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Abstract— The investigation of electronic devices 

as a replacement for the biological retina has achieved 

considerable interest over the last years. Tests of retinal 

prostheses in living patients have led to encouraging 

results. Such devices can be thought of as image sensors 

which are created with CMOS technology. Thanks to 

CMOS fabrication techniques, signal processing hardware 

can be integrated at the same silicon area where the light 

sensors are located. The signals generated on the retina are 

used by different neural mechanisms which are 

responsible for visual perception, motion detection, depth 

map construction, and so forth. The knowledge of how 

these neural mechanisms work, and how they interact with 

the retina, will enable the development of prostheses for 

parts of the neural visual system beyond the retina. An 

interesting feature of the visual system which has not been 

exploited in terms of hardware is the diffusive filling-in

mechanism. It is believed that this mechanism enables the 

perceptual reconstruction of surfaces. In this work we

investigate the implementation of the filling-in mechanism 

details. Our goal is to gather information that will be 

useful for the development of hardware devices with

features similar to those found in this visual perception 

mechanism.

Keywords— difference-of-gaussian filter; computer 

vision; blind spot; diffusive filling-in process; perceptual 

reconstruction.

I. INTRODUCTION

Many hardware devices that perform biologically-

inspired image processing tasks have been recently developed. 

Approximations to the retinal system itself have been 

implemented in hardware [1], as well as approximations to the 

motion detection and orientation selectivity algorithms that are 

present in living neural systems [2, 3]. To theoretically back 

up the development of these devices, many models for early 

visual system functionalities have also been presented so far 

[4, 5, 6]. Most models are based on the difference-of-gaussian
(DoG) idea, which was first presented by Rodieck [5]. It is

well known that DoG filtering in general causes losses in the 

acquired data [6]. Furthermore, in early visual system there is 

a retinal area where no data is available. This area is usually 

referred to as the blind spot. Although DoG filtering and the 

blind spot are responsible for significant loss of information in 

the early vision stage, our visual perception of the physical 

world remains regular, continuous and apparently lossless.

An early visual system model known as the retino-

morphic chip was implemented in silicon [2]. In that chip, 

photoreceptors generate electric signals that are proportional 

to the light intensity I (Fig. 1) they are exposed to. A DoG

filter arises from the lateral connections among circuit 

building blocks that approximate the behavior of biological 

cells known as horizontal cells. Other biological structures, 

known as bipolar cells, encode the DoG(I) results into two 

complementary channels, labeled on and off, according to the 

polarity (positive or negative) of these results. Still in that 

chip, there is a block that mimics the behavior of bipolar cells 

and hence separates the DoG results into two channels. Both 

channels go on to subsequent processing blocks that mimic the 

biological behavior of the ganglion cells. Such cells convert 

their input information into a pulsed representation known as 

spike train. The reason for implementing this entire system in 

silicon is the possibility of creating devices that have an 

interface with biological visual systems, which leads to new 

research possibilities. To further investigate this interface, one 

must understand details of the neural spike train processing.

Figure 1 illustrates the fact that the tasks that take place at the 

primary visual system cause significant discontinuities to the

Figure 1. Original luminance information (left); information 

loss due to DoG filtering (center); information loss caused by 

the blind spot (right). 



Figure 2. Schematic representation of the silicon retina.

visual information. For instance, if I is related to a gray circle,

then it is filled with a black outside and it has a gray inside (as 

shown in the left part of Fig. 1). The response of the on

channel can be seen in the center of Fig. 1. This response, 

which goes to higher-level visual processing areas, is an 

incomplete version of I. And, because of the absence of 

photoreceptors at the blind spot, an additional information loss 

occurs as illustrated by the right part of Fig. 1. The 

information loss at the early visual system and the existence of 

a blind spot in the human retina would lead our external 

environment perception to be discontinuous. But higher-level 

visual system mechanisms enable the perception of continuous 

surfaces where there is none, even if this perception 

corresponds to an illusion. Visual information recovery tasks 

are usually associated with mechanisms implemented at the 

visual cortex. Operations that are related to the visual cortex 

region are complex and not amenable to silicon 

implementation. Among these operations, orientation 

selectivity is particularly difficult. As an example, a hardware 

device that uses two FPGAs for the implementation of visual 

cortex orientation tuning was shown in [3]. See also [13] for a 

digital implementation of similar orientation filters. An 

additional complexity factor is the fact that the cortical layers 

of the visual system operate in integrate-and-fire (IF) [15]

mode which, from a computation point of view, is described 

using complicated pulse sequences. In this work, we propose 

an idea for the implementation of a cortical diffusive filling-in
algorithm (to be detailed in Sec. III) that is suitable for 

integration with a CMOS image sensor operating in IF mode.

