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Av. Antônio Carlos 6627, 31270-901,

Belo Horizonte, MG, Brazil
Email:awcfaria@eng-ele.dout.ufmg.br

Cristiano Leite de Castro
Computing Department

Federal University of Lavras
University Campus, 37200-000,

Lavras, MG, Brazil
Email: crislcastro@gmail.com
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Abstract—In this paper, a new oversampling method is pro-
posed to improve the representativeness of minority groups in the
training data set. Our methodology creates artificial (synthetic)
examples on basis the spatial distribution of the classes. The
original data are expanded (duplicated) along the lines connecting
the class centroid and each minority pattern under consideration.
In contrast to other methods known in literature (as SMOTE),
our geometric approach for data generation has the advantage
of being accomplished in a straightforward way, i.e., without the
need of the definition of parameters by the user. Experiments
conducted with real and synthetic data point out that the our
solution to the class imbalance problem is able to improve
the number of correct minority classifications and the balance
between the class accuracies.

I. INTRODUCTION

An important challenge in the design of supervised models
for pattern recognition is to obtain training sets that are both
representative and balanced. In most cases, due to the inherent
difficulty to acquire examples belonging to a particular group,
it is very common to observe a high level of imbalance in the
class distributions. Such a characteristic is prevalent in real
applications, such as medical diagnosis, detection of frauds
and faults, text categorization, among others. In this kind of
problem, in which the training sets are usually complex and
highly imbalanced, traditional learning algorithms have pre-
sented difficulty in distinguishing among the class examples.
They tend to produce decision rules that favor the majority
(negative) class.

This bias induced by the dominant class mainly occurs
because the traditional algorithms consider different errors as
equally important, assuming that class distributions are rela-
tively balanced [11], [14], [12]. Furthermore, the degradation
of classification performance in the presence of uneven data
has also been attributed to other factors, such as the level
of class overlapping and the lack of representativeness of the
minority class [1], [2].

Two main approaches have been proposed to solve the class
imbalance problem. In the first approach, existing learning
algorithms are adapted to improve both the minority class
recognition ability and the general accuracy of the classifier.
Along this line of work, the main solutions that have been
developed include those based on: (i) single class learning,
such as the autoassociator [3] and one-class SVMs [4], [5];
(ii) cost-sensitive Boosting such as AdaCost [6] and, AdaC1,

AdaC2 and AdaC3 [7], and (iii) modifications in the cost
function optimized by the learning machine (algorithm) [8],
[9], [10], [12].

In the second approach, called data preprocessing, the goal
is to change (balance) the class distributions in the training set
through mechanisms of data sampling in the input space, which
includes undersampling of the majority class, oversampling of
the minority class or a combination of both techniques [15],
[16], [17]. The undersampling involves elimination of exam-
ples of the majority class. The examples to be eliminated can
be chosen either randomly or from some a priori information.

The oversampling is based on the replication of preexisting
examples or on the generation of synthetic data. In the first
case, the selection of examples to be replicated can be made
randomly or it can be guided. Regarding the generation of
synthetic data, most the oversampling methods that have been
proposed are based on the following interpolation technique:
for each positive example xi under consideration, a new
synthetic example is generated along one of the line segments
that connect xi to its K nearest neighbors. This technique
was originally proposed in the SMOTE method [18] and it
is still used by recent methods, such as ADASYN [19] and
RAMO [20], which are different from SMOTE in relation to
the regions of the positive class that should be more intensely
oversampled.

This paper investigates a new approach for the generation
of synthetic data. Differently from the oversampling methods
aforementioned, our solution does not depend on the choice
of one parameter K (number of nearest neighbors), since
it generates new examples from the spatial projection of
the minority class. Experiments using MultiLayer Perceptron
networks (MLPs) as well as Support Vector Machines (SVMs)
were conducted to test the efficiency of our methodology
on imbalanced data. The results are promising and show
that the proposed method is able to improve the number of
correct positive classifications and the balance between the
class accuracies.

