
Single-shot learning algorithm for quantum
weightless neural networks

Adenilton J. da Silva and Teresa B. Ludermir
Centro de Informática

Universidade Federal de Pernambuco
Recife/PE, Brazil 50740-560
Email: {ajs3,tbl}@cin.ufpe.br

Wilson R. de Oliveira
Departamento de Estatı́stica e Informática

Universidade Federal Rural de Pernambuco
Recife/PE, Brazil 52171-900

Email: wrdo@gmail.com

Abstract—In this paper we present a new quantum learning
algorithm for quantum weightless neural networks that is based
on quantum superposition principle. The main characteristic
of this quantum learning algorithm is its capacity to train a
neural network with only one execution of the neural network
model. The proposed algorithm is denoted Single Shot quantum
Learning Algorithm (SSLA). SSLA is based in the GSN learning
algorithm that also requires a single presentation of the train data
to the network and in a superposition quantum based learning
algorithm.

I. INTRODUCTION

Weightless neural networks(WNNs) were firtly proposed by
Aleksander [1], [2] and are a simple model of artificial neural
network. Inputs and outputs of WNNs are normally Boolean
values and WNNs are also known as Boolean neural networks.
Besides its simplicity, WNNs are powerful classifiers and have
been used in several applications [3], [4], [5], [6]. Theoretical
results show that one can simulate a probabilistic automata
with weightless neural networks [7] and with an auxiliary data
structure one can simulate Turing machines. In this paper we
work with a quantum version of a WNN.

Quantum computation was firstly proposed by Feynman
in [8]. He showed that a quantum computer can simulate
quantum systems exponentially faster than a classical com-
puter. Factorization and search are two others algorithms that
have quantum versions more efficient than any classical known
algorithm [9], [10].

In [11] weightless neural networks and quantum comput-
ing are used to firstly propose a quantum weightless neural
network. Two types of quantum neural networks qPLN and
qMPLN were presented, but their learning algorithms does
not use quantum computing properties. A model of quantum
neuron based in the RAM node is proposed in [12] but
the learning algorithm is not presented in the paper. In [13]
a quantum network composed by quantum RAM nodes or
qRAM nodes is proposed. In this work a learning algorithm
that uses principles of quantum computation is presented.
The main characteristic of this learning algorithm, called
Superposition based Learning (SL) algorithm, is its capacity to
put all the patterns in training set in superposition and present
then to the neural network simultaneously.

The idea of training a weightless neural network composed

by goal seeking neurons (GSN) [14] with only one presenta-
tion of the training set is not a new one. Here we propose a
quantum algorithm to train weightless neural networks where
one need to run the neural network only once. The proposed
algorithm is based in the superposition based learning algo-
rithm, where one can present all the patterns in the training set
simultaneously to a weightless neural network. Here we use
a nonlinear quantum circuit and perform some modifications
in the SL algorithm to show that one can train a weightless
neural network with only two neural network runs.

The remainder of this paper is organized in four sections.
In Section II we present some weightless networks and its
learning algorithms. In Section III the principles of quantum
computation necessary to understand this work are presented.
In Section VI the main result of this paper is presented.
We present a quantum learning algorithm to train a qRAM
network where (like in GSN networks) one need of only
one presentation of train data to the neural network. Finally
Section VIII is the conclusion.

II. WEIGHTLESS NEURAL NETWORKS

The RAM based neural networks were proposed by Igor
Aleksander [1] and do not have weights associated in their
connections.

A RAM node with n inputs has 2n memory locations,
addressed by the n-bit string a = (a1a2 . . . an). A binary
signal x = (x1x2 . . . xn) on the input lines will access only
one of these locations resulting in y = C [x] [15]. In Figure 1,
s and d are respectively the learning strategy and the desired
output to be learned.

Learning in weightless neural networks takes place simply
by writing into the corresponding look-up table entries. This
learning process is much simpler than the adjustment of
weights. In spite of the simplicity of the RAM based nodes,
RAM based networks have good generalisation capabilities
[16] and computational power [17].

