . . , d̂C)

0, otherwise.
(16)

Including to notation the indices {j = 1, . . . ,M} for a set of
examples being evaluated, the mean squared binarized error
(MSBE) is defined as:

M∑
j=1

C∑
i=1

(si(d̂ij)− dij)2. (17)

In expression (17), if instead of abrupt WTA, it is used the
softmax function with parameter α, the above equation is

TABLE I. LOGIC GATES WITH TWO OUTPUTS

Output
Input AND XOR

n1 n2 class n1 n2 class
0 0 0 1 C0 0 1 C0
1 0 0 1 C0 1 0 C1
0 1 0 1 C0 1 0 C1
1 1 1 0 C1 0 1 C0

referred to as Mean Squared Error with Softmax (MSES-α).
Note that, for the MSES-α the derivative in relation to each
d̂ij is proportional to α, as can be obtained after applying the
chain rule. Thus, the closer to the abrupt WTA, the steeper is
the error surface in the direction of each output estimate.

VI. EXPERIMENTAL SETTING

In the experiment, MLP networks were trained via PSO
for solving generic classification problems, more precisely,
the mapping of input/output represented by logic gates. The
objective functions evaluated were MSE, MTIE1, MSBE and
MSES-α for different parameter values. Two neurons on the
output layer were employed, for making possible to use the
abrupt WTA criterion as above defined (16). The truth table
for logic gates with two output was defined as follows: the
first output neuron n1 is equal to the case of a single output;
while the second neuron n2 is the negation of the first. See the
Table I for AND and XOR logic gates used in the experiment.

The MLP network structure consisted in: two input nodes,
two neurons with logistic activation in both hidden and output
layers. In PSO, 20 particles were used, the other parameters
were w = 1, c1 = 2, c2 = 2, the search space in each
coordinate was limited to the interval [−12, 12]. The maximum
velocity was kept in the range [−1.5, 1.5]. When some particle
left the search space, it was repositioned along each coordinate
in the opposite direction by the sum of an uniform random
variable between 0 and 60% of the exceeded limit value. A
modified version of an independent source code2 was used
as a way for verifying the reproducibility of our previously
published results involving mean multiclass errors. After test-
ing some values, MLP and PSO parameters were maintained
as was originally in the published source code, since that the
tested values did not change results significantly. The objective
function is coded as a fitness, defined as the reciprocal of error
plus a small constant and, therefore, maximized. The latter
fact does not change the overall reasoning since the problem
is equivalent to minimizing an error measure.

The training process was repeated 30 times for statistical
evaluation. The stopping criterion for training was to solve the
input/output problem represented by logic gates, or reaching
4000 evaluations of the objective function. For checking if
the problem has been resolved, the abrupt WTA criterion is
applied to network’s outputs, regardless of objective function
optimized. The objective functions were compared with respect
to the number of evaluations until stopping the training. The

1The MTIE and MTIIE are equivalent for binary classification
2Original version was available at http://www.lwebzem.com/cgi-bin/

courses/course_view.cgi?m=c10_m2_s3.html&user_id=&c=particle_swarm_
optimization

http://www.lwebzem.com/cgi-bin/courses/course_view.cgi?m=c10_m2_s3.html&user_id=&c=particle_swarm_optimization
http://www.lwebzem.com/cgi-bin/courses/course_view.cgi?m=c10_m2_s3.html&user_id=&c=particle_swarm_optimization
http://www.lwebzem.com/cgi-bin/courses/course_view.cgi?m=c10_m2_s3.html&user_id=&c=particle_swarm_optimization
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Fig. 1. Distribution of evaluations in the AND problem

Wilcoxon’s rank sum test was carried out to test the null
hypothesis of that the samples represent the same distribution
[24], with a significance level of 5% was used.

VII. RESULTS AND DISCUSSION

In Figure 1 is presented the distribution of evaluations until
stopping training, referring to AND problem for several ob-
jective functions. In relation to objective functions depending
on abrupt WTA, the MSBE was not different to MTIE, and
consistently there was no rejection of the null hypothesis with
p-value = 0.6573. In addition, with MSBE the number of
evaluations tended to be lower than with MSE only, and this
difference was significant p-value = 2.1012×10−8. As regards
the MSES, there was a tendency that as the parameter α was
increased, a smaller number of evaluations has been spent,
moreover, it is possible to note a reduction in the variance
(lower interquartile range), especially from MSES-2 to MSES-
5. The best performance when increasing the α values, can be
explained in terms of the derivative of MSES in direction of
d̂ij , that is proportional to the α parameter , indicating that
the steeper the error surface, the more easily a solution was
reached in the training process.

For the XOR gate, the distribution of evaluations is pre-
sented in Figure 2. Most objective functions using the WTA
criterion was not able to achieve a solution before the maxi-
mum number of evaluations, except for the MTIE that reached
the solution a few times. On the other hand, the MSE reached
a solution in many cases. It is not clear at this time why the use
of objective functions based on WTA has made more difficult
solving the XOR problem than with MSE.

Compared to other works with respect to efficiency for
the most common case of MSE optimization for solving the
XOR problem, the version of PSO employed may not be the
best method, it spent on average 2214 epochs (evaluations
of training set). An earlier work employing the original PSO
reported the resolution of XOR problem with just 9 epochs on
average [25]. In another work, alternative PSO versions were
able to solve the XOR problem in dozens of evaluations, while
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the basic PSO was not even able to converge [26]. In [27],
a variety of backpropagation methods were related to results
ranging from 24 to 3495 epochs, and the author highlighted
that the stopping criterion used may greatly influence the
obtained number of epochs.

VIII. CONCLUSION

It was studied the influence of using the WTA criterion
in the classification performance of MLP network. In the
situation of a trained network, with randomness present only
in input examples, it was demonstrated a tendency of variance
reduction on the output estimates when applying the smooth
WTA criterion, but such reduction is lost insofar that the abrupt
WTA is approximated. On the other hand, a network to be
trained with an objective function that depends on a steep
WTA criterion tends to reach a solution faster than with a
simple MSE for the AND problem. For the XOR problem, the
pure MSE was the best objective seeing that often it gives a
solution, whereas the objective functions based on the WTA
criterion remarkably failed.

Assuming that an unbiased estimator of higher variance
would be preferred over a biased estimator of lower variance.
This could lead to choose either an objective function that
depends on a steep WTA criterion for problems like the
AND gate classification, or the MSE as objective for the
XOR problem. In ultimate analysis, what is the best objective
function to use is still very data dependent.

Future works may evaluate other PSO versions in order
to reduce the number of epochs spent. More experiments
involving other datasets are also required, for verifying if
results involving the WTA based errors maintain the observed
pattern. The variance inequality found may be relevant in
a more general context, so it must be further studied and
supported by simulation examples.
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