We also aim at gathering information that will be useful for 

the hardware realization of this algorithm. Up to our 

knowledge, hardware implementations of filling-in algorithms 

have not been developed so far. We do not consider, at this 

point, the large complexity that is usually associated with the 

hardware implementation of cortical mechanisms. 

Figure 3. Silicon retina functionalities. The On Lum and Off 

Lum signals are proportional to those found in the parvo-

cellular channel and, jointly, compose input information for 

the visual cortex.

Instead, we focus on the filling-in mechanisms and on 

their interactions with data coming out from the retina. The 

algorithm presented in [6, 7] will serve as a starting point for 

our study. The remainder of this paper is structured as follows: 

a general overview of the processes associated with early 

vision is presented in Sec. II; the diffusive filling-in algorithm 

is described in Sec. III; some details of the IF operation mode 

are given in Sec. IV; Sec. V shows numerical results, and Sec.

VI contains our conclusions.

II. OVERVIEW: FROM RETINA TO DIFFUSIVE FILLING-IN

In this article, we focus on the analysis of diffusive 

filling-in, an algorithm which may recover some of the 

brightness information that has been lost by the early visual 

system circuits. For self-completeness, this section presents 

context information that is introductory to the filling-in 

analysis. To establish grounds for the development of a device 

that can interact with the early visual system or with the post-

processing stages of a biological visual system [9], we 

consider the development of a modified version of the retino-

morphic system that was described in [2]. Figure 2 shows a 

schematic diagram of silicon retina that we consider. An array 

of pixels (active-pixel sensor structures) interact with bipolar 

cells and with themselves in order to generate complementary 

on and off channels. These channels are then encoded into 

spikes by IF blocks and sent to an address-event representation 

(AER) device [12]. Image intensity is inversely proportional to 

the inter-spike interval and the read-out event associated with 

each spike is initiated by the pixel. If a parallel output 

connection is taken directly from the IF on/off outputs (i.e. 

before the AER block as in Fig. 2), then the structure re-

sembles a rudimentary retinal prostheses. The main function 

of the silicon retina is to generate on/off signals that have been 

degraded by a DoG filter, and to encode them into two spike 

trains represented in AER mode. Figure 3 shows a block 

diagram of the silicon retina functionalities. The luminance 

information Lum I is degraded by the blind spot and by blood 

vessels. Then, it is filtered through the DoG operation. The 

positive (DoG(I)+) and negative (DoG(I)-) response parts 

compose the retinal parvo channel (see Fig. 3), with two 

components: On Lum and Off Lum. A post-processing system 

will receive the signals generated in the early vision stage, and 

then process those signals according to the perceptual vision 

scheme outlined in Fig. 4 (schematic model of post processing 

block), which also shows the diffusive filling-in algorithm.

Figure 4. Post-processing stage including filling-in 

algorithm.



III. ALGORITHM

A diffusive filling-in algorithm based on biological 

inspiration was presented in [7]. That paper suggests the 

existence of an information diffusion process among 

neighboring cells in the visual system. In this process, labeled 

as diffusive filling-in, areas where visual information has been 

maintained may complete nearby areas where information was 

lost. So the process spreads featural qualities (brightness or 

color) across the perceptual domain.

Two types of perceptual process work together to 

synthesize a final visual percept in diffusive filling-in: featural 

filling-in and boundary completion. Featural filling-in triggers 

a filling process by which brightness and color signals are 

spread until they reach their contour limits. Contour limits are 

formed by signals from the boundary completion system. 

Figure 5 illustrates the diffusive filling-in process. The visual 

luminance perception (Percept Lum) arises when the on and 

off filling-in signals are combined, and the diffusion of these 

signals is limited by the on/off boundary contour signals.

