
Improved regularization in extreme learning machines

Andrea Carolina Peres Kulaif
LBiC/DCA/FEEC

University of Campinas (Unicamp)
Campinas, SP – Brazil

E-mail: deiacpk@dca.fee.unicamp.br

Fernando J. Von Zuben
LBiC/DCA/FEEC

University of Campinas (Unicamp)
Campinas, SP – Brazil

E-mail: vonzuben@dca.fee.unicamp.br

Abstract—Extreme learning machines (ELMs) are one-hidden
layer feedforward neural networks designed to be trained at a
low computational cost and to exhibit a direct control of the
generalization capability, both for regression and classification
tasks. By means of ridge regression, it is possible to properly
control the norm of the connection weights at the output layer.
Restricted to regression tasks and MLP-like topologies, the main
contribution of this paper is to indicate that a more refined
search for the parameter of the ridge regression, based on a
golden section mechanism, consistently guide to better
performance in terms of generalization, when compared to what
is done in the state-of-the-art proposals for ELMs in the
literature, and no matter the number of neurons at the hidden
layer. The improvement in regularization comes at an additional
computational cost, though we still are dealing solely with the
adjustment of the connection weights at the output layer, which
implies that the effective cost remains orders of magnitude below
what we obtain when training an MLP neural network.

Keywords—Extreme learning machines; golden section search;
regression problems; generalization capability.

I. INTRODUCTION

Feedforward neural networks, in general, are universal
approximators, such as multilayer perceptron (MLP) [6] and
radial basis function (RBF) [14] neural networks. The
universal approximation capability fully supports the existence
of a neural network that complies with a given threshold for
the training error. However, this is an existential property, and
we still do not have a systematic and computationally effective
way of properly and automatically defining the required
number of neurons and setting the connection weights so that
the resulting neural network maximizes the generalization
capability. In other words, achieving a given threshold for the
training error is ease to attain in practice, and the real
challenge is to control the generalization capability of the
neural network.

Even with the continued increasing in the availability of
computational resources, an additional drawback of MLP and
RBF neural networks is associated with the necessity of
properly setting the weights at the hidden layer. In the MLP
case, a nonlinear optimization problem should be solved. In
the RBF case, self-organizing methods are generally applied to
set the center of the radial basis functions. Those are iterative
and time consuming procedures, besides being subject to local
optimal solutions.

Support vector machines (SVMs) [17] are founded on
statistical learning theory and come to provide better solutions
to both the automatic definition of the number of neurons at
the hidden layer and of the connection weights. The number of
neurons is associated with the number of support vectors and
the connection weights are obtained by the definition of a
hyperplane of maximum margin in the feature space, which is
a convex optimization problem. Though supported by
theoretical results guiding to the minimization of the structural
risk [15], the practical performance of SVMs still depends on
a proper choice of the kernel function and its corresponding
parameter(s) [12]. Besides, the computational cost to solve the
resulting quadratic optimization problem subject to equality or
inequality constraints [16] is still a practical drawback of
SVMs.

Extreme learning machines (ELMs) [9][11] were then
proposed to circumvent those practical limitations of the
aforementioned approaches, more specifically: (1) ELMs
training phase is orders of magnitude less computationally
intensive, when compared to what is required for MLPs, RBF
neural networks, and SVMs; (2) The optimization problem is
convex, which means that there is no local minima, and there
is no kernel function to be defined; (3) The generalization
capability is directly controlled by setting a single
regularization parameter of a ridge regression problem; (4)
Though defined randomly, the number of hidden neurons and
the connection weights, when defined obeying predefined
intervals of admissible values, do not influence significantly in
the generalization capability; (5) ELMs have been
demonstrated to be generalized versions of MLPs, RBF neural
networks and SVMs [10], with similar performance in terms
of generalization.