Goal Seeking Neuron (GSN) is based on the RAM node.
The main characteristic of a GSN node is that its learning
requires only one presentation of patterns in the training set
(one-shot learning), so its training step is very fast. The GSN
is a RAM node where one can store a two bit numbers (00,
11 or 10) that can be interpreted respectively as 0,1 and u.



s 11 . . . 1 C [2n − 1]
d 11 . . . 0 C [2n − 2]

x1−−−−−−−−→
...

... y
−−−−−−−→

... 00 . . . 1 C[1]
xn−−−−−−−−→ 00 . . . 0 C[0]

Fig. 1. RAM node

That GSN also can receive as input and produce outputs the
values 0,1 and u.

If at least one input has the value u the GSN will access
more than one memory position simultaneously. For instance
if a GSN with 3 inputs receives the input signal I = {0, u, 0},
because of the u value in the second position of the input
signal I, two memory locations with address 000 and 010 will
be accessed. The output of a GSN will be 0 if the majority
of accessed memory locations store 0, 1 if the majority of the
memory locations store 1, and u otherwise.

The GSN node can be in 3 different operation states:
Validation state, where the neuron verifies if a new pattern
can be learnt; the learning state, where changes in the node
memory positions occurs; and the utilization state, where the
node is used to produce outputs for new patterns.

Algorithm 1 presents GSN learning algorithm. In the first
step all the memory content are initialized with the undefined
value u. When a pattern can be learnt the output neuron
searchs for an accessed memory position that has the same
value than the desired output. If this value is not found a
memory position with the u value has its content changed to
store the desired value d(p). When the memory position is
choosed, the desired output of the previous layer is defined.

Algorithm 1: GSN learning algorithm

1 Initialize the content of all memory positions with the
value u

2 foreach pattern p in the training set do
3 network state ← validation
4 The network receives the pattern p and produces the

output s
5 if s = u or s = d(p) then
6 network state ← learning
7 Allow that the network learns the desired output

d(p)
8 end
9 end

III. QUANTUM COMPUTATION

The fundamental unit of information in quantum computa-
tion is the quantum bit (or qubit). A qubit is represented by a
bideminsional, unitary, complex vector in a complex vectorial
space V. A qubit is represented in Equation 1, where α, β ∈ C,

|α|2 + |β|2 = 1, |0〉 = [0, 1]
T and |1〉 = [1, 0]

T . The notation
|·〉 is called Dirac notation and is used to represent vectors.

|ψ〉 = α|0〉+ β|1〉 (1)

To represent systems with multiple qubits we use the tensor
product ⊗. The tensor product of two qubits |ψ〉 = α|0〉+β|1〉
and |θ〉 = ϑ|0〉+γ|1〉 is described in Equation 2. This process
can easily be generalized for realizes a product between m
and n dimensional vectors.

|ψ〉 ⊗ |θ〉 = |ψ〉|θ〉 =


α ·
[
ϑ
γ

]

β ·
[
ϑ
γ

]
 (2)

Given a basis, a unitary operator in a vector space V
can be represented by a matrix U such that UU† = I.
Quantum operators of qubits in a vector space V are unitary
transformations U : V → V. In Equation 3 some quantum
operators are presented.

I =
[
1 0
0 1

]
, X =

[
0 1
1 0

]
, H =

1√
2

[
1 −1
1 1

]
(3)

The CNOT-gate is an example of a two-qubit controlled
operation. It also goes under the name (quantum) XOR. Its
matrix representation in the computational basis is

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (4)

c

t

c

ct

Fig. 2. Controlled NOT gate.

The CNOT gate performs a NOT (i.e. an X) operation on
the target qubit t conditioned on the control bit c being 1.

