Improved regularization in extreme learning machine
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Abstract—Extreme learning machines (ELMs) are one-hidden
layer feedforward neural networks designed to be fined at a
low computational cost and to exhibit a direct conbl of the
generalization capability, both for regression andclassification
tasks. By means of ridge regression, it is possibke properly
control the norm of the connection weights at the wput layer.
Restricted to regression tasks and MLP-like topologs, the main
contribution of this paper is to indicate that a mae refined
search for the parameter of the ridge regression, d&sed on a
golden section mechanism, consistently guide to et
performance in terms of generalization, when compad to what
is done in the state-of-the-art proposals for ELMsin the
literature, and no matter the number of neurons atthe hidden
layer. The improvement in regularization comes at a additional
computational cost, though we still are dealing sely with the
adjustment of the connection weights at the outpulayer, which
implies that the effective cost remains orders of agnitude below
what we obtain when training an MLP neural network.

Keywords—Extreme learning machines; golden sectggarch;
regression problems; generalization capability.

l. INTRODUCTION

Feedforward neural networks, in general, are usaler
approximators, such as multilayer perceptron (M[#})and
radial basis function (RBF) [14] neural networks. eTh
universal approximation capability fully suppotte texistence
of a neural network that complies with a given shi@d for
the training error. However, this is an existenpigdperty, and
we still do not have a systematic and computatlpredfective
way of properly and automatically defining the regd
number of neurons and setting the connection weigbhtthat
the resulting neural network maximizes the genzatibn
capability. In other words, achieving a given tined for the
training error is ease to attain in practice, ahe teal
challenge is to control the generalization capgbitf the
neural network.

Even with the continued increasing in the availgbitf
computational resources, an additional drawbacklloP and
RBF neural networks is associated with the negessit
properly setting the weights at the hidden layarthe MLP
case, a nonlinear optimization problem should Heesb In
the RBF case, self-organizing methods are geneaplhjied to
set the center of the radial basis functions. Tlaoeeiterative
and time consuming procedures, besides being subjéacal
optimal solutions.
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Support vector machines (SVMs) [17] are founded on
statistical learning theory and come to providddretolutions
to both the automatic definition of the number elurons at
the hidden layer and of the connection weights. imaber of
neurons is associated with the number of suppatove and
the connection weights are obtained by the dedfinitof a
hyperplane of maximum margin in the feature spatgch is
a convex optimization problem. Though supported by
theoretical results guiding to the minimizationtioé structural
risk [15], the practical performance of SVMs sti#pends on
a proper choice of the kernel function and its esponding
parameter(s) [12]. Besides, the computational tmsblve the
resulting quadratic optimization problem subjecetmality or
inequality constraints [16] is still a practicalagiback of
SVMs.

Extreme learning machines (ELMs) [9][11] were then
proposed to circumvent those practical limitatioofs the
aforementioned approaches, more specifically: (1) ELM
training phase is orders of magnitude less comioutzity
intensive, when compared to what is required for BILIRBF
neural networks, and SVMs; (2) The optimizationlpem is
convex, which means that there is no local miniara] there
is no kernel function to be defined; (3) The geneasibn
capability is directly controlled by setting a diag
regularization parameter of a ridge regression lprob (4)
Though defined randomly, the number of hidden nesiemd
the connection weights, when defined obeying pieddf
intervals of admissible values, do not influengmgicantly in
the generalization capability; (5) ELMs have been
demonstrated to be generalized versions of MLPs, Ritkal
networks and SVMs [10], with similar performanceté@ims
of generalization.

Those amazing properties of ELMs may be supported by
two initiatives: (I-1) the mapping of the originagtoblem to a
feature space of much higher dimension when cordparthe
dimension of the input space, even without theaisekernel
that obeys the Mercer condition [15], as done invSY(l-2)
the direct exploration of an empirical result ofrBztt [1][2],
which asserts that the size of the weight vectahatoutput
layer is more relevant for the generalization cdjpathan the
configuration of the neural network, in terms ofmher of
neurons and format of the activation function.

Since it was originally proposed [11], and giveattthe
computational cost to train ELMs is very attracfitleere have
been several attempts to improve initiatives 1-1d dr2,



looking for gain in performance, possibly at thécerof an
additional computational cost. Concerning initiativ1, there
are several alternative proposals in the literatiraing at
converting the training phase to an incrementalcgdare,
with a sequential introduction of neurons at theédben layer.
They are called incremental extreme learning mashife
ELMs) and some relevant contributions are [7], [8] §I8B].