Those amazing properties of ELMs may be supported by
two initiatives: (I-1) the mapping of the original problem to a
feature space of much higher dimension when compared to the
dimension of the input space, even without the use of a kernel
that obeys the Mercer condition [15], as done in SVMs; (I-2)
the direct exploration of an empirical result of Bartlett [1][2],
which asserts that the size of the weight vector at the output
layer is more relevant for the generalization capability than the
configuration of the neural network, in terms of number of
neurons and format of the activation function.

Since it was originally proposed [11], and given that the
computational cost to train ELMs is very attractive, there have
been several attempts to improve initiatives I-1 and I-2,

This work has been supported by grants from Capes and CNPq.

looking for gain in performance, possibly at the price of an
additional computational cost. Concerning initiative I-1, there
are several alternative proposals in the literature aiming at
converting the training phase to an incremental procedure,
with a sequential introduction of neurons at the hidden layer.
They are called incremental extreme learning machines (I-
ELMs) and some relevant contributions are [7], [8] and [18].

The main contribution of this paper is associated with
initiative I-2 and is restricted to regression problems and
MLP-like topologies, even though the extensions to
classification problems and other types of ELM’s topologies
are straightforward. We concentrate ourselves at the ridge
regression problem associated with the definition of the
connection weights at the output layer. Our empirical results
considering seven benchmarks from the literature, clearly
indicates that it is consistently worthwhile to refine the search
for the regularization parameter in the ridge regression
problem. Until now, the more advanced result, presented in
[10], is associated with a rather crude search (discretely
sampling an interval of admissible values) for a single value
for the regularization parameter of the ridge regression
problem, using a validation dataset to guide the search. Here
we start from this sampling procedure and introduce an
additional golden section search to deeply refine the value of
the regularization parameter. Besides, we are no more looking
for a single value for the regularization parameter for each
regression task, as done in [10]. In fact, once defined the
number of hidden neurons and the regression task, the random
configuration of the connection weights at the hidden layer
strongly influences the optimal choice of the regularization
parameter.

The paper is organized as follows: Section II briefly
formalizes extreme learning machines, with emphasis on the
formulation and solution of the ridge regression problem
associated with the training phase. Section III explains the
motivation and fundamental aspects of the refined search we
are proposing here. Section IV presents the benchmarks and
the obtained results, followed by a comparative analysis with
the state-of-the-art ELM and also with conventional MLP.
Section V outlines some concluding remarks and some
perspectives for the further steps of the research.

II. EXTREME LEARNING MACHINES

A. Preliminaries

Let us consider the one-hidden layer neural network
presented in Figure 1.

The input-output mapping performed by this neural
network is given in equation (1), as follows:

 0
1

0
1

k

n

j
j

m

i
lijikjlk wvxvfws +









+= ∑ ∑

= =
ˆ (1)

In equation (1), k ∈ {1,…,r} is the index of the output and
l ∈ {1,…,N} is the index of the input-output pattern belonging
to the training dataset. Notice the existence of a fixed input
equal to 1 associated with each neuron in the network.

1

xl1

xlm

+ f

v2m

v21

v20

+ f

vnm

vn1

vn0

+ f

v1m

v11

v10

+

w1n

w12

w11

y
l2

y
l1

y
ln

sl1 ^

1

1

w10 1

+

wrn

wr2

wr1

slr ^

wr0 1

Fig. 1. One-hidden layer neural network with m inputs, n hidden neurons,
and r outputs.

The activation of each hidden neuron j ∈ {1,…,n} for each
input pattern l ∈ {1,…,N} is going to be represented as:

 









+= ∑

=
0

1
j

m

i
lijilj vxvfh (2)

Now it is possible to express, in a single matrix H, the
activation of all neurons at the hidden layer for all the input
patterns, producing:



















=

NnNN

n

n

hhh

hhh

hhh

H

L

MOM

L

L

21

22221

11211

 (3)

Denoting []Tknkkk www L10=w , and inserting a
column of 1’s as the first column of H, the k-th output kŝ

(k ∈ {1,…,r}) of the neural network in Figure 1, for all the
input patterns, is then provided by:

kk

kn

k

k

NnNN

n

n

Nk

k

k

k H

w

w

w

hhh

hhh

hhh

s

s

s

wss =⇒





































=


















= ˆ

ˆ

ˆ

ˆ

ˆ
M

L

MOMMM

L

L

M

1

0

21

22221

11211

2

1

1

1

1

 (4)

Notice that, even if you change the activation function f(⋅),
thus producing distinct neural network models, such as MLP,
RBF and even SVM [10], the algebraic structure of equations
(1) to (4) remains the same.

