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Abstract—Lattice computing models such as the morpholog-
ical neural networks and fuzzy neurocomputing models are
becoming increasingly important with the advent of granular
computing. In particular, the morphological perceptron with
competitive learning (MP/CL), introduced by Sussner and
Esmi, exhibited satisfactory classification results in some well
known classification problems. On the downside, the MP/CL
is subject to overfitting in which the network learns singular
characteristics from the training data. In this paper, we propose
a learning strategy based on a certain genetic algorithm to
circumvent the overfitting problem of MP/CL. Computational
experiments revealed that the novel model can achieve similar
classification results but using a smaller number of hidden
neurons.
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I. INTRODUCTION

Broadly speaking, neural networks (NNs) are machines

partially inspired by the human brain where the basic

processing units are neurons [1]. Rigorous studies in NNs

began in 1943 when the biologist McCulloch and the

mathematician Pitts introduced a mathematical model of

the biological neuron. Approximately 15 years after the

publication of the seminal paper of McCulloch and Pitts,

Rosenblatt proposed a new approach to pattern recognition

called perceptron. Although a single perceptron is subject

to restrict computational limitations, the multi-layer percep-

tron (MLP) with at least one hidden layer is a universal

approximator [1]. In the context of classification problems,

a MLP is able to approximate any compact set X ⊆ R
N ,

which represents a certain class of patterns, with a given

degree of accuracy ǫ > 0. Broadly speaking, the set X

is approximated by hyperplanes which are described by

the neurons in the hidden layer. In the 1970s and 1980s,

several researchers including Bryson, Werbos, Rumelhart

and McClelland, developed independently the famous class

of backpropagation algorithms, which contains many widely

used algorithms for training MLP networks [2]–[5].

In the middle 1990s, Sussner and Ritter introduced the

first morphological neural networks [6], [7] using the so-

called image algebra [8], a theory that unifies several

techniques for image processing, including traditional linear

algebra, the minimax algebra of Cuninghame-Green [9], and

mathematical morphology [10]. Usually, a morphological

neural network is defined as a type of artificial neural

network that performs an elementary operation of math-

ematical morphology at every node, possibly followed by

the application of an activation function. In particular, the

morphological perceptron is obtained from the perceptron of

Rosenblatt by replacing the usual matrix product by lattice

theoretical operations. Analogous to the MLP, a multi-layer

morphological perceptron (MLMP) is able to approximate

any compact X ⊆ R
N with a given accuracy ǫ > 0 [11].

From a geometrical point of view, the set X is approximated

by hyperboxes produced by the MLMP. As a consequence,

the MLMP is close related with other hyperboxes neural

networks such as the nested generalized exemplar model of

Salzberg [12], the fuzzy ARTMAP of Carpenter et al. [13],

and the fuzzy min-max neural network of Simpson [14].

More importantly, since many information granules such as

fuzzy sets and their extensions, intervals, and rough sets

are lattice ordered, the morphological perceptron, as well as

many other morphological neural networks, may prove to be

useful with the advent of granular computing [15], [16].

The first algorithms used to train the MLMP for clas-

sification consist of an incremental process in which new

hyperboxes are included during the training process [6],

[7], [11]. Despite some interesting properties such as fast

convergence in a finite number of steps, these algorithms

depend on the sequence of training data. In other words, such

as many NN classifiers, the order in which the patterns are

presented to the network during the training phase influences

the decision surface.

Recently, Sussner and Esmi introduced the morphological

perceptron with competitive learning (MP/CL) which arises

by incorporating a winner-take-all output layer into the

original morphological perceptron [17]. Furthermore, these

researchers developed an algorithm for training the MLMP

which, besides the fast convergence, does not depend on

the sequence of training data. On the downside, due to

the incremental learning process, the MP/CL is subject to



overfitting the training data. In view of this drawback, in

this paper we propose a genetic algorithm (GA) to train a

morphological perceptron with a winner-take-all layer. Com-

putational experiments with some well known classification

problems reveals that the resulting model, referred to as the

morphological perceptron with genetic algorithm (MP/GA),

can efficiently cope with possible peculiarities of the training

data. Also, in contrast to the MP/CL, the training of the

MP/GA is not described by an incremental process.