The main contribution of this paper is associateth wi
initiative 1-2 and is restricted to regression peshs and
MLP-like topologies, even though
classification problems and other types of ELM’s fopes
are straightforward. We concentrate ourselves at ritige
regression problem associated with the definitidn thee
connection weights at the output layer. Our emairiesults
considering seven benchmarks from the literatutearly
indicates that it is consistently worthwhile toinef the search
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for the regularization parameter in the ridge regi@n
problem. Until now, the more advanced result, prese in
[10], is associated with a rather crude searchcielsly
sampling an interval of admissible values) for gk value
for the regularization parameter of the ridge regi@n
problem, using a validation dataset to guide tteecte Here
we start from this sampling procedure and introdace
additional golden section search to deeply refirevalue of
the regularization parameter. Besides, we are ne tooking
for a single value for the regularization paramdtar each
regression task, as done in [10]. In fact, oncenddf the
number of hidden neurons and the regression taskandom
configuration of the connection weights at the kiddayer
strongly influences the optimal choice of the regizhtion

Fig. 1. One-hidden layer neural network with inputs, n hidden neurons,
andr outputs.

The activation of each hidden neuijan {1,...,n} for each
input patterrl 0 {1,...,N} is going to be represented as:

hy = f(ivji X +Vj0j (2
i=1

Now it is possible to express, in a single matixthe
activation of all neurons at the hidden layer fortlae input
patterns, producing:

parameter. by hp e by

The paper is organized as follows: Section Il byiefl H = Moy hpp o oy A3)
formalizes extreme learning machines, with emphasighe : I
formulation and solution of the ridge regressiorolgem hyy Py o Ny
n

associated with the training phase. Section llll&Rrg the
motivation and fundamental aspects of the refireatch we
are proposing here. Section IV presents the bendtsrand , ' -
the obtained results, followed by a comparativelysimwith ~ column of 1's as the first column ¢, the k-th output s,
the state-of-the-art ELM and also with conventiondlPM (kO {1,...,r}) of the neural network in Figure 1, for all the
Section V outlines some concluding remarks and som@put patterns, is then provided by:

Denoting wk:[wko Wiq Wkn]T, and inserting a

perspectives for the further steps of the research. S 1ohy hy o hy e
- S 1 h h -~ h W, .
. EXTREME LEARNING MACHINES S = ka =7 2 7 TSy = Hw, (4)
A. Preliminaries Sk 1 hyp Py o (o Wi

Let us consider the one-hidden layer neural network Notice that, even if you change the activation fiorcf(0)
presented in Figure 1. thus producing distinct neural network models, sastMLP,

The input-output mapping performed by this neuralRBF and even SVM [10], the algebraic structure aqpfagions
network is given in equation (1), as follows: (1) to (4) remains the same.

Sk = D Wy f(zvji X +Vj0]+wk0 @)

j=1 i=1

B. The regularized optimization problem: ridge regieas

In ELMs, solely the weights at the output layer are
adjustable, with the weights between the input amtien

In equation (1)k O {1,...,r} is the index of the output and layer being randomly defined. The numberof hidden
| O{1,...,N} is the index of the input-output pattern belorggin neurons may also be defined a priori.
to the training dataset. Notice the existence @iked input

equal to 1 associated with each neuron in the mtwo For each outpuk, kU {1,...,r}, to obtain the weights at

the output layer, the available dataset is divided training



and validation, producing the training dataéqt, Sk}|N=1 and
the validation datasékl("),q(g’)}:ivl. It is then possible to define
0 & -

The weights at the output layer of tkéh neuron are the
solution of the following regularized optimizatipnoblem:

sc=[sw S sw]’ and S(kV) =

Wk||2 +C><||HWk —sk||2 .

©)

wy =arg min
w, 00

Given the value o€ and supposindyl > (n+1), the solution
is expressed by:

-1
WT(:(I—+HTHJ HTs,. (6)
cC
idati (v) g
The validation datasgk,", s)’f,_, should be employed to
properly set the value of the regularization patame.

C. Definition of the regularization parameter

In the optimization problem in (5), when we §et o, we
obtain the solution without regularization, wherdyathe error
at the output is taken into account. In this cale,| is
unrestricted.