B. The regularized optimization problem: ridge regression

In ELMs, solely the weights at the output layer are
adjustable, with the weights between the input and hidden
layer being randomly defined. The number n of hidden
neurons may also be defined a priori.

For each output k, k ∈ {1,…,r}, to obtain the weights at
the output layer, the available dataset is divided into training

and validation, producing the training dataset { }N
llkl s 1, =x and

the validation dataset () (){ } vN

l
v

lk
v

l s 1, =x . It is then possible to define

[]TNkkkk sss L21=s and () () () ()[]Tv
kN

v
k

v
k

v
k v

sss L21=s .

The weights at the output layer of the k-th neuron are the
solution of the following regularized optimization problem:

 22

1
minarg kkkk HC

n
k

swww
w

−×+=
+ℜ∈

* . (5)

Given the value of C and supposing N > (n+1), the solution
is expressed by:

 k
TT

k HHH
C

I
sw

1−








 +=* . (6)

The validation dataset () (){ } vN

l
v

lk
v

l s 1, =x should be employed to

properly set the value of the regularization parameter C.

C. Definition of the regularization parameter

In the optimization problem in (5), when we set C →∞, we
obtain the solution without regularization, where only the error
at the output is taken into account. In this case, kw is

unrestricted.

On the other hand, for C > 0 and finite, there is a
compromise between the error at the output and the norm of

kw . To achieve a proper compromise, Huang et al. [10]

adopted the value of C in the set },2,2,,22{ 2524-2324 ++−
L , so

that the choice is the one that minimizes the error for the

validation dataset () (){ } vN

l
v

lk
v

l s 1, =x . Notice that, in [10], a single C

is defined for each regression task.

III. THE PROPOSED METHODOLOGY

We are going to propose a more refined search strategy to
define the regularization parameter C. The motivation is
twofold, and has been supported by practical results obtained
when dealing with regression problems:

(1) Small deviations in C may guide to significant variation in
the solution;

(2) For any reduced search interval with candidate values for
C, the curve associating the value of C with the validation
error tends to exhibit a quasi-convex behavior.

The use of a unidimensional search in the whole interval
(0,+∞) is not recommended, because the quasi-convexity of
the curve associating the value of C with the validation error
may be violated. Given that the quasiconvexity property of the
aforementioned curve is a necessary condition for the
application of a unidimensional search, we have decided to
consider the search procedure of Huang et al. [10] and, after
the definition of the best choice for C in the set

},2,2,,22{ 2524-2324 ++−
L , we perform a golden section search

[5] around this value, taken the right and left neighbor values
of C in the set as extreme points of the refined search interval.

Besides, given that for each regression task 50 repetitions
are going to be performed (see Section IV), we are going to
proposed one distinct C for each ELM, and not the same C for
all the ELMs associated with that specific regression task.

Though more computationally intensive, this new
procedure conceived to properly optimize the regularization
parameter C will be shown to exhibit a consistent better
performance, thus contributing to improve the generalization
capability of the obtained ELMs.

IV. EXPERIMENTAL RESULTS

This section presents the experiments and results obtained
with the proposed methodology of Section III, as well as
comparisons with the state-of-the-art ELM [10] and standard
MLP, trained with a second-order nonlinear optimization
algorithm [3]. The stopping criterion for the MLP will be the
minimization of the error for the validation dataset or 1,500
epochs of training.