The paper is organized as follows. After presenting a brief

review on the MP/CL in Section II, we describe the genetic

algorithm used to train the morphological perceptron with a

winner-take-all layer. Section IV contains some experimental

results. The paper finishes with the concluding remarks in

Section V.

II. MORPHOLOGICAL PERCEPTRON WITH COMPETITIVE

LEARNING (MP/CL)

First of all, recall that a NN is specified by the network

topology, node characteristics, and the training rule used

to determine the synaptic weight values [1]. The following

subsection describes the node characteristics as well as the

network topology of the MP/CL. The learning rule of the

MP/CL is briefly revised subsequently.

We would like to point out that, in order to simplify

the presentation, we slightly adapted the original MP/CL

of Sussner and Esmi [17]. Nevertheless, our version of the

MP/CL is equivalent to the original model.

A. MP/CL Topology and Node Characteristics

The MP/CL is a feed-forward NN whose topology is

depicted in Figure 1. The first layer is composed of M nodes.

The weights of the µ-th node are arranged in two vectors

a
T
µ = [aµ1, . . . , aµN ] and b

T
µ = [bµ1, . . . , bµN ] of length

N . The µ-th node also has a class label denoted by ℓµ.

Hence, the parameters of the µ-th node of a morphological

perceptron with competitive layer will be denoted by a triple

(aµ,bµ, ℓµ) in this paper.

Given a real-valued input pattern x = [x1, . . . , xN ]T ∈
R

N , the individual output ηµ(x) of the µ-th node is com-

puted as follows for all µ = 1, . . . ,M :

ηµ(x) = min

{

min
j=1:N

{xj − aµj}, min
j=1:N

{bµj − xj}

}

, (1)

where min
j=1:N

{tj} yields the smallest value of {t1, . . . , tN}. A

competition among the M nodes takes place in the output

layer of the MP/CL. Formally, the MP/CL assigns to the

input pattern x ∈ R
N the class label ℓµ∗ , where µ∗ denotes

the first index µ such that ηµ∗ = max
i=1:M

ηµ(x). As pointed

out by Sussner and Esmi, such winner-take-all output layer

can be implemented in software by simply selecting the

mode with highest activation or in terms of a NN known

as MAXNET [18]. Also, note that the MP/CL can be used

in multi-class classification problems because we simply
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Figure 1. MP/CL network topology.

attribute the input pattern to the class ℓµ∗ of the winner

node.

Geometrically, the set of all patterns x ∈ R
N such that

ηµ(x) ≥ 0 is an hyperbox in R
N whose bottom-left and

top-right corners are respectively the weight vectors aµ and

bµ. Let us explore further the geometric interpretation of the

MP/CL. To this end, let [aµ,bµ] denote the hyperbox with

bottom-left and top-right corners aµ and bµ, respectively,

defined by the µ-th node. Given an input pattern x ∈ R
N ,

we have ηµ(x) ≥ 0 if and only if x ∈ [aµ,bµ]. Conversely,

ηµ(x) < 0 if x 6∈ [aµ,bµ]. Intuitively, ηµ(x) measures the

compatibility of the input x with the hyperbox [aµ,bµ].
The competitive layer attributes to x the class label of the

hyperbox with largest compatibility.

Finally, we would like to remark that the MP/CL belongs

to the class of morphological neural networks because (1)

is derived from two elementary operations of mathematical

morphology [17]. Precisely, the output ηµ is obtained by

computing the minimum of an erosion and an anti-dilation.

B. The MP/CL Learning Rule

The learning of the MP/CL is supervised in the sense

that the weights aµ and bµ as well as the class label ℓµ of

the µ-th node are determined using a training set. Let us

denote the training set by Str = {(x1, d1), . . . , (xK , dK)},
where xk ∈ R

N belongs to class dk ∈ {1, 2, . . . , C}, for all

k = 1, . . . ,K .

