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Abstract—The proposed methodology is a process for enhance-
ment the data power discrimination based on the Cover theorem
with a quantum inspiration. Given a set of data with several class,
the proposed process consists in increasing its dimension in order
to try become the non linearly separable problem into a linearly
separable problem. Also is supposed that the data are observables
in the quantum world, i.e., the data (real number) are expected
value measurements of the given transformation with respect to
a quantum state (complex numbers). Therefore, the methodology
applies a Genetic Algorithm for search the inverse mapping of
the expected value measurements, transforming the real number
into complex number, subject to the constraint of magnitude
conservation. The traditional methods of classification like K-
means, KNN and LDA were applied to benchmark classification
problems in two conditions: raw data set and transformed data
set with the proposed methodology. The comparison of the
classification results are presented, indicating a enhancement in
the data power discrimination when the proposed pre-processing
is applied.

I. I NTRODUCTION

The clustering methodologies are a very important and
usual branch in several areas like data mining, statistics,
engineering, computer science and all science that works with
data analysis [1]. In general, the clustering techniques have
not a tutor or teacher, characterizing an unsupervised learning
process. In these clustering systems, the data are grouped in
clusters according with some similarity measure.

In this sense, a clustering system can defines classes (or
clusters) for a data set using a feature vector provided by the
feature extractor to assign an object of the data set to one of
these classes. It is the task of a classifier.

The degree of difficulty to classify a data into a several
numbers of classes depends on the variability in the features
values for data objects in the same category relative to the
difference between the feature values for data objects in
different categories. Basically, two factors can have an affect
on the variability of feature values for a data object: the
data complexity and the noise [1]. If the data set presents
a low noise level and complexity with linearly independent
relations for the features, then the classification task is a
linearly separable problem and there is a optimal hyperplane
that produce a perfect classification [2].

On the other hand, if the classification problem is a non
linearly separable problem, there is not a optimal hyperplane
that conduce to a perfect classification. In this case, because

the perfect classification is often impossible, the generaltask
is to determine the probability of one data object to belong for
each of the possible classes. Therefore, the linearly separable
problem is a task relatively more simple to solve than a non
linearly separable problem.

However, if the data set is non linearly separable and it
is a d-dimensional set (each data object is ad-dimensional
vector of patterns), the Cover Theorem [3], [4] postulates
that expanding the dimensionality of the representation space
(space where the data set is represented) the asymptotic
probability of ambiguous classification will decrease. Thus, if
this dimensionality increasing is large enough, the non linearly
separable problem, with high probability, may becomes a
linearly separable problem.

In a quantum system [5], a state vector is a complex vector,
commonly described by|Ψ〉. A feature of the quantum system
can be measured applying a specific operator to the state
vector. If the value of feature is a real number, then this feature
is called ofobservableand this feature can be observed in the
classic world (real world).

In this work is proposed a new data pre-processing based
on the Cover Theorem and inspired on a quantum system.
Given a data set, it is supposed that the points of the data set
are measures of some feature of a quantum system. Thus, a
Genetic Algorithm is used to search a transformation in the
data set, where a quantum system with a state vector subject
to the constraints of minimum variability of each new class
in the quantum world and of the maximum distance between
the centroids of each class is built. With this transformation,
the representation space is dimensionally increased providing
better conditions for the classification task.

Classical algorithms of classification as K-means [6], K-
Nearest Neighbor (KNN) [4] and Linear Discriminant Analysis
(LDA) [7] were used in the classification task. Several experi-
ments were performed with a benchmark data set extracted
of the UCI Machine Repository [8] and an artificial data
set, where the classifiers were applied to the data with and
without the proposed transformation. The experimental results
show a excellent classification performance when the proposed
transformation is applied to the data set.

This paper is organized as follows. In Section II is de-
scribed the methodology proposed here to enhancement the
data discrimination power in the classification task. The de-
scription of the data sets utilized in the experimental process



Fig. 1. The Bloch Sphere.|Ψ〉 = α|0〉+ β|1〉.

is presented in the Section II-C. The experimental set up,
results, and conclusions are shown in the Section III and IV,
respectively.