A. Benchmark Datasets

All datasets considered here are associated with regression
problems, and have already been considered as benchmarks in
[10]. However, we adopted here a distinct partition, containing
training (60%), validation (20%), and test (20%) datasets.

The datasets present distinct characteristics, including
number of samples and number of features (dimension of the
input space). Table I specifies the main aspects of the datasets.
The datasets Bodyfat, Space-ga, Quake, and Strike can be
found in [13], and Abalone, Pyrim and Housing are available
in [4]. It was made a scaling for the input data in the interval
[−1,+1], and for the output data in the interval [0,+1].

TABLE I – Attributes of the Datasets

Datasets
Number of
Samples

Features

Pyrim 74 27
Bodyfat 252 14
Housing 506 13
Strike 625 6
Quake 2178 3

Space-ga 3107 6
Abalone 4177 8

B. Parameters

The simulations were performed in MATLAB 7.11.0.584 -
64-bit, running on Intel Core i5-2430M, 2.4GHz with 4GB of
RAM. The results obtained when employing the methodology
proposed by Huang et al. [10] will be presented here for
comparison. As explained at the end of Section II, in this case
the value of C will be given by one of the elements of the set

},2,2,,22{ 2524-2324 ++−
L . Table II presents the obtained values

for each dataset. They are not the same results presented in
[10], because there the weights of the hidden layer were
initialized randomly in the range [−1,+1], the number of
hidden neurons was fixed in 1,000, and there was no test
dataset there (only training and validation datasets were
considered).

TABLE II – Obtained C using the methodology of Huang et al.
[10] for each dataset

Datasets C
Pyrim 20

Bodyfat 27
Housing 22
Strike 22
Quake 20

Space-ga 27
Abalone 28

In the golden section search implemented to support our
proposal of Section III, the threshold for the search is the
minimum between 10-5 and 0.01% of the initial search
interval. In our experiments, the number of hidden neurons
was fixed in 100 and the weights of the hidden layer were
initialized randomly in the range [−0.5,+0.5]. Those values
differ from the ones adopted in [10], because they produced
more stable numerical results. Besides the holdout approach
for validation of the obtained regression models, we will also
employ here the k-fold cross-validation approach, not
considered in [10].

TABLE III – Simulation Results (Holdout)
ELM with fixed C (see Table II) – 100 hidden neurons

Datasets
RMSE
Valid.

Dev.
Valid.

RMSE
Test

Dev.
Test

Traininig
Time(s)

Pyrim 0.1112 0.0372 0.1152 0.0394 0.0162
Bodyfat 0.0296 0.0122 0.0340 0.0127 0.0197
Housing 0.0857 0.0118 0.0854 0.0136 0.0268
Strike 0.2735 0.0119 0.2735 0.0118 0.0240
Quake 0.1730 0.0077 0.1724 0.0071 0.0636

Space-ga 0.1814 0.1151 0.1756 0.0859 0.0908
Abalone 0.0756 0.0027 0.0770 0.0029 0.1221

C. Simulations Results – Part I

All results will be presented after 50 runs, so that it will be
exhibited root mean squared error (RMSE), standard deviation
(Dev.), and training time. Before each run, the training,
validation, and test datasets are reshuffled and are the same for
all methods.

Table III shows the results for the simulations with C fixed
in the values of Table II. Table IV shows the obtained results,
with holdout, for MLP and for the proposal of this paper, with
a refined search for C (denoted Variable C).

Even though the training time is a bit higher when
compared to the results in Table III, the gain in performance
(validation error) is significant to justify the application of the
golden section search. There is improvement in all cases and
the computational cost is still much lower than the one
produced by the MLP training, with a competitive
generalization performance (except for the Strike dataset).

In the k-fold partitioning, the search is performed based on
the mean squared error of k folders, finding the optimal C as
the one with the best average performance considering each
one of the k folders as the validation dataset. The results of
these experiments are presented in Table V. Here, there is no
comparison with the results in [10], because their experiments
are restricted to the holdout approach only.