In a quantum computer one can work with a quantum
bit in a continuous linear combination of |0〉 and |1〉. A
qubit |ψ〉 = α|0〉 + β|1〉 is a state in superposition and can
be seen as part |0〉 and part |1〉. One property of quantum
computation is the parallelism. Applying a quantum operator
Uf , such that Uf |x, 0〉 = |x, f(x)〉 in a state in superposition∑n−1
i=0 αi|xi, 0〉, the value of f(x) will be calculated for all xi.

We will use the quantum parallelism to put neural networks
configurations in superposition.

One cannot direct see all the results f(xi) calculated in
superposition.In quantum physics if a system is in a su-
perposition |ψ〉 = α|0〉 + β|1〉 measuring the system will



probabilistically collapses it to one basis state |i〉 as described
in Equation 5.

p (|i〉) = |αi|2

|||ψ〉||2
=

|αi|2∑
j |αj |

2 (5)

After the first measurement the state collapses to a basis
state, others measurements will give always the same result.
Because of this property one cannot see all the results cal-
culated in a state in superposition with quantum parallelism.
Quantum algorithms needs to explore parallelism before a
measurement.

IV. GROVER’S ALGORITHM

Grover proposed in [10] a quantum algorithm for search in
one unordered data set which is quadratically faster than any
classical algorithm. To perform a search in an unordered data
set with N items one will need in the worst case of N classical
steps. In the quantum case one will need of T = π

4

√
N
M steps.

Algorithm 2 presents the Grover’s algorithm, it is based on the
one shown in [18] and M is a squared matrix whose each entry
is 1/2n.

Algorithm 2: Grover’s algorithm

1 Initialize the system |ψ〉 = |0〉n
2 Apply the Hadamard transform |ψ〉 = H⊗n|ψ〉
3 Apply the phase inversion operation: Uf (I ×H)
4 Apply the inversion about the mean operation: −I + 2M

5 Repeat steps 3 and 4, T =
√
2n times

6 Measure the state |ψ〉

V. RELATED WORK

A quantum perceptron has proposed by Altaysky in [19].
In Altaisky definition a quantum perceptron N as described
as in Equation 6, where F̂ is quantum operator over 1 qubit
representing the activation function, ŵj is a quantum operator
over a single qubit representing the j-th weight of the neuron
and |xj〉 is one qubit representing the input associated with
ŵj .

|y〉 = F̂

n∑
j=1

ŵj |xj〉 (6)

In [19] a learning rule for the Altaisky quantum perceptron
has been proposed and it is showed that the learning rule drives
the the perceptron to the desired state |d〉. In learning rule
described in Equation 7 it is suposed that F̂ = I . This learning
rule described in 7 does not preserve unitary operators.

ŵj(t+ 1) = ŵj(t) + η · (|d〉 − |y(t)〉)〈xj | (7)

Another model of quantum perceptron has been proposed in
[20]. The main difference between Zhou’s quantum perceptorn
and Altaisky’s quantum perceptron is the weight representa-
tion. In Zhou’s quantum perceptron the weights of a neuron

with n inputs is represented by a quantum operator over n
qubits. So a Zhou quantum percetron with n inputs necessarily
has n2 weights. The ZQP is described in equation 8, where
Z is any quantum operator. The weights of the ZQP are the
elements of matricial representation of Z operator.

|y〉 = Z|x1 · · ·xj〉 (8)

The main problem with this strategy is that the neuron
output |y〉 has the same number of qubits of the neuron input.
In a example presented in [20] the measure of the last qubit of
state |y〉 is used as neuron output, but one can also use another
qubit or several qubits on the |y〉 state. Another question is
high number of weights, a quantum operator over n qubits
is represented by a complex matrix with n2 elements, then
the number of weights in ZQP is quadratic in relation to the
number of inputs. One can easily see in [20] that ZQP learning
rule also do not preserve unitary operators.