II. PROPOSEDMETHODOLOGY

A. A Quantum System

To understand the quantum inspiration used in this work
some principles about a quantum system will be introduced.

A quantum system is governed by the quantum mecha-
nics [5]. The quantum mechanics is a branch of physics which
deals with phenomena in the microscopic scale, where the
variables magnitude are on the order of the Planck Constant
(h = 6.62606910−34 J · s). In this sense, the quantum me-
chanics is more fundamental theory than a classical physics,
because a macroscopic system (classical system) can be un-
derstood as the composition of microscopic systems.

Mathematically, the possible states of a quantum mecha-
nical system can be represented by unit vectors, called “state
vectors” and represented in the Dirac notation by|Ψ〉. For-
mally, these state vectors reside in a complex Hilbert space[9],
commonly called of “state space” or the “associated Hilbert
space” of the quantum system. This state space is well defined
up to a complex number of norm 1. A state vector can be
graphically represented by the Bloch sphere [5], [10], as shown
in the Figure 1. For the quantum computer [10] the canonical
space base is|0〉 and |1〉, where

|Ψ〉 = α|0〉+ β|1〉 (1)

with,
|α|2 + |β|2 = 1 (2)

Following the Dirac notation [5], it is possible to define an
operatorA where the equation is valid,

A|Ψ〉 = λ|Ψ〉. (3)

The |Ψ〉 is a eigenvector andλ is a eigenvalue. In general,
λ ∈ C, but if λ ∈ R implies that the operatorA is Hermitian
and the value ofλ can be measured in the real world. In the
last case, the operatorA is calledobservableand the its value
can be obtained by a measure of the expected value given by,

〈Ψ|A|Ψ〉 = 〈Ψ|λ|Ψ〉 = λ〈Ψ|Ψ〉 = λ

where all information about the phases (Figure 1:θ andϕ) is
lost.

Therefore, the heuristic proposed here assumes that the data
set is composed by values of an observable in the quantum
world, off by a multiplicative constant. Thus, the procedure
will search by a state vector|Ψ〉 where an observable pro-
jective operator applied to this state vector generates thedata
analyzed.

B. Methodology

Let X = {x(d)
1 , x

(d)
2 , . . . , x

(d)
N } a dataset to be classified

into k classes, in which eachx(d)
j ∈ Rd.

According the theorem of Cover [3], given a training data
set non linearly separable, it can be, with high probability,
transformed into a training data set linearly separable by
projecting it into a higher dimension space.

The purpose of this process is increase the dimensionality
of a data set, for this the mappingx(d)

j → z
(d)
j is proposed,

in which z
(d)
j ∈ Cd. Thereby, to eachx(d)

j there is an ordinate

pair (a(d)j , b
(d)
j ), satisfying the constraint

(x
(d)
j )2 = |z(d)j |2 = (a

(d)
j )2 + (b

(d)
j )2. (4)

Therefore,zdj is associated to the quantum state|Ψ〉 (off a
multiplicative constant), and there is an observable operation
T when applied to the quantum state obtains the eigenvalue
|z(d)j |2,

T |Ψ〉 = |z(d)j |2|Ψ〉

To obtain the pair(a(d)j , b
(d)
j ), it was used a modified

genetic algorithm proposed in [11] and described in the next
subsection. With the application of the proposed heuristic,
one patternx(d)

j d-dimensional in the real space becomes2d-
dimensional in the complex space.

As shown in the Section II-A, after measure the value of
the observable, all information about the phase of the quantum
state is lost. Thus, the genetic algorithm will search by the
phase values that maximize the data power discrimination. This
situation is reached if,

• The variance of each class is minimized;

• The distance between the classes’ centroids are mutu-
ally maximized.