The training time using k-fold cross-validation is higher
when compared to the holdout case. However, the results are
more reliable and the improvement in accuracy is noticeable.
We applied the Wilcoxon Signed-Rank Test in order to check
for statistical difference in accuracy, when performing the
golden section search for the parameter C, compared to MLP
and the proposal in [10].

TABLE IV – Simulation Results (Holdout): MLP and Variable C – 100 hidden neurons

Datasets
MLP ELM – Variable C

RMSE
Valid.

Dev.
Valid.

RMSE
Test

Dev.
Test

Training
Time(s)

RMSE
Valid.

Dev.
Valid.

RMSE
Test

Dev.
Test

Training
Time(s)

Pyrim 0.1104 0.0321 0.1438 0.0537 3.5131 0.1030 0.0338 0.1194 0.0426 0.0955
Bodyfat 0.0245 0.0116 0.0321 0.0133 12.8177 0.0248 0.0125 0.0306 0.0141 0.2346
Housing 0.0740 0.0121 0.0809 0.0124 24.8912 0.0818 0.0117 0.0843 0.0145 0.3051
Strike 0.1451 0.0198 0.1705 0.0384 29.8012 0.2504 0.0176 0.2978 0.1283 0.3747
Quake 0.1719 0.0078 0.1733 0.0070 103.3229 0.1725 0.0077 0.1732 0.0072 0.8964

Space-ga 0.1326 0.0045 0.1336 0.0048 147.3941 0.1367 0.0048 0.1478 0.0304 1.2787
Abalone 0.0748 0.0026 0.0766 0.0025 198.1542 0.0750 0.0026 0.0770 0.0033 1.7191

TABLE V – Simulation Results (k-fold): MLP and Variable C – 100 hidden neurons

Datasets
MLP ELM – Variable C

RMSE
Valid.

Dev.
Valid.

RMSE
Test

Dev.
Test

Training
Time(s)

RMSE
Valid.

Dev.
Valid.

RMSE
Test

Dev.
Test

Training
Time(s)

Pyrim 0.0872 0.0129 0.1400 0.0298 5.6699 0.0749 0.0222 0.1093 0.0372 2.3481
Bodyfat 0.0217 0.0055 0.0359 0.0132 19.3082 0.0187 0.0076 0.0318 0.0151 7.9962
Housing 0.0671 0.0029 0.0784 0.0111 38.7696 0.0726 0.0102 0.0800 0.0129 16.0558
Strike 0.1283 0.0064 0.1665 0.0456 31.3439 0.2338 0.0186 0.2783 0.0596 19.8318
Quake 0.1698 0.0017 0.1727 0.0070 117.3793 0.1656 0.0074 0.1724 0.0070 37.2677

Space-ga 0.1313 0.0012 0.1346 0.0041 238.0573 0.1330 0.0059 0.1397 0.0058 98.5877
Abalone 0.0743 0.0008 0.0761 0.0028 320.0404 0.0736 0.0029 0.0764 0.0031 132.5398

See Table VI for details. Signals + means that the method
proposed here is better. Signals ~ and – mean that the results
are statistically equal or lower in performance, respectively.
The p-value appears in parenthesis.

It is well known that ELMs are able to provide competitive
results when compared with MLPs, in terms of generalization.
Nonetheless, it is remarkable the gain in the computational
burden. With the results of this paper, we confirm these results
and go further, providing a clear evidence that a refined search
for C can guide to even better results in terms of
generalization for ELMs, when compared with the state-of-
the-art in [10]. Notice that the optimal values of C we have
obtained are distinct from the ones in Table II.

10 20 30 40 50 60 70 80 90 100

0.07

0.08

0.09

0.1

0.11

0.12

0.13

Pyrim:#Nodes x RMSE

Variable C

Fixed C

Infinite C

Fig. 2. Pyrim: Comparison among Infinite C, Fixed C=20 and Variable C.