On the other hand, foC>0 and finite, there is a
compromise between the error at the output anchthm of

w, . To achieve a proper compromise, Huaetgal. [10]

adopted the value @ in the set{2724,2%... 224 2*2% 5o

that the choice is the one that minimizes the efoorthe
validation datase{><,("),§(g’)}:ivl. Notice that, in [10], a singl€
is defined for each regression task.

I1l.  THE PROPOSED METHODOLOGY

We are going to propose a more refined searcheglydb
define the regularization paramet€&. The motivation is
twofold, and has been supported by practical resalitained
when dealing with regression problems:

(1) Small deviations irC may guide to significant variation in
the solution;

(2) For any reduced search interval with candidate esafor
C, the curve associating the value®fvith the validation
error tends to exhibit a quasi-convex behavior.

The use of a unidimensional search in the wholervai

Besides, given that for each regression task 5@titems
are going to be performed (see Section 1V), wegmiag to
proposed one distin€ for each ELM, and not the sarfiefor
all the ELMs associated with that specific regrassask.

Though more computationally intensive, this new
procedure conceived to properly optimize the reggdtion
parameterC will be shown to exhibit a consistent better
performance, thus contributing to improve the gelimation
capability of the obtained ELMs.

IV. EXPERIMENTAL RESULTS

This section presents the experiments and resbitsned
with the proposed methodology of Section Ill, asllvas
comparisons with the state-of-the-art ELM [10] amahdard
MLP, trained with a second-order nonlinear optimaat
algorithm [3]. The stopping criterion for the MLPlinbe the
minimization of the error for the validation datase 1,500
epochs of training.

A. Benchmark Datasets

All datasets considered here are associated wgttession
problems, and have already been considered as tarnich in
[10]. However, we adopted here a distinct partiticontaining
training (60%), validation (20%), and test (20%)ed@ts.

The datasets present distinct characteristics,udird)
number of samples and number of features (dimersfidhe
input space). Table | specifies the main aspectletiatasets.
The datasets Bodyfat, Space-ga, Quake, and Stdkebe
found in [13], and Abalone, Pyrim and Housing available
in [4]. It was made a scaling for the input datahie interval
[-1,+1], and for the output data in the interval [J,+

TABLE | — Attributes of the Datasets

Datasets Number of Features
Samples
Pyrim 74 27
Bodyfat 252 14
Housing 506 13
Strike 625 6
Quake 2178 3
Space-ga 3107 6
Abalone 4177 8

B. Parameters
The simulations were performed in MATLAB 7.11.0.584

64-bit, running on Intel Core i5-2430M, 2.4GHz witBB of
RAM. The results obtained when employing the mettmglo

(0,4) is not recommended, because the quasi-convekity ¢yroposed by Huangt al. [10] will be presented here for

the curve associating the value @fwith the validation error
may be violated. Given that the quasiconvexity propof the

aforementioned curve is a necessary condition fog t

application of a unidimensional search, we havedaecto
consider the search procedure of Huah@l. [10] and, after
the definition of the best choice fo€ in the set

{2724 2723 ... 2'%4 2*2% e perform a golden section search

[5] around this value, taken the right and leftgidior values
of Cin the set as extreme points of the refined seatehval.

comparison. As explained at the end of Sectiomlthis case
the value ofC will be given by one of the elements of the set

{2724 2723 ... 2*%4 2*2%) Table Il presents the obtained values

for each dataset. They are not the same resulsemed in
[10], because there the weights of the hidden layere
initialized randomly in the range-1,+1], the number of
hidden neurons was fixed in 1,000, and there wagesb
dataset there (only training and validation dataseere
considered).



TABLE Il — ObtainedC using the methodology of Huang et al. C. Simulations Results — Part |
[10] for each dataset

In the golden section search implemented to supmart

Datasets

C

Pyrim

Bodyfat

Housing

Strike

Quake

Space-ga

Abalone

r\aom.r\mf\&,r\a,l\l.f\&,

proposal of Section lll, the threshold for the skars the

minimum between ID and 0.01% of the initial search

interval. In our experiments, the number of hidderurons
was fixed in 100 and the weights of the hidden layere

initialized randomly in the range-0.5,+0.5]. Those values

differ from the ones adopted in [10], because thmduced
more stable numerical results. Besides the holdpproach
for validation of the obtained regression models, will also

employ here the k-fold cross-validation approachgt n

considered in [10].

TABLE Il — Simulation Results (Holdout)
ELM with fixed C (see Table IlI) — 100 hidden neurons

All results will be presented after 50 runs, sa ihavill be
exhibited root mean squared error (RMSE), standaviation
(Dev.), and training time. Before each run, theintray,
validation, and test datasets are reshuffled aadha&r same for
all methods.