The reminder of this paper is organized as follow: Sec-
tion 2 describes the SMOTE method and the foundations of
the proposed oversampling algorithm. Section 3 presents the
methodology used in the experiments as well as the results that
were obtained from those experiments. Finally, the discussion
and conclusion are provided in Section 4.
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Fig. 1. (a) Example of application of KNN for K=4. (b) New synthetic
example.

II. OVERSAMPLING-BASED APPROACH

Before presenting the details of our approach, the following
section discusses briefly the mechanism of generation of syn-
thetic data that is used by the SMOTE method. The description
of the SMOTE method aims to provide a better understanding
of the foundations of our method as well as to emphasize the
difference between both methods.

A. SMOTE

In the SMOTE algorithm [18], for a subset Smin ∈ S
(training set), the K-nearest neighbors (KNN) are considered
for each one of the examples xi ∈ Smin (minority class); the
KNN are defined as the K elements of Smin whose Euclidian
distance between itself and xi under consideration exhibits the
smallest magnitude along the n-dimensions of feature (input)
space X . To create a synthetic data, randomly select one of
the KNN, then multiplied the corresponding feature vector
difference with a random number between [0 - 1], and finally,
add this vector to xi

xnew = xi + (x̂i − xi)× δ (1)

where xi is the minority example under consideration, x̂i is
one of the KNN of xi (randomly chosen) and δ is a random
number between 0 and 1. Thus, the resulting synthetic example
is some point along the segment joining xi under consideration
and the randomly selected x̂i [14].

Figure 1 illustrates the SMOTE’s interpolation mechanism.
Figure 1.a shows an imbalanced data set where the minority
class is represented by “crosses” and the majority class by
“stars”. The number of KNN is 4. Figure 1.b shows the
synthetic example created along the line segment that joins
xi and x̂i.

One important limitation of the SMOTE algorithm is that
it does not take into consideration the proximity of examples
belonging to different classes during the process of synthetic
data generation. This can result in increasing the level of class
overlapping and variance [14], [12].

B. Our Proposal

In contrast with the well known SMOTE algorithm and
its variants [18], [20], our oversampling-based approach is not
dependent on the K-nearest neighbor (KNN) method. It creates
artificial (synthetic) data considering the spatial distribution

of the classes in the training set. Let Smin be the minority
class drawn from the training set S = {Smin, S2, . . . , Sm},
where m is the total number of classes. An synthetic example
is generated from the following steps: (i) obtain the centroid
C of Smin; (ii) select an arbitrary example xi from Smin;
(iii) calculate the corresponding difference vector (C − xi);
(iv) multiply this vector by a factor ε and, add it to xi. This
procedure can be summarized by Equation 2 and should be
repeated for each positive example belonging to Smin.

xnew = xi + (C − xi) ∗ ε (2)

the parameter ε, in the Equation 2, represents a constant in
the range 0 ≤ ε ≤ 1 (for the Proposal 1) or 1 ≤ ε ≤ 2
(for the Proposal 2) - The two proposals will be discussed
below. The value of ε can be set according to the minority
class distribution. The centroid coordinates (Cx, Cy) is given
by the following expressions, Equations 3 and 4.

Cx = (max x−) +

(
max x+ −max x−

2

)
(3)

Cy = (max y−) +

(
max y+ −max y−

2

)
(4)

where max x+ and max x− represent the x coordinates of the
examples that are further along the x axis in both directions, +
and −; max y+ and max y− represent the y coordinate of the
examples that are further along the y axis in both directions
+ and −.

According to Equation 2, the new example is a point
along the line segment which passes by example xi under
consideration and the centroid C of the minority class. For the
Proposal 1, the new point (example) should be located between
the centroid and xi, and for the Proposal 2 the new point should
be on the same line, but beyond xi. Thus, at the end of the
oversampling process, each example of the minority class is
duplicated towards the centroid or in the opposite direction,
depending on which approach was chosen.

The Figures 2 (a) and (b) show an imbalanced data set and
illustrate the application of our oversampling method. Firstly,
we calculated the centroid of the square whose edges pass over
the points that are furthest on the x and y axes. Then, each
point of the minority class generates a new synthetic examples
in two ways:

• Going towards the centroid. Figure 3 presents the new
data with the minority class generated in the centroid
direction. This approach was named as Proposal 1.