Broadly speaking, the training of the MP/CL is construc-

tive. It begins by determining an hyperbox that contains only

points of a certain class c. In other words, it sets ℓ1 = c

and determines the weight vectors a1 and b1 such that the

hyperbox [a1,b1] contains only points of class c. Then,

the points on this hyperbox are removed from the training

set and the process is repeated until all training data have

been processed. The reader interested in the details of the

algorithm is invited to consult [17].

For the purposes of this paper, we list the following



interesting properties of the algorithm proposed by Sussner

and Esmi for training the MP/CL:

1) Convergence in a finite number of steps.

2) Perfect separation of the training data according to

their class labels.

3) Hyperboxes with distinct class labels do not overlap.

4) Independence of the order in which the training pat-

terns are presented to the network.

On the downside, partially due to the constructive nature

of the learning rule, the MP/CL may overtit the training

data. For example, the training algorithm may produce a

degenerated hyperbox in which the bottom-left and top-right

corners coincide. This situation will be confirmed in many

computational experiments. The following section presents

a certain genetic algorithm that can be used to circumvent

the overfitting problem.

III. A GENETIC ALGORITHM FOR TRAINING THE

MORPHOLOGICAL PERCEPTRON WITH COMPETITIVE

LAYER

In this section, we present a learning rule for the morpho-

logical perceptron with competitive layer based on a genetic

algorithm (GA). The resulting network will be referred

to as the morphological perceptron with genetic algorithm

(MP/GA).

Genetic algorithms, originally described by Holland in

the 1960s, are probabilistic heuristics designed to optimize

an objective function referred to as the fitness function

[19]. A GA keeps a population of individuals, P(t) =
{υ1(t),υ2(t), . . . ,υpop size(t)}, where t is the iteration or

generation number. Each individual υi, which is represented

by its chromosome, is a potential solution of the optimization

problem. Inspired by natural evolution, the individuals at

generation t are subject to a competition in which only fittest

survive and reproduce. As a consequence, the subsequent

generation t + 1 is composed of descendants of the most

apt individuals of generation t. Such as in the nature, the

genetic material of the descendants are obtained from genetic

operations such as crossover and mutation.

In this paper, an individual υi corresponds to a morpho-

logical perceptron with competitive layer. Formally, we have

υi = {(a1i,b1i, ℓ1i), . . . , (aMi,bMi, ℓMi)}, (2)

where M denotes the (fixed) number of nodes and

(aµi,bµi, ℓµi) is the triple that characterizes the µ-th node

of the MP/GA, for µ = 1, . . . ,M .

Consider a training set Str = {(x1, d1), . . . , (xK , dK)},
where xk ∈ R

N belongs to class dk ∈ {1, 2, . . . , C} for

all k = 1, . . . ,K . In order to improve the generalization

performance of the MP/GA, we divided the training set Str
in two sets SHtr and SEtr such that Str = SHtr ∪ S

E
tr .

The fitness of an individual υi is measured as the clas-

sification error on the set SEtr. In mathematical terms, the

fitness of an individual υi is given by

f
(

υi

)

=
∑

(xk,dk)∈SE

tr

(yk(xk) 6= dk), (3)

where yk(xk) is the output of the morphological perceptron

with competitive layer defined in terms of υi after the

presentation of an input xk. Also, we have

(yk(xk) 6= dk) =

{

1, yk(xk) 6= dk,

0, yk(xk) = dk.

The objective of the GA is to minimize the fitness function.

The initial population as well as some genetic operations

are based on the set SHtr . Precisely, an individual υi(0) of

the initial population P(0) is a morphological perceptron

with competitive layer whose nodes are defined as follows:

For each class c ∈ {1, . . . , C}, we randomly select Mc data

points (xk, dk) ∈ S
H
tr such that dk = c and define the µ-

th node as (aµ,bµ, ℓµ) = (xk,xk, dk). Geometrically, the

µ-th node represents a degenerated hyperbox in which the

bottom-left and top-right corners coincide with xk. Note that

an individual υi(0) has M = M1 +M2 + . . .+MC nodes.