A. Featural Filling-In

Featural filling-in is the process by which the visual 

system generates its perception of a surface. The process starts 

from cells which are within the perceptual domain and are 

carrying the brightness information. A discrete diffusion 

equation is indicated in [10] as a model for the filling-in 

process and, in [11], a similar equation is analyzed with an 

emphasis on its surface reconstruction features. For simpli-

fication, we will use a compact version of the diffusion

equation from [10]:
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Figure 5. Diffusive filling-in block diagram. The filling-in 

on/off signals combine to form the visual perception signal.

In Eq. (1), the matrices Dk represent masks similar to

the sample masks D45 and D-45, and the k index indicates the 

orientation along which diffusion is occurring. The sum of Dk

over k represents the sum of D along all orientations. The 

equation defining F(x) is called a diffusion equation, and x is 

an input signal. The expression x*D denotes the convolution 

operation between x and D. In the original version of the 

diffusion equation [10], the process is attenuated as the flow 

moves away from the source. In Eq. (1), no attenuation is 

applied to the flow. In the algorithm execution, the diffusion 

flow is trapped within the correct perceptual domain by means 

of the boundary completion signals. In pixels where there is no

boundary signal, the diffusion flow does not stop. In Fig. 6, we 

used Eq. (1) to generate the response that is expected from the 

featural filling-in process. A boundary completion signal (to 

be detailed in Sec. III.B) with leakage was used to keep the 

diffusion process inside the square. However, in this example, 

the diffusion flow leaks through the gaps and spreads across 

the entire surface.

B. Boundary Completion System

The boundary completion signals (signal generated 

by boundary completion system) define the region in which 

the diffusive filling-in process does apply. These signals thus 

act as algorithm blockers, which prevent the propagation of 

the diffusion flow out of a particular perceptual region. In the 

boundary completion system, the input signal (according to 

Fig. 5) is processed through four stages [10]: oriented filtering, 

spatial competition, orientation competition, and bipole 

grouping.

Oriented filtering is a very well-known characteristic 

of the visual system. It has been confirmed both anatomically 

and physiologically. Orientation filters implemented at the 

cortical level take part in higher-level segmentation functions.

Spatial competition is the mechanism through which the input 

responses have their edges enhanced by means of a Laplacian 

filter that weighs a central pixel against its neighboring pixels. 

The orientation competition stage preserves strong signals 

with clearly defined orientation coming up from the spatial 

competition stage. This stage inhibits weaker orientation 

signals, so that the next stage can form coherent groups. The 

name bipole is used in [10] to represent a filter (also termed a 

kernel) upon which the bipole grouping stage is based. In 

particular, the term bipole is applied to a filter that models a

specific connection between three or more cells at the visual 

cortex. One of these cells, called the output cell, yields output

equal to logical 1 only if it receives enough excitatory input

Figure 6. Example of diffusive filling-in process. In this 

example, the diffusion flow escapes through the holes.



simultaneously from both input cells. For simplicity, the 

output cell also receives the same name: bipole. Bipole group-

ing is the main stage in the boundary completion process and 

it will be described in more detail in the sequel. The first three 

stages of the boundary completion system are not discussed 

here, but further information about them can be found in [10].

Bipole grouping performs a long-range cooperation 

within one given orientation, and a short-range competition 

between different orientations, in order to extrapolate lines and 

thus connect parts of the stimulus which might belong to the 

same object [7]. Long-range cooperation happens when the 

bipole output cell receives a connection from orientation filter 

cells that are far away. The bipole output completes the 

missing points among two previously disconnected segments. 