10 20 30 40 50 60 70 80 90

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Bodyfat: #Nodes x RMSE

Variable C

Fixed C

Infinite C

Fig. 3. Bodyfat: Comparison among Infinite C, Fixed C=27 and Variable C.

10 20 30 40 50 60 70 80 90

0.1

0.11

0.12

0.13

0.14

0.15

Housing: #Nodes x RMSE

Variable C

Fixed C
Infinite C

Fig. 4. Housing: Comparison among Infinite C, Fixed C=22 and Variable C.

D. Simulations Results – Part II

Now we are going to indicate that a proper choice of C is
necessary when we vary the number of hidden neurons from 1
to 100. Besides the C produced by the golden section search
(called here Variable C), we present the performance with
Infinite C (absence of regularization), and with the Fixed C
methodology proposed in [10], using the values in Table II.

10 20 30 40 50 60 70 80 90 100

0.23

0.24

0.25

0.26

0.27

0.28

Strike: #Nodes x RMSE

Variable C

Fixed C

Infinite C

Fig. 5. Strike: Comparison among Infinite C, Fixed C=22 and Variable C.

10 20 30 40 50 60 70 80 90 100
0.1588

0.159

0.1592

0.1594

0.1596

0.1598

0.16

0.1602

0.1604

Quake: #Nodes x RMSE

Variable C

Fixed C

Infinite C

Fig. 6. Quake: Comparison among Infinite C, Fixed C=20 and Variable C.

10 20 30 40 50 60 70 80 90

0.134

0.136

0.138

0.14

0.142

0.144

0.146

0.148

Space-ga: #Nodes x RMSE

Variable C

Fixed C

Infinite C

Fig. 7. Space-ga: Comparison among Infinite C, Fixed C=27 and Variable C.

Figures 2 to 8 show the root mean squared error (RMSE),
considering the test dataset, of 50 runs with the holdout
approach, again with the same datasets for the three curves.
The use of variable C (one specific value of C for each
number of hidden neurons) guides to a consistent superior
performance.

TABLE VI – Wilcoxon Signed-Rank Test

 Pyrim Bodyfat Housing Strike Quake Space-ga Abalone
ELM + Holdout:

Variable C versus Fixed C
+ (1.107x10-9) + (5.172x10-9) + (1.628x10-9) + (1.630x10-9) + (1.097x10-8) + (2.395x10-9) + (1.101x10-7)

Holdout:
ELM Variable C versus MLP

~ (0.093) ~ (0.908) − (4.919x10-7) − (7.555x10-10) ~ (0.611) − (7.541x10-10) − (0.016)

k-fold cross-validation:
ELM Variable C versus MLP

+ (0.002) + (0.006) − (6.667x10-4) − (7.553x10-10) + (0.002) − (0.025) ~ (0.674)

10 20 30 40 50 60 70 80 90 100

0.078

0.079

0.08

0.081

0.082

0.083

Abalone: #Nodes x RMSE

Variable C

Fixed C

Infinite C

Fig. 8. Abalone: Comparison among Infinite C, Fixed C=28 and Variable C.

V. CONCLUDING REMARKS

The more relevant aspects that make ELMs so attractive
for application in regression and classification problems are:
(A1) their extremely low computational cost for training; (A2)
the easiness with which we access the regularization
parameter; (A3) the possibility of employing a very broad
range of activation functions for the neurons at the hidden
layer; (A4) the robustness of the performance when we vary
the number of hidden neurons and the interval to set hidden
layer weights.

This paper explores all those four aspects to propose an
ELM with improved generalization capability. Given aspect
A1, it is reasonable to propose a more demanding
methodology which still maintains the computational cost at
low levels. Aspect A2 is fundamental to our methodology,
once we directly manipulate this parameter. Concerning
aspects A3 and A4, we have adopted hyperbolic tangent as the
activation function, and we have arbitrarily fixed (according to
what has been adopted in the literature) the number of hidden
neurons and the interval for the uniform random generation of
the hidden layer weights.