In [21] a quantum neural network with a quantum ar-
chitecture is proposed. The quantum neuron proposed has
the structure to be trained with a quantum algorithm, but
it was not shown how to train the quantum model with
classical algorithms. As in this work, the learning algorithm
proposed uses nonlinear quantum operators and maybe cannot
be practically used even if a one can construct a quantum
computer.

VI. QRAM

A quantization of the RAM node is presented in [12]
and in [13] a learning algorithm based in the principle of
quantum superposition, denoted Superposition based Learning
Algorithm (SLA), is presented. The main drawback in SLA
is the use of a nonlinear quantum operator in the learning
process.

The memory positions of a RAM node normally stores the
values 0 or 1. In a qRAM network one will store only a
single qubit. Instead of direct store a qubit, we use the A
operator (described in Equation 9) and selectors to produce
the desired qubit. This strategy avoid loss of information after
measurements.

A =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (9)

A. Definition

In Definition 1 a qRAM node is formally defined and in
Fig. 3 the quantum circuit of an example of a qRAM node is
shown. The output |o〉 of a qRAM node can be used as the
input of another neuron forming layers as showed in Fig. 4.

Definition 1: A qRAM node with n inputs is represented by
the operator N described in equation (10). The inputs, selectors
and outputs of N are organized in three quantum registers |i〉
with n qubits, |s〉 with 2n qubits and |o〉 with 1 qubit. The
quantum state |i〉 describes qRAM input, and quantum state
|s〉|o〉 describes qRAM state.



|ψ〉 • •
|ϕ〉 • •
|s1〉

A1 A2 A3 A4

|s2〉

|s3〉

|s4〉

|o〉

Fig. 3. qRAM node
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Fig. 4. Two layer qRAM network

N =

2n−1∑
i=0

|i〉n〈i|nAsi,o (10)

In next subsection we shown how a qRAM network works
showing an example of execution. The qRAM neuron acts like
a GSN neuron when a input H|0〉 is received.

B. Simulation

Let Net be a quantum network with architecture described
in Fig. 4 and node circuits described in Fig. 3, Equation 11
describe the circuit of the nodes in the network. One can
present inputs simultaneously as in Equation (12) to qRAM
network. We will see that when a network receives inputs
in superposition the outputs of each inputs are calculated
simultaneously in the superposition.

N = |00〉〈00| ⊗ As1,o + |01〉〈01| ⊗ As2,o+
|10〉〈10| ⊗ As3,o + |11〉〈11| ⊗ As4,o

(11)

|i〉 = 1

2
(|0000〉+ |0001〉+ |0010〉+ |0011〉) (12)

The neuron N1 receives as input the two first qubits of state |i〉,
|i1i2〉 = |00〉. The action of neurons of network is described
by the operator in equation (11). The action of the neuron N1

and N2 are described in equation (13) and (14).

N1|i1i2〉|s1〉|o1〉 = (|00〉〈00| ⊗As1,o + |01〉〈01| ⊗As2,o+
|10〉〈10| ⊗As3,o + |11〉〈11| ⊗As4,o) |00〉|0110〉|0〉 =
|00〉〈00| ⊗As1,o (|00〉|0110〉|0〉) = |00〉|0110〉|0〉

(13)

N2|i3i4〉|s2〉|o2〉 = (|00〉〈00| ⊗As1,o + |01〉〈01| ⊗As2,o+

|10〉〈10| ⊗As3,o + |11〉〈11| ⊗As4,o)
1

2
(|00〉+

|01〉+ |10〉+ |11〉) |00〉|0110〉|0〉 =
1

2
(|00〉〈00| ⊗As1,o (|00〉|0110〉|0〉)+

|01〉〈01| ⊗As2,o (|00〉|0110〉|0〉)+
|10〉〈10| ⊗As3,o (|00〉|0110〉|0〉)+

|11〉〈11| ⊗As4,o (|00〉|0110〉|0〉)) = |00〉|0110〉|0〉+
|01〉|0110〉|1〉+ |10〉|0110〉|1〉+ |11〉|0110〉|0〉

(14)

The outputs of neurons N1 and N2 are |o1〉 = |0〉 and |o2〉 =
1√
2
(|0〉+ |1〉). These outputs will be used as inputs of neuron

N3. Equation (15) shows the action of N3 and the network
calculates the outputs of all the inputs in superposition.