Short-range competition happens between segments with 

different orientation in the same position, so that the segments 

with less luminance are removed. Considering the On Lum

and Off Lum inputs (Fig. 5) we can state that, if a pixel is not 

associated with segments to be connected (even if the seg-

ments have different orientation), then the corresponding 

bipole (filter) output will not be activated. Filters that are used 

in the bipole grouping operation can be found in [8] and a very 

compact one-dimensional example is shown in Eq. (2). The 

vectors BC, BE, and BD are examples of components of a bipole 

that operates on the spatial scale of three pixels. The  factor is 

a scale constant and x represents the input signal (On Lum and 

Off Lum according to Fig. 5). The expression x*B denotes 

convolution between x and B.
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In [10], the bipole grouping operator might interact 

with segments having different orientations and it has a 

particular spacial arrangement that allows grouping of curved 

line segments. For simplicity, we consider at this point only 

equally-oriented straight-line segment grouping. In Fig. 7, an 

input signal x(n) undergoes convolution with the BC filter [1 0 

0 0 1], BE filter [1 0 0 0 0], and BD  !"#$%&'(&(&(&(&)*+&,!#-&.&/&

0.01. The boundary response y(n) is non-zero only if both

convolutions results (from BE and BD) are larger than zero.

If gaps with different sizes are present, then, to make 

the union of separate segments of a straight line possible, 

bipoles at different spatial scales must be used. The largest 

spatial scale of a bipole is associated with the maximum size 

of an admissible gap between two segments to be grouped.

To create bipoles adjusted to different orientations, 

the BC, BE and BD filters must be rotated to the proper orienta-

tions. In Eq. (3), we show simple examples of the BC filter 

represented at 0
o

and 90
o

rotations. If the On Lum and Off Lum

information is processed by an orientation filter f012+&#-$3&#-!4

Figure 7. Illustration of a bipole function implementing a 

logical AND operation among its neighbors. In this figure, a 

straight line segment such as the ones in Fig. 8 is seen from a 

longitudinal point-of-view. 
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part of the potential boundary information can only be 

detected by a bipole that is tuned to an orientation represented 

56& 17& 89:;#!<3& 0=2& 4-<,4& ;3& <%!$3#;#!<3& mask (filter) 

><%%$4?<3@!3A& #<& 1& /& B(
o
. Information is indeed propagated 

into higher regions of the visual cortex by means of separated 

channels. In some parts of the visual cortex, orientation serves 

as a separation criterion.
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To illustrate the operation of the bipole stage, Fig. 8 

shows the result that is obtained when Eq. (4) is applied to the 

image of a square that is incomplete because of the presence 

of some gaps. The right side of Fig. 8 shows the result of the 

bipole operation (! = 90° and filter size 7x7) applied to the 

center of Fig. 8. The response is shown only for positive 

values. Negative values are changed to zero, since magnitude 

values are represented by neuron firing rates.

Figure 8. Illustration of the bipole grouping operation: square

before segmentation (left); square components at 90
o

orienta-

tion before being processed by the bipole (center); and after 

processing (right).



Figure 9. Diffusive filling-in process applied to a boundary 

contour system without leakage: input (left), diffusion start 

(center) and diffusive filling-in result (right).

In Fig. 9, the boundary signal does not have any hole, 

thus the diffusion flow is maintained inside the square. It is 

important to note that boundary contour signal does not 

correspond to visual perception itself.

IV. RESULTS

The generation of the simulation results that are 

presented in this section is based on Eqs. (5), (6), (7) and (8). 

The implementation of the boundary completion system along 

each orientation !) is described by Eqs. (5) and (6) (on and off

pathways respectively). The featural filling-in system, is based

on Eqs. (7) and (8), also associated with on and off pathways.

In Eqs. (5) and (6), y(n) is an output signal, f(!)

denotes a convolution operation performed by a filter tuned to 

orientation !, and BP is the bipole grouping operation, also at 

orientation !, which is described by Eq. (2). In Eqs. (7) and 

(8), w(n) is the output signal, the On Lum and Off Lum signals 

represent input information that is coming from the retina 

(Fig. 3), and F is the diffusive operation described in Eq. (1). 

Although other orientations and other stages of the boundary 

completion system could have been used, in the present work 

we consider only 0
o

and 90
o

orientations, for simplicity. In 

Eqs. (5) to (8), the (+) symbol indicates that the only positive 

values are considered in the response. Negative values are 

discarded.
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Rather than using bipole filters with different lengths, 

we use a compact format shown in Eq. (9). Figure (10) shows 

that, by applying Eq. (5) to vertical stripes that are separated 

by three pixels in a cross-sectional view (blue lines), a

boundary contour (red segment) is obtained as a result.