The crossover of υi and υj simply swaps nodes between

the two individuals. Formally, suppose that

υi = {(a1i,b1i, ℓ1i), . . . , (aMi,bMi, ℓMi)}, (4)

and

υj = {(a1j ,b1j , ℓ1j), . . . , (aMj ,bMj , ℓMj)}, (5)

have been selected for mating. Then, we randomly select

one crossover point µ and define the resulting two offspring

υ
′
i and υ

′
j as can be seen in (6) and (7) at the top of the

following page.

Now, let us consider the case in which a node (aµ,bµ, ℓµ)
of an individual υ′

i undergoes a mutation. In this case, we

compute the activation ηµ(xk) given by (1) for all xk ∈ S
H
tr

and determine an index k∗ such that

ηµ(xk∗) = max
{

ηµ(xk) : ηµ(xk) < 0,xk ∈ S
H
tr

}

. (8)

In other words, xk∗ is the pattern of SHtr that does not belong

to the hyperbox [aµ,bµ] but has the largest compatibility.

Then, the bottom-left and top-right corners are modified if

the node µ and the pattern xk∗ belong to the same class.

Formally, if dk∗ = ℓµ, we redefine the parameters aµ and

bµ as follows

aµ ← min(aµ,xk∗) and bµ ← max(bµ,xk∗), (9)

where min(·, ·) and max(·, ·) yield respectively the

component-wise minimum and maximum of the arguments.

Geometrically, the hyperbox [aµ,bµ] is enlarged to include

the pattern xk∗ if both have to the same class label.

Note that neither the crossover nor the mutation change

the number M of nodes of an individual. Specifically, the



υ
′
i = {(a1i,b1i, ℓ1i), . . . , (aµi,bµi, ℓµi), (aµ+1j ,bµ+1j , ℓµ+1j), . . . , (aMj ,bMj , ℓMj)}, (6)

and

υ
′
j = {(a1j ,b1j , ℓ1j), . . . , (aµj ,bµj , ℓµj), (aµ+1i,bµ+1i, ℓµ+1i), . . . , (aMi,bMi, ℓMi)}. (7)

Experimental Results

Problem
MP/CL MP/GA

Etr Ete M Etr Ete M

Ripley’s Problem
12.4% 9.9% 2+2

0% 10.2% 26+29 13.6% 9.3% 3+3
Iris 0% 0% 1+7+6 7.6% 6.7% 1+2+2

Breast Cancer 0% 4.07% 34+30 6.5% 4.6% 3+3

Table I
RESULTS FROM EXPERIMENTAL TESTS USING MP/GA.

MP/GA evolves to a morphological perceptron with compet-

itive layer with the fixed number M = M1+M2+ . . .+MC

of nodes – where Mc is the number of nodes representing

class c – that minimizes the classification error over the

training set SEtr.

IV. EXPERIMENTAL RESULTS

In this section we evaluate the performance of the MP/GA

in some well known classification problems, namely: The

synthetic problem of Ripley [20], the iris recognition prob-

lem, and the diagnostic Wisconsin breast cancer problem.

Recall that the latter two are available at the machine learn-

ing database from University of California at Irvine-USA.

The table I summarizes our results. A detailed discussion

of the values in this table can be found in the following

subsections.

We would like to point out that we used the roulette wheel

as the selection process [19]. The probability of crossover

and mutation have been respectively 0.3 and 0.2. Also, we

considered a population of size pop size = 30 and allowed

a maximum number of tmax = 100 generations. We would

like to point out that these parameters have been obtained

after some preliminary experiments in which we considered,

in particular, the classification error and the complexity of

the MP/GA. Notwithstanding, further applications of the

MP/GA require some fine-tuning of these parameters.