• After calculating the centroid, the generated data are
expanded in the opposite direction of the centroid.
This approach was named as Proposal 2.

We also evaluated the duplication of the original minority
data in other directions: North West (NW), North East (NE),
South West (SW) and South East (SE). All of them take the
center as the centroid of the original minority class. In the
experiments conducted, this last approach was tested only for
the Thyroid database.
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Fig. 2. (a) Original data, (b)Proposal methodology.

( a )

Fig. 3. (a) Final data.

An example of the application of our proposal on 3D data
(3 features) can be seen in Figure 4. In this case, we created a
cube whose edges pass through the maximum and minimum
values in each axis (X,Y,Z).

(Original 3D Data) (Proposal) (Final 3D data)

Fig. 4. Illustration of our proposal on 3D data.

III. EXPERIMENTS AND RESULTS

In this section we present the experiments accomplished
to validate our method. For all experiments, was used two-
fold cross validation [27]. Using traditional supervised learning
algorithms as base classifiers, our oversampling proposals 1
and 2 were compared with SMOTE method. We also ran
the learners with the original data sets (without any sampling
strategy) to serve as a baseline for comparison.

In this paper, the experiments was conducted by two
Machine Learning algorithms [29],[28]:SVM (Support Vector
Machine) [21] and ANN (Artificial Neural Network) [27],
both in MatLab implementations. Since we are dealing with
non-linear data, the standard Matlab SVM algorithm was
modified to use a polynomial kernel function of order 3. The
ANN topology chosen was a MultiLayer Perceptron (MLP)
trained with a Levenberg-Marquardt algorithm [22]. The MLP
architecture used in all runs was 2:3:1. Hyperbolic tangent
was chosen as activation function for all neurons (units). The

training stop criterion was a MSE (mean squared error) smaller
than 10−2 or 500 epochs.

In order to evaluate the algorithms, the experiments were
performed over the following databases:

• A bidimensional synthetic data set generated from
two Gaussian distributions with mean vectors (0,0)
(minority class) e (1,1) (majority class) and covariance
matrices equal to the identity matrix. The minority
class contains only 8% of the majority class examples.
The results are reported in Tables I and II.

• Thyroid dataset from the UCI Repository [23]. This
dataset contain 1762 examples in the majority class
and 238 examples in the minority class. The minority
class represents 13.5% of the majority class (Figure
5). In this work we used only two features for this
data set; such features were selected using the T-test
procedure, as recommended in [24]. The results using
this dataset are reported int Table III

Fig. 5. Thyroid data base - using 2 features

The algorithms were evaluated using metrics extracted
from the confusion matrix [25]. With this matrix, it is possible
to analyze the relation between success and misclassification
rates (Figure 6). Each element (k, j) of this matrix provides
the number of the examples whose true (real) class was k
and that were actually classified as j. Hence, the elements
along the major diagonal represent the correct decisions made:
number of true positives (TP ) and true negatives (TN ); and
the elements off this diagonal represent the errors: number
of false negatives (FN ) and false positives (FP ). From the
confusion matrix, it is possible to determine some performance
scores. A score commonly used in classification tasks is given
in Equation 5

Accuracy =
TP + TN

Total
(5)

where Total corresponds to the total number of cases evalu-
ated.



Fig. 6. Confusion matrix

However, when the data set is highly imbalanced, the use of
global measures, such as Accuracy, might lead to misleading
conclusions. For instance, it is straightforward to create a
classifier having 98% Accuracy if the data set has a majority
class with 98% of the total number of examples, by simply
classifying every new example as belonging to the majority
class. An efficient way of evaluating a classifier in imbalanced
scenarios is to consider metrics that disassociates the errors (or
hits) that occurred in each class. This can be achieved using
the following expressions, Equations 6 and 7.

AccuracyofPositiveClass =
TP

TP + FN
(6)

AccuracyofNegativeClass =
TN

FP + TN
(7)

A. Results

Figure 7 (b) shows the SVMs’ decision boundary yielded
from the imbalanced synthetic data set of Figure 7 (a), in which
the majority and minority classes are represented by circles and
crosses, respectively. It is worth noting that since the training
set is highly imbalanced, the SVM boundary bends towards
the positive class.