Therefore, a description of the proposed methodology can
be given by,

1) For each patternx(d)
j of the training data set, the

genetic algorithm finds an ordinate pair(a(d)j , b
(d)
j )

which satisfies the constraint given by the Equation 4;
2) After the genetic algorithm adjust all pairs

(a
(d)
j , b

(d)
j ), a new data set is created with the

double dimensionality of the original data set;
3) Some Classification/Clustering Algorithm is applied

to the new data set in the complex space.



In this way, it is possible to generate a complex data
set representation where the classification task has a lower
complexity compared to the same classification task in real
space. The experimental results (Section III) will demonstrate
that the proposed mappingx(d)

j → z
(d)
j is possible and really

provides an enhancement of data power discrimination.

1) The Genetic Algorithm Used:The modified genetic
algorithm (GA) used here was utilized by Ferreira [11].

The population is composted of individuals, or chromo-
somes, each one representing a possible set of pairs(a

(d)
j , b

(d)
j )

corresponding to the patternsx(d)
j of the original data set. In

this way, a individual is a set ofN 3-tuple like (a(d)j , b
(d)
j , kj),

wherekj is a label indicating the class of the patternx
(d)
j and

N is the number of the patterns in the original data set.

In each GA generation, two chromosomes in the population
are selected to undergo genetics operations. The selection
process is done by the method of spinning roulette wheel [11],
[12].

The genetic operators include crossover and mutation oper-
ators. The crossover operator exchange information from two
parents (p1 andp2). Here, four crossover operators were used,

C1 =
p1 + p2

2
(5)

C2 = Pmax(1− w) + max(p1,p2)w (6)

C3 = Pmin(1− w) + min(p1,p2)w (7)

C4 =
(Pmax +PMin)(1 − w) + (p1 + p2)w

2
(8)

wherePmax and PMin are the vectors with the maximum
and minimum possible values for each gen of a chromosome,
respectively. The functionmax returns the maximum values
for each gen ofp1 andp2, and the functionmin the minimum
values.w ∈ R is a weight, where in the experiments was used
the value ofw = 0.9.

After the potential offspring is selected by the crossover
operator, the best offspring is chosen. If this best offspring is
better than the worst chromosome from the old population,
then this offspring replaces the worst chromosome.

The four new chromosomes generated by the crossover
process (C1, C2, C3, C4) are cloned and its clones undergo
the mutation operation, where the features inherited from their
parents can be changed. For each offspring cloned, three new
chromosomes are generated by the mutation operation,

MCl,α =[c1l c
2
l · · · cno V ars

l ]+

[δ1mc1l δ2mc2l · · · δno V arsmcno V ars
l ]

(9)

whereα = 1, 2, 3 is the mutation index,l = 1, 2, 3, 4 is the
offspring index,δu (u = 1, 2, ..., no V ars andno V ars is the
number of genes in a chromosome) can only take values0 or

1, andmcul (u = 1, 2, ..., no V ars) are randomly generated
numbers that satisfy the constraintparameterumin ≤ cul +
mcul ≤ parameterumax.

The first mutation operation (α = 1) is such that only one
δu is one (u being generated randomly within the valid range)
and all others are zero in Equation 9. The second mutation
operation (α = 2) is obtained by Equation 9, where someδu
(randomly chosen) are set to one and others are set to zero.
The third mutation operation (α = 3) is obtained with allδu
equal to one in Equation 9.

A real number is randomly generated and compared to a
user defined numberpMut ∈ [01] (accepted mutational prob-
ability, herepMut = 0.1 ). If the real number is smaller than
pMut then the mutated chromosome replaces the chromosome
with the smallest fitness in the population. However, if the real
number is larger thanpMut, then the mutated chromosome
replaces the chromosome with the smallest fitness of the
population if and only if its fitness is greater than the fitness
of the worst chromosome in the population.

All individuals (ind) are evaluated according to the fitness
function given by,

f(ind) =

∑k

t=1

∑k

j>t

(

Z
(t)
C

− Z
(j)
C

)2

1 +
∑k

g=1

∑k

v>g

√

1
nv−1

∑nv−1
w=1

(

Z
(t)
C

− z
(v)
w

)2

(10)
in which Z

(l)
C

= 1
nl

∑nl

j=1 a
(l)
j − ıb

(l)
j is the centroid of the

classel, nl is the elements number of the classl, ı =
√
−1

is the complex constant andz(l)w = a
(l)
w + ıb

(l)
w is a point in

the complex space corresponding to thew-th real point of the
classl in the original data set.