Table Il shows the results for the simulationshvit fixed
in the values of Table Il. Table IV shows the obéai results,
with holdout, for MLP and for the proposal of thiaper, with
a refined search fdC (denoted Variabl€).

Even though the training time is a bit higher when
compared to the results in Table lll, the gain @rfprmance
(validation error) is significant to justify the plcation of the
golden section search. There is improvement ircadkes and
the computational cost is still much lower than tbee
produced by the MLP training, with a competitive
generalization performance (except for the Strikiaset).

In the k-fold partitioning, the search is perfornteased on
the mean squared error of k folders, finding thénogl C as
the one with the best average performance consmglerach
one of thek folders as the validation dataset. The results of
these experiments are presented in Table V. Heeee tis no
comparison with the results in [10], because thgperiments

RMSE| Dev. | RMSE| Dev. | Traininig are restricted to the holdout approach only.
Datasets - : . . . . S
Valid. | Valid. | Test | Test | Time(s) The training time using k-fold cross-validation higgher
Pyrim | 0.1112] 0.0372 0.1152 0.0394 0.0162 when compared to the holdout case. However, thdtseare
Bodyfat | 0.0296| 0.0122 0.0340 0.0127 0.0197 more reliable and the improvement in accuracy igceable.
Housing | 0.08577 0.0118 0.08%4 0.0136 0.0268 We applied the Wilcoxon Signed-Rank Test in oraeclieck
Strike | 0.2735] 0.0119 0.2735 0.0118 0.0240 for statistical difference in accuracy, when parforg the
Quake | 0.1730 0.0077 0.1724 0.0071 0.06836 golden section search for the param&@ecompared to MLP
Space-ga 0.1814 0.1151 0.1756 0.0859 0.09og and the proposalin [10].
Abalone | 0.0756 0.002F 0.0770 0.0029 0.1221
TABLE IV — Simulation Results (Holdout): MLP and \fale C — 100 hidden neurons
MLP ELM — Variable C
Datasets RMSE Dev. RMSE Dev. Training RMSE Dev. RMSE Dev. Training
Valid. Valid. Test Test Time(s) Valid. Valid. Test Test Time(s)
Pyrim 0.1104 0.0321 0.1438 0.0537 3.513] 0.1030 33R0 0.1194 0.0426 0.0955
Bodyfat 0.0245 0.0116 0.0321 0.0133 12.8177 0.0248 0.0125 0.0306 0.0141 0.2346
Housing 0.0740 0.0121 0.0809 0.0124 24.8912 0.08180.0117 0.0843 0.0145 0.3051
Strike 0.1451 0.0198 0.1705 0.0384 29.801p 0.2504 .017® 0.2978 0.1283 0.3747
Quake 0.1719 0.0078 0.1733 0.0070 103.32P9 0.1725 .0079 0.1732 0.0077 0.8964
Space-ga 0.1326 0.0045 0.1336 0.0048 147.3941 0.136 0.0048 0.1478 0.0304 1.2787
Abalone 0.0748 0.0026 0.0766 0.0025 198.1542 0.07p00.0026 0.0770 0.0033 1.7191
TABLE V — Simulation Results (k-fold): MLP and Vahile C — 100 hidden neurons
MLP ELM — Variable C
Datasets RMSE Dev. RMSE Dev. Training RMSE Dev. RMSE Dev. Training
Valid. Valid. Test Test Time(s) Valid. Valid. Test Test Time(s)
Pyrim 0.0872 0.0129 0.1400 0.0298 5.6699 0.0749 2220 0.1093 0.0372 2.3481
Bodyfat 0.0217 0.0055 0.0359 0.0132 19.308p 0.0187 0.0076 0.0318 0.015] 7.9962
Housing 0.0671 0.0029 0.0784 0.0111 38.7696 0.0726 0.0102 0.0800 0.0124 16.0558
Strike 0.1283 0.0064 0.1665 0.0456 31.3439 0.2388 .018B 0.2783 0.0596 19.8318
Quake 0.1698 0.0017 0.1727, 0.0070 117.3793 0.1656 .00790 0.1724 0.007( 37.2677
Space-ga 0.1313 0.0014 0.1346 0.0041 238.0573 ®.133 0.0059 0.1397 0.0058 98.5877
Abalone 0.0743 0.0008 0.0761 0.0028 320.0404 0.07B6 0.0029 0.0764 0.0031 132.5393




D. Simulations Results — Part 1|

Now we are going to indicate that a proper choic€ @
necessary when we vary the number of hidden nedrons1
to 100. Besides th€ produced by the golden section search
(called hereVariable C), we present the performance with
Infinite C (absence of regularization), and with thiged C
methodology proposed in [10], using the valuesable II.