(a) (b)

Fig. 7. Test with original imbalanced data: a)Original imbalanced data b)
SVMs’ decision boundary

In order to provide a fair comparison with our
oversampling-based approach, the SMOTE method was con-
figured in order to duplicate the number of minority class
examples (see Figure 8 a)). The decision boundary yielded
by an SVM on the new data set generated with SMOTE is
illustrated in Figure 8 (b).

Figure 9 (a) shows the data set after the application of
our oversampling-based Proposal I. It is should be noted that

(a) (b)

Fig. 8. Test with SMOTE algorithm: a) Original minority class + synthetic
data generated with SMOTE, b) SVMs’ decision boundary yielded from
SMOTE dataset.

the new examples were generated in the centroid direction of
the minority class (crosses). The decision boundary yielded
by an SVM is shown in the Figure 9 (b). Observe that
by improving the representativeness of minority class, our
approach leads to a decision surface which is more similar to
a linear discriminant. This result points out that our approach
can be used to diminish the bias in the presence of uneven
data, improving the discrimination ability of the classifier.

Regarding the synthetic imbalanced data set, Tables I
(using SVM) and II (using MLP) compares the results achieved
with the following methods: original (without any sampling
strategy), SMOTE, Proposal I and Proposal II. It should be
noticed that our approach (specially the proposal 2) achieved
a better accuracy for the positive class than SMOTE. One can
state that the separation surfaces learned in the input space
(by SVM and MLP) were set to maximize the number of
correct positive classifications. A better balance between the
class accuracy rates was also obtained.

The results obtained with Thyroid database (using SVM)
are presented in Table III. For this database, other direc-
tions for the process of generation of synthetic data were
evaluated: Proposal NE (North-East), Proposal SW (South-
West), Proposal NW (North-West) and Proposal SE (South-
East). In terms of the positive accuracy, the results suggest
that our approach performs better than the original dataset. In
comparison with the SMOTE algorithm, only Proposals II, SW
and NW were better. Moreover, one can observe again a better
balance between the positive and negative accuracies.

(a) (b)

Fig. 9. Test with our oversampling approach: a) Original minority class +
synthetic data generate with Proposal 1; b) SVMs’ decision boundary yielded
from new data.

It is worth noting that all values provided in Tables I, II
and III are based on the average of 10 different runs.



TABLE I. SYNTHETIC DATA SET - AVERAGE RESULTS ACHIEVED WITH
SVM CLASSIFIER

Approach Pos. Class Acc. Neg. Class Acc.
Original 31.1% 97.6%
SMOTE 49.5% 94.6%

Proposal I 44.28% 95.7%
Proposal II 58.5% 96.6%

TABLE II. SYNTHETIC DATA SET - AVERAGE RESULTS ACHIEVED
WITH MLP CLASSIFIER

Approach Pos. Class Acc. Neg. Class Acc.
Original 33.3% 98.7%
SMOTE 40.8% 96.6%

Proposal I 50.1% 96.6%
Proposal II 48.7% 97.5%

IV. CONCLUSION

In this paper, a new oversampling approach was presented
in order to circumvent the problem of lack of representative-
ness such as sparse and imbalance of class distributions in
training sets. It is important noting that although our method
is based on the spatial locations of class centroids, it is not
restricted to the unimodal assumption. The method assumes
the existence of a class centroid which is representative of
the overall class distribution even if there are multiple modes
in the underlying distribution. Oversampling process is then
accomplished along the line connecting the corresponding
centroid and the input pattern to be sampled. According to the
sparsity of the data and the relative position of the pattern,
sampling can be accomplished towards the centroid or the
separation margin between classes. This geometric notion of
the class imbalance problem points out the need to understand
data distribution in order to decide upon the method to be
used. This approach, however, has shown to be efficient in all
experiments accomplished in this paper.

Further works point out to the understanding of the geo-
metric problem in higher dimensions and to the consideration
of the relative positions of opposite class centroids in the
sampling procedures.
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