Finally, in agreement to some literature reporting results

on the MP/CL, we used the whole training set to construct

the hyperboxes as well as to evaluate the fitness of the

individual. In other words, we defined SEtr = SHtr = Str
in all computational experiments. Nevertheless, a set Ste,

referred to as the test set and different from Str, have been

also used to evaluate the performance of the NNs. The

classification errors computed over the sets Str and Ste are

denoted respectively by Etr and Ete.

A. Ripley’s Synthetic Problem

The synthetic problem of Ripley is composed of two

classes with a bimodal distribution in R
2 [20]. The database

is composed of 250 patterns for training and 1000 for test.

The class distributions allow a best-possible error rate of

approximately 8%. Moreover, since the data are in R
2, we

can visualize the hyperboxes represented by the nodes of the

morphological perceptrons.

As expected, the MP/CL achieved no classification error

from the training set but yielded a 10.2% error rate on the

test set. The resulting network has 55 nodes in which 26 refer

to one class while the remaining 29 nodes correspond to the

other class. The hyperboxes produced by the MP/CL can be

visualized in Figures 2a) and 3a). Since any data training

point belongs to at least one hyperbox, we conclude from

Figure 2 that the network have many degenerated nodes. As

the reader can appreciate in Figure 3, the large number of

nodes resulted some classification errors in the test set.

Figures 2b) and 3b) show the hyperboxes produced by the

MP/GA with different number of nodes. First, we considered

a MP/GA with only 4 nodes i.e., two hyperboxes for each

class. This network achieved classification errors of 9.9%

and 12.4% from the test and training sets, respectively.

Similarly, a MP/GA with 6 nodes, 3 for each class, yielded

respectively the errors 13.6% and 9.3% for training and

testing. Note that the errors produced by both MP/GA in

the test set are smaller than the error yielded by the MP/CL.

Furthermore, the former required much less nodes.

B. Iris Recognition Problem

The iris recognition problem proposed by Fisher in the

1930s is composed of 50 samples for each of the species of

iris flowers: setosa, versicolour, and virginica. The task is

to determine the specie using 4 features: height and width

of sepal as well as the height and width of petal. In our

experiments, the first 35th patterns of each class have been

used for train while the remaining data have been used for

test.

The MP/CL yielded no classification error in both training

and test sets. In contrast, the MP/GA with 1 node for the

first class and 2 nodes for each of the following 2 classes,

produced errors at the rates 7.6% and 6.7% on the training

and test sets, respectively. Nevertheless, the MP/CL has 14

nodes while the MP/GA has only 5.
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(c) MP/GA - 3+3 nodes

Figure 2. Hiperboxes created by MP/CL and MP/GA together with the
training data.
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Figure 3. Hiperboxes created by MP/CL and MP/GA together with the
testing data.



C. Diagnostic Wisconsin Breast Cancer Problem

The data of the breast cancer diagnostic problem, created

by Wolberg, Street and Mangasarian from Wisconsin Uni-

versity, was obtained by an autopsy of breast tissue. The

set has 569 samples, where 357 correspond to benign and

212 represent malignant. In our experiments, we used the

first 249 and 148 samples from benign and malignant as the

training set. The remaining data have been used for test.

On one hand, the MP/CL, with 64 nodes, achieved a

4.07% classification error in the test set. On the other hand,

MP/GA with only 6 nodes yielded 4.6% error in same testing

data.

V. CONCLUDING REMARKS

The morphological perceptron with competitive learning

(MP/CL) introduced recently by Sussner and Esmi has many

interesting properties including independence of the order in

which the training patterns are presented to the network. On

the downside, this network is subject to overfitting. In this

paper, we proposed a genetic algorithm to train the morpho-

logical perceptron with competitive layer (MP/GA) which

may circumvent such drawback of the original MP/CL.

Preliminary computational experiments using three well-

known classification problems revealed that the MP/GA is

competitive to the MP/CL in terms of the classification error

over the test set but using less nodes. In the future, we plan to

investigate further the use of genetic algorithm, in particular

the effect of the genetic operations, in the learning phase of

the morphological perceptron with a competitive layer.
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