N3|o1o2〉|s3〉|o3〉 =
1√
2
(|00〉〈00|As1o3 |00〉|0110〉|0〉+

|01〉〈01|As2o3 |01〉|0110〉|0〉) =
1√
2
(|00〉|0110〉|0〉+ |01〉|0110〉|1〉)

(15)

The action of the qRAM network Net can be summarized
as in equation (16). The networhk calculates the output of each
input in superposition.

Net
(
1

2
(|0000〉+ |0001〉+ |0010〉+ |0011〉)

)
|0〉 =

1

2
(Net|0000〉|0〉+ Net|0001〉|0〉+

Net|0010〉|0〉+ Net|0011〉|0〉)

=
1

2
(|0000〉|0〉+ |0001〉|1〉+ |0010〉|1〉+ |0011〉|0〉)

(16)

In the next section we show how one can train a qRAM
network with only two network runs. To perform this task
we explore the quantum properties of superposition and par-
allelism.

VII. SINGLE SHOT QUANTUM LEARNING ALGORITHM

Without quantum computation, the idea of training a neural
network with a single execution is impracticable. In first SSLA
steps, we will present all the patterns to the neural network
simultaneously and compute the output for each input and each
neural network configuration simultaneously.

To perform this idea classically one will need to create
several copies of the neural network to receive all the inputs
and compute in parallel the corresponding outputs. After to
calculate the output of each pattern for each neural network
configuration one can search the neural configuration with
best performance. Yet classically the idea of SSLA learning is
presented in Figure 5. For a given neural network architecture,
all the patterns in the training set P = {p1, p2, · · · , pk} are
presented for each of the n neural network configurations,



Fig. 5. Superposition based learning framework

possible in a parallel computer. The output are calculate and
then one can search the best neural network parameters.

In a quantum computer, one can implement this improb-
able strategy without the hardware limitations showed in
the classical strategy. Algorithm 1 presents the SSLA. It is
a quantum-learning algorithm for quantum neural networks
such that output o, parameters p and desired output d are
represented in separated quantum registers. SSLA is based on
the Superposition based Learning Algorithm (SLA) proposed
in [1]. The main difference between SLA and SSLA is that in
SSLA one needs only 1 run of the quantum neural network to
perform the learning task.

Algorithm 3: Single Shot Quantum Learning Algorithm

1 Initialize all the qubits in register s with the quantum
state H|0〉.

2 Initialize the register p, o , d with the quantum state
|p〉 =

∑p
i=1 |pi, 0, di〉.

3 |ψ〉 = N |ψ〉, where N is a quantum operator
representing the action of the neuron.

4 Set registrator e to state |e〉 = |1〉 where the registers
p,o,d =

∑p
i=1 |pi, di, di〉

5 Apply the phase inversion operation in state |ψ〉 where
the register e = |1〉

6 Apply the inversion about the mean −I +2A in register s
7 Repeat the steps 6 and 7 T = pi

4

√
n times, where n is

the number of possible selectors to the network.
8 Measure the register s to obtain the desired parameters.