The objective of the fitness function defined in the Equa-
tion 10 is maximize the distance between clusters (or classes)
and minimize the variance of each cluster in the complex
space.

C. Data

The description of the data sets used to test the proposed
methodology are related in the Tabel I with the domain (or
nature of the data set), the size, the dimensionalityd, and the
number of classes.

TABLE I. D ESCRIPTION SYNTHETIC OF THE DATA SETS USED.

Data Domain Size Dimensionality Classes
Concentric Circles Artificial Data 600 2 2
Concentric Spirals Artificial Data 600 2 2
Iris Botanic 150 4 3

For the concentric circles were generated artificially 600
two dimensional points, divided into two classes: in the first
class were generated randomly 300 points in a radius0 ≤ r ≤
0.5, the inner circle. The second class, the rest of the points
were generated randomly in a radius1.0 ≤ r ≤ 1.5, the outer
circle. The two classes can be visualized in the Figure 2a. In
particular for classification procedures based on calculate of
distance between a point and a class centroid, this data set
will generate an ambiguous classification.

For the concentric spirals also were generated artificially
600 two dimensional points, divided into two classes. We



adopted the Archimedean spiral wherein the polar coordinates
(r, θ) can be described by the equationr = a + bθ, with
a, b ∈ R. Changing the parametera will turn the spiral,
while b controls the distance between successive turnings. We
take b = 0.5 for the inner spiral andb = −0.5 for outer
spiral anda = 0 for both cases. In the Figure 3a the two
classes can be visualized. For classification procedures based
on calculate of distance between a point and a class centroid,
for data set concentric spirals also will generate an ambiguous
classification.

The data set about the Iris flowers is a classification bench-
mark data set and it was obtained of UCI Machine Learning
Repository [8], widely used to test new proposed methods in
problems of classification. The data contains information about
three species of Iris flower, namely Iris Setosa, Iris Versicolor
and Iris Virginica. This data set consists of 150 examples with
four attributes by species, lenght and widht of petals and sepal.
One class is well separable of the others, while the others two
are overlapping, generating ambiguous classification.

For the three data set used here, the data were normalized
in the interval [0,1] by following equation

x(d)
n =

x
(d)
j − x

(d)
min

x
(d)
max − x

(d)
min

(11)

in which x
(d)
j , x

(d)
min, x

(d)
max are respectively, the original value

of the pattern of the data, minimum and maximum value of
the patternx(d)

j .

III. E XPERIMENTAL RESULTS

For each one of the three data set, Concentric circles, Con-
centric spirals and Iris, was applied the proposed methodology
with the genetic algorithm to build the complex representation
of the respective data set. After that, three different classi-
fication algorithm were employed to clustering the data in
the real (raw data) and transformed data (complex space).
The classification algorithm chosen were K-means [6], K-
Nearest Neighbor (KNN) [4] and Linear Discriminant Analysis
(LDA), or Fisher’s linear discriminant [7], that are quite used
to classification and clustering of a dataset.

The cited classification methods were applied in the raw
data set (d-dimensional real space) as is widely viewed in
the literature, and as much as equally applied to transformed
data set (2d-dimensional complex space) obtained from the
methodology presented here.

The results of both conditions are compared for assure
the robustness of the process to become the data separable
with the increasing of the dimensionality of the representation
space, creating the ideal conditions for an enhancement the
data discriminant power.

The first algorithm used to classify the data sets is the
K-means algorithm [6], [1]. For the concentric circle, the K-
means was applied to the raw data set and reached82% of
correct classification for the class 1 (inner circle) and46% of
correct classification for the class 2 (outer circle). The cause for
this ambiguous classification is because the concentric circle
raw data set has two class with centroids localized in the same
place in the real representation space.