See Table VI for details. Signals + means thatntie¢hod
proposed here is better. Signals ~ and — mearthbatesults
are statistically equal or lower in performancespestively.
The p-value appears in parenthesis.

It is well known that ELMs are able to provide cortifpee
results when compared with MLPs, in terms of gefieatibn.
Nonetheless, it is remarkable the gain in the cdatfmnal
burden. With the results of this paper, we confinese results

Strike: #Nodes x RMSE

and go further, providing a clear evidence thafaned search 0oz Gk P
for C can guide to even better results in terms of R pr— Fixed C
generalization for ELMs, when compared with the estaft 027} W, Infinite
the-art in [10]. Notice that the optimal values @fwe have X
obtained are distinct from the ones in Table II. 026 8
Pyrim:#Nodes x RMSE “‘Q A
. : , : ; : : : ; : 0.251 & B
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Fig. 3. Bodyfat: Comparison among Infinife FixedC=2" and VariableC.
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Housing: #Nodes x RMSE
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Fig. 4. Housing: Comparison among Infin@e FixedC=2% and VariableC.

Fig. 6. Quake: Comparison among InfinteFixedC=2° and VariableC.

Space-ga: #Nodes x RMSE

Variable C
0.148} S R FixedC ||

Infinite C ||

0.146 %

0.144 -

0.142

0.14

0.138 1

0.136 -

0.134 1
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Fig. 7. Space-ga: Comparison among InfigitérixedC=2" and VariableC.

Figures 2 to 8 show the root mean squared error VS
considering the test dataset, of 50 runs with tloédut
approach, again with the same datasets for the ttueves.
The use of variableC (one specific value ofC for each
number of hidden neurons) guides to a consistepérgar
performance.



TABLE VI — Wilcoxon Signed-Rank Test

Pyrim Bodyfat Housing Strike Quake Space-ga Abalon
ELM + Holdout:
VariableC versus Fixed +(1.107x10) | +(5.172x10) | +(1.628x10) | +(1.630x10) | +(1.097x10) | + (2.395x10) | + (1.101x10)
Holdout:
ELM VariableC versusMLP ~(0.093) ~(0.908) | -(4.919x10) | - (7.555x109) ~(0.611) - (7.541x109 -(0.016)
k-fold cross-validation:
ELM VariableC versusML P +(0.002) +(0.006) | -(6.667x10) | —(7.553x109 +(0.002) - (0.025) ~(0.674)
Abalone: #Nodes x RMSE REFERENCES
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0.082 1

g
‘
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Fig. 8. Abalone: Comparison among InfinGeFixedC=2% and VariableC.

V. CONCLUDING REMARKS

The more relevant aspects that make ELMs so atteacti

for application in regression and classificatiomlgems are:
(A1) their extremely low computational cost foritiag; (A2)

the easiness with which we access the regularizatiog)

parameter; (A3)the possibility of employing a vdryoad
range of activation functions for the neurons & thidden
layer; (A4) the robustness of the performance wivenvary
the number of hidden neurons and the interval tohigkllen
layer weights.

This paper explores all those four aspects to Ee®mEN
ELM with improved generalization capability. Givespact
Al, it is
methodology which still maintains the computationakt at
low levels. Aspect A2 is fundamental to our metHody,
once we directly manipulate this parameter. Coringrn
aspects A3 and A4, we have adopted hyperbolic taragethe
activation function, and we have arbitrarily fix@tcording to
what has been adopted in the literature) the nurmbkidden
neurons and the interval for the uniform randomegetion of
the hidden layer weights.

Basically, we add a golden section unidimensioeakch
to refine the choice of the regularization parametden
defining the connection weights at the output lay€he
additional computational cost associated with auppsal is
fully supported by the consistent gain in perforog@n
achieved.

Here the results are restricted to regression profl
However, it is straightforward to adapt the samée¢hmgology
to deal with classification problems, and this esten will be
made as the next step of the research. We arevalding on
the adaptation of the proposed methodology to det
incremental ELMs.

reasonable to propose a more demanding
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