By applying a two-dimensional version of the filters

shown in Eq. (9), a similar result is achieved for a filling-in

Figure 10. Boundary completion system merging two line 
segments (cross-sectional view). The horizontal axis represents 
the pixel position and the vertical axis indicates the luminance.
The first iteration is shown on the left. The boundary comple-
tion system generates a signal that connects the two segments 
of a line, after some iterations (right).
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problem defined over two dimensions. The image is split into 

two parts by filters with 0
o

and 90
o

orientations. Each part is 

processed by a bipole adjusted to the same orientation. The 

signal that blocks the diffusion flow is composed by the sum

response signals that are generated by the boundary 

completion system (sign-oriented at 0º and 90º). The input and 

output of the boundary completion system are shown in Fig. 

11.

The filling-in process occurs over both on and off 

channels and the visual perception is represented by the 

difference between the results. The on channel filling-in 

processing is illustrated by Fig. 12. In the first row, we can see 

the image to be processed by the early visual system (left), the 

image with information loss caused by the blind spot (center), 

and the result of early visual system processing applied to the 

lossy data (right). The top-right image must be used to recover 

the original image. A similar version of this top-right image, 

but coming from the off channel, is fed to the on input of the 

boundary completion system. The boundary signal result is 

shown in the first column of the second row: this signal 

represents a completely closed curve, which is suitable for 

diffusive filling-in without any leakage. The diffusion process 

result (after a few iterations) appears in the center image, and 

the final result is shown in the rightmost image, together with 

the boundary contour signal shown in light gray.

Figure 11. Boundary completion system merging several 

straight line segments in two orientations (0
o

and 90
o
).



Figure 12. Various stages of diffusive filling-in for an image 

that has suffered loss of information in the early visual system 

due to DoG filtering and blind spot.

V. INTEGRATE-AND-FIRE ALGORITHM

Networks build upon IF neurons can solve computer 

vision problems efficiently and in real time [15]. They can 

also be used for pattern recognition applications. It is 

important to mention them in this work, because of their 

compatibility with biological systems. Equation (10) describes 

the charging of Cm, which represents the membrane 

capacitance of a cell. The membrane instantaneous voltage is 

Vm. The constant values VE and VI determine the maximum 

and minimum membrane voltages. Conductances ge and gI 

model excitatory and inhibitory inputs. The membrane voltage 

increases or decreases accordingly. When Vm exceeds a 

threshold VTH, a spike is generated and then Vm is reset. The 

4$##"!3A&#!C$&D&;3@&#-$& !%!3A&%;#$& <:#&< &#-$&>$""&;%$&!3@!>;#$@&

in (11) and (12). An IF model for diffusive filling-in can be 

proposed from Eqs. (10)  to (12). A simple bipole model is 

shown in Fig. 13. Dashed lines indicate inhibition and solid 

line indicate excitation. The bipole tends to complete the 

center information in patters of 1-0-1 type to 1. For other 

patterns, the center is not completed. In Fig. 14, the IF model 

is applied to featural filling-in. Information exchange among 

cells occurs laterally, and a boundary completion system layer 

blocks signal propagation at the diffusive layer.
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Figure 13. Implementation of an AND gate using IF neurons.

White circles indicate cell activity and black circles indicate 

its absence. When both its sides have activity, the center cell 

is activated (left). Otherwise, the center cell is off (right).

Figure 14. Diffusive filling-in. Layer activity occurs laterally 

between cells of the same layer. Left: filling-in is blocked by 

an activity boundary completion system layer. Right: filling-In 

flows freely between diffusive layer cells.

VI. CONCLUSION

We presented a novel study of diffusive filling-in –

an algorithm that runs in the visual cortex – taking into 

account the way signals from the early visual system are used 

by the algorithm. A model showing the related signals and 

features of the early visual system was presented. Hardware to 

implement parts of the early visual system is under 

construction and we plan to integrate it with the diffusive 

filling-in algorithm. We presented system-level test results 

showing that the filling-in algorithm is suitable for the 

integration. We also discussed the implementation of this 

algorithm using IF neuron models. Further studies of IF 

neuron models are useful for the hardware implementation of 

the diffusive filling-in algorithm.
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