TABLE II. E XPERIMENTAL RESULTS OF THEK-MEANS METHOD FOR

THE REAL DATA AND TRANSFORMED DATA OF CONCENTRIC CIRCLES,
CONCENTRIC SPIRALS AND OFIRIS DATA SET.

Dataset Classe
K-MEANS

Raw Transf

Concentric circles
Classe 1 82% 100%
Classe 2 46% 100%

Concentric spirals
Classe 1 43% 100%
Classe 2 60% 100%

Iris
Classe 1 100% 100%
Classe 2 94% 100%
Classe 3 72% 100%

For the Concentric spiral dataset, the Kmeans was applied
to the raw data set and for the class 1 (inner spiral) reached
43% of correct classification and for the class 2 (outer spiral)
60% of correct classification. The ambiguous classification is
because the concentric spiral raw data set has two class with
centroids localized in the same place in the real representation
space, like happen with the concentric circles.

And for the Iris raw data set, the K-means algorithm
reached a perfect classification for the first class (Iris Setosa)
since this class is totally separated of two other class (Iris
Versicolor and Iris Virginica). But, for these two other classes,
Iris Versicolor (class 2) and Iris Virginica (class 3), which are
overlapped, the K-means reached94% of correct classification
for the class 2 and72% of correct classification for class 3.
Again, the non separability of the data classes degrades the
classification performance.

When is applied the proposed methodology to increasing
the dimensionality of the representation space, passing ofa
d-dimensional real representation space for a2d-dimensional
complex representation space, the classes will become separa-
ble with high probability, as postulated by Cover [3]. In this
way, the K-means algorithm was applied to the transformed
concentric circles, concentric spirals and Iris data set, reaching
a perfect classification, demonstrating a gain in the ability of
data discrimination and a possible separation of the classes of
data sets. The Table II summarizes the experimental results
reached by the K-means algorithms for the three data sets for
raw and transformed data conditions.

The second algorithm employed for the classification task
was the KNN algorithm [4], [1]. For the three data sets,
concentric circles, concentric spirals and Iris, the data were
partitioned in two subsets: a training subset with80% of
the data and a test subset with20% of the data. For the
concentric circles raw data set, the KNN reached a perfect
classification with the parameterk ≤ 111, where k is the
number of neighbours used in the KNN algorithm to realize the
classification task. For the concentric circles transformed data
set, the KNN also reached a perfect classification, but in this
case withk > 1. Thus, although there was no difference in the
classification performance, there was a considerable reduction
in the complexity of the problem, where the original problem
is non linearly separable and after the proposed transformation
the problem becomes linearly separable, as shown by the
Figure 2.

The KNN algorithm reached a different classification per-
formance for different neighborhood valuesk for the raw
concentric spiral dataset. For1 6 k 6 5 we have100% of
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Fig. 2. The Concentric Circles, (a) 600 points distributed into two concentric circles in the original real space and (b)a projection of the complex space in the
R3 space obtained with the application of the methodology.

TABLE III. E XPERIMENTAL RESULTS OF THEKNN METHOD FOR THE

REAL DATA AND TRANSFORMED DATA OF CONCENTRIC CIRCLES,
CONCENTRIC SPIRALS AND OFIRIS DATA SET (TESTSET).

Dataset Classe
KNN

Raw Transf

Concentric circles
Classe 1 100% 100%
Classe 2 100% 100%

Concentric spirals
Classe 1 74% 100%
Classe 2 68% 100%

Iris
Classe 1 100% 100%
Classe 2 90% 100%
Classe 3 90% 100%

correct classification for both classes. For7 6 k 6 21 we have
in average100% of correct classification for the class 1 (inner
spiral) and93% for class 2. These correct classification values
decrease for somek values in both classes and after the class
1 return increasing while the class 2 continues decreasing.As
follows, for 23 6 k 6 35 in average92% and 76% for class
1 and class 2, in that order, for37 6 k 6 107 in average56%
and 51%, for 109 6 k 6 121 in average75% and 36%, and
finally for 123 6 k 6 151 in average84% and 19%. While
for the transformed data the KNN algorithm also is able to
generate a perfect classification, with100% of hits for both
classes and allk values tested. In the Table III is presented
the average of hits for1 6 k 6 75.