Basically, we add a golden section unidimensional search
to refine the choice of the regularization parameter when
defining the connection weights at the output layer. The
additional computational cost associated with our proposal is
fully supported by the consistent gain in performance
achieved.

Here the results are restricted to regression problems.
However, it is straightforward to adapt the same methodology
to deal with classification problems, and this extension will be
made as the next step of the research. We are also working on
the adaptation of the proposed methodology to deal with
incremental ELMs.

REFERENCES

[1] Bartlett, P.L. For valid generalization the size of the weights is more
important than the size of the network. Advances in Neural Information
Processing Systems, vol. 9, pp. 134-140, 1997.

[2] Bartlett, P.L. The sample complexity of pattern classification with neural
networks: the size of the weights is more important than the size of the
network. IEEE Transactions on Information Theory, vol. 44, no. 2, pp.
525-536,1998.

[3] Battiti, R. First- and Second-Order Methods for Learning: Between
Steepest Descent and Newton's Method. Neural Computation, vol. 4, no.
2, pp. 141-166, 1992.

[4] Blake, C.L., Merz, J.C. UCI Repository of Machine Learning Databases,
Dept. Inf. Comput. Sci., Univ. California, Irvine, CA, 1998 [Online].
Available: http://www.ics.uci.edu/~mlearn/MLRepository.html

[5] Gerald, C.F., Wheatley, P.O. Applied Numerical Analysis. Seventh
Edition, Addison-Wesley, 2004.

[6] Hornik, K., Stinchcombe, M., White, H. Multi-layer feedforward
networks are universal approximators. Neural Networks, vol. 2, no. 5,
pp. 359-366, 1989.

[7] Huang, G.-B., Chen, L. Enhanced random search based incremental
extreme learning machine. Neurocomputing, vol. 71, pp. 3460-3468,
2008.

[8] Huang, G.-B., Chen, L., Siew, C.-K. Universal Approximation Using
Incremental Constructive Feedfoward Networks with Random Hidden
Nodes. IEEE Transactions on Neural Networks, vol. 17, no. 4, pp. 879-
892, 2006.

[9] Huang, G.-B., Wang, D.H., Lan, Y. Extreme learning machines: a
survey. International Journal of Machine Learning and Cybernetics, vol.
2, pp. 107-122, 2011.

[10] Huang, G.-B., Zhou, H., Ding, X., Zhang, R. Extreme Learning
Machines for Regression and Multiclass Classification. IEEE
Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics,
vol. 42, no. 2, pp. 513-529, 2012.

[11] Huang, G.-B., Zhu, Q.-Y., Siew, C.-K. Extreme learning machine: a new
learning scheme of feedforward neural networks. Proceedings of the
International Joint Conference on Neural Networks (IJCNN’2004), vol.
2, pp. 985-990, 2004.

[12] Lima, C.A.M., Coelho, A.L.V., Von Zuben, F.J. Hybridizing mixtures of
experts with support vector machines: Investigation into nonlinear
dynamic systems identification. Information Sciences, vol. 177, pp.
2049-2074, 2007.

[13] Mike, M. Statistical Datasets, Dept. Statist., Univ. Carnegie Mellon,
1989. [Online]. Available: http//lib.stat.cmu.edu/datasets/

[14] Park, J., Sandberg, I.W. Universal approximation using radial-basis-
function networks. Neural Comp., vol. 3, no. 2, pp. 246-257, 1991.

[15] Schölkopf, B., Smola, A.J. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond, The MIT Press,
2001.

[16] Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B.,
Vandewalle, J. Least Squares Support Vector Machines, World
Scientific Publishers, 2002.

[17] Vapnik V.N. The Nature of Statistical Learning Theory, 2nd edition,
Springer, 1999.

[18] Yang, Y., Wang, Y., Yuan, X. Bidirectional Extreme Learning Machine
for Regression Problem and Its Learning Effectiveness, IEEE
Transactions on Neural Networks, vol. 23, no. 9, pp. 1498-1505, 2012.