Algorithm 3 describes SSLA. In the first SSLA step the free
parameters of the network are initialized in a superposition of
all possible values. To perform this we initialize each neuron
with the value H|0〉, this value can be interpreted as the u
value in Algorithm 1. If the number of selectors is n, then
the state of register s is described in Equation (17). This

superposition of all this values means that we have, for a given
architecture, all neural networks in superposition.

|s〉 = 1

2n

2n−1∑
i=0

|i〉 (17)

In step 2 we initialize the quantum registers p, o and
d. The register o state is initialized in computation basis
state . Registers p and d are initialized with an entangled
superposition of patterns and desired output. This step can be
performed with the algorithm proposed in [3]. Equation (18)
describes state of quantum registers p, o and d after step 2.

|p, o, d〉 = 1√
k

k∑
i=1

|pi, 0, di〉 (18)

At this moment |ψ〉 = |s, p, d, o〉 is in state described in
equation (3), where all the networks are in superposition and
all the training patterns and desired outputs are prepared to be
presented to the network.

|ψ〉 = |s, p, o, d〉 = 1

2n
√
k

2n−1∑
i=0

k∑
j=1

|i, pj , 0, dj〉 (19)

In step 3 we apply the neural network N to the quantum
the state |ψ〉. After this step the outputs oij of each selector
i and pattern j will be calculated. Equation (4) describes the
resultant state.

|ψ〉 = 1

2n
√
k

2n−1∑
i=0

k∑
j=1

|i, pj , oij , dj〉 (20)

In step 4 we use an auxiliary quantum register . After step 4
the state |ψ〉|e〉 is as in Equation (5), where eij = 1 if oij = dj
for each j. This step requires the application of a nonlinear
quantum algorithm proposed in [22].

|ψ〉|e〉 = 1

2n
√
k

2n−1∑
i=0

k∑
j=1

|i, pj , oij , dj , eij〉 (21)

In steps 5, 6 and 7 we perform a quantum search looking
for parameters such that oij = dj , i.e. eij = 1, in the quantum
register s. This step will increase amplitude probability of the
part in superposition |ψ〉. In step 8 we measure the quantum
register s to obtain the desired parameters. The algorithm will
return the set of parameters that best fits the train set. SSLA
search the space of free parameters of the network and return
the parameters that make the network fits the train set.

VIII. CONCLUSION

In [13] has been shown that weightless neural networks
has quantum versions that can be trained with the classical
learning algorithms and allow quantum learning. The quantum
weightless neural networks can be defined in a natural way,
preserving theoretical as the capacity to simulate probabilistic



automata and Turing machines and practical results that show
the capacity of weightless networks to learn and generalize.

In this paper we proposed a quantum Single-Shot Learning
Algorithm inspired in the learning algorithm of GSN network
and the superposition based learning algorithm. The main
characteristic of the SSLA is that it requires only a single
execution of the neural network. The main problem in SSLA
is that it requires the use of nonlinear quantum algorithms.
The same problem occurs in several learning algorithms for
neural networks [13], [21], [23].

Compared with the GSN learning algorithm the SSLA
algorithm has the advantage of consider the performance of the
network for all patterns and in GSN a greed strategy is used,
where the pattern presentation order will influence the final
classifier. The single shot procedure used in SSLA is different
of the strategy used in classical WNN. Here the networks
runs only once with all data in superposition. SSLA does not
divide the data set in train, validation and test sets, so one can
investigate in how to use a validation set to guide the learning
process.

One possible future work is to develop a single shot learning
algorithm using only linear quantum operators. This may be
done presenting each pattern to the neural network iteratively
and storing the performance of each network in superposition
as in [21]. In this way one will be capable of search the space
of performances and setting the performance value may avoid
overfitting.

Theoretical analyses of weightless neural networks have
been done in some works. The main results are the capacity
of simulate probabilistic automata and Turing machines with
weightless neural networks. One can verify if this also can be
performed in the quantum case and verify if quantum automata
and quantum Turing machine can be simulated with quantum
weightless neural networks.

Another possible future work is to develop a quantum
weighted neural network with the properties of the quan-
tum weightless neural networks: 1) direct implementation in
quantum circuits; 2) capacity to simulate classical algorithms
3) with a structure that allows the utilization of quantum
algorithms. One way to achieve a quantum perceptron with
this characteristics is to associate the quantum neuron with
a field, so if the field is enough large to approximate the
rational numbers one may simulate the classical weighted
neural networks.
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