For the Iris data set the KNN algorithm reached the same
classification performance for1 6 k 6 23 for both situations
of raw and transformed data. For raw Iris data, the KNN
algorithm also is not able to generate a perfect classification,
since the classes of the Iris data are overlapped. But for the
transformed Iris data set the KNN algorithm reached a perfect
classification, as shown in the Table III for the test set.

The last algorithm employed to classify the data set was
the Linear Discriminant Analysis (LDA) [7], [1]. As the three
raw data sets are non linearly separable, the LDA algorithm
is not able to reach a perfect classification. However, for the
transformed data sets, the LDA algorithm reached a perfect
classification performance for all data sets, concentric circles,
concentric spirals and Iris. One more time, these experimental
results implies that with a high probability the proposed
transformation is able to decrease the complexity of the data

TABLE IV. E XPERIMENTAL RESULTS OF THELDA METHOD FOR THE

REAL DATA AND TRANSFORMED DATA OF CONCENTRIC CIRCLES,
CONCENTRIC SPIRALS AND OFIRIS DATA SET.

Dataset Classe
LDA

Raw Transf

Concentric circles
Classe 1 46% 100%
Classe 2 51% 100%

Concentric spirals
Classe 1 55% 100%
Classe 2 48% 100%

Iris
Classe 1 100% 100%
Classe 2 96% 100%
Classe 3 98% 100%

set and enhancement the data discrimination power, where a
no linearly separable problem becomes in a linearly separable
problem. The Table IV summarizes the results of the LDA
algorithm for the raw and transformed data sets.

IV. CONCLUSION

In this work was presented a method quantum inspired,
developed for increase the dimensionality of data sets, becom-
ing non linearly separable classes in linearly separable classes,
decreasing the complexity of the data and enhancement the
data discrimination power, implying in a better classification
task performance.

Here, it is assumed there is a quantum observable operator
that generate the observed values of the data set. Therefore,
it is searched the inverse transform, that takes real data into
complex data, increasing the dimensionality of the originals
dataset. A genetic algorithms was used for search this inverse
transformation, acting like an inverse operator. The search is
the task of defines a set of ordinate numerics pairs which
mapping a real element into an complex element respecting
the constraint defined by the Equation 4.

The concentric circles, concentric spirals and Iris data set
were used to test the propose methodology. The three data
sets are non linearly separable problem. After the employ
of the proposed methodology, three different classical clas-
sification algorithms, K-means, KNN and LDA, are applied
to the raw and transformed data, demonstrating the viability
of this methodology to enhancement the data discrimination
power. The experimental results shown the robustness of the
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Fig. 3. The Concentric Spirals, (a) 600 points distributed into two concentric spirals in the original real space and (b)a projection of the complex space in the
R3 space obtained with the application of the methodology.

methodology for decreasing of the complexity of the data,
facilitating success of the classification task.

The Figure 2 presents the raw concentric circles data set
(Figure 2a) and the a projection in theR3 of the transformed
concentric circles data set (Figura 2b). And the Figure 3 shows
the same behavior for the concentric spirals data set. Clearly,
it is possible notice that the non linearly separable problem be-
comes with the proposed methodology in a linearly separable
problem, enhancement the data discrimination power.

Therefore, the proposed methodology presented here was
able to become the three non linearly separable problems, Con-
centric circles, Concentric spirals and Iris, in linearly separable
problems. Furthermore, base on the Cover theorem [3], the
proposed methodology, with high probability, will becomes
same problem non linearly separable in a linearly separable
problem.

Thus, this work demonstrate that is possible take a non
linearly separable problem in a linearly separable problem. The
next step is to develop a method to classify the new point
not presented in the learning process performed by genetic
algorithm. This new classification method is in implementation
process and has an initial set of promising results, but still need
to be consolidated.
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