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Abstract—Extreme learning machines (ELMs) are one-hidden 
layer feedforward neural networks designed to be trained at a 
low computational cost and to exhibit a direct control of the 
generalization capability, both for regression and classification 
tasks. By means of ridge regression, it is possible to properly 
control the norm of the connection weights at the output layer. 
Restricted to regression tasks and MLP-like topologies, the main 
contribution of this paper is to indicate that a more refined 
search for the parameter of the ridge regression, based on a 
golden section mechanism, consistently guide to better 
performance in terms of generalization, when compared to what 
is done in the state-of-the-art proposals for ELMs in the 
literature, and no matter the number of neurons at the hidden 
layer. The improvement in regularization comes at an additional 
computational cost, though we still are dealing solely with the 
adjustment of the connection weights at the output layer, which 
implies that the effective cost remains orders of magnitude below 
what we obtain when training an MLP neural network. 

Keywords—Extreme learning machines; golden section search; 
regression problems; generalization capability. 

I.  INTRODUCTION 

Feedforward neural networks, in general, are universal 
approximators, such as multilayer perceptron (MLP) [6] and 
radial basis function (RBF) [14] neural networks. The 
universal approximation capability fully supports the existence 
of a neural network that complies with a given threshold for 
the training error. However, this is an existential property, and 
we still do not have a systematic and computationally effective 
way of properly and automatically defining the required 
number of neurons and setting the connection weights so that 
the resulting neural network maximizes the generalization 
capability. In other words, achieving a given threshold for the 
training error is ease to attain in practice, and the real 
challenge is to control the generalization capability of the 
neural network. 

Even with the continued increasing in the availability of 
computational resources, an additional drawback of MLP and 
RBF neural networks is associated with the necessity of 
properly setting the weights at the hidden layer. In the MLP 
case, a nonlinear optimization problem should be solved. In 
the RBF case, self-organizing methods are generally applied to 
set the center of the radial basis functions. Those are iterative 
and time consuming procedures, besides being subject to local 
optimal solutions. 

Support vector machines (SVMs) [17] are founded on 
statistical learning theory and come to provide better solutions 
to both the automatic definition of the number of neurons at 
the hidden layer and of the connection weights. The number of 
neurons is associated with the number of support vectors and 
the connection weights are obtained by the definition of a 
hyperplane of maximum margin in the feature space, which is 
a convex optimization problem. Though supported by 
theoretical results guiding to the minimization of the structural 
risk [15], the practical performance of SVMs still depends on 
a proper choice of the kernel function and its corresponding 
parameter(s) [12]. Besides, the computational cost to solve the 
resulting quadratic optimization problem subject to equality or 
inequality constraints [16] is still a practical drawback of 
SVMs. 

Extreme learning machines (ELMs) [9][11] were then 
proposed to circumvent those practical limitations of the 
aforementioned approaches, more specifically: (1) ELMs 
training phase is orders of magnitude less computationally 
intensive, when compared to what is required for MLPs, RBF 
neural networks, and SVMs; (2) The optimization problem is 
convex, which means that there is no local minima, and there 
is no kernel function to be defined; (3) The generalization 
capability is directly controlled by setting a single 
regularization parameter of a ridge regression problem; (4) 
Though defined randomly, the number of hidden neurons and 
the connection weights, when defined obeying predefined 
intervals of admissible values, do not influence significantly in 
the generalization capability; (5) ELMs have been 
demonstrated to be generalized versions of MLPs, RBF neural 
networks and SVMs [10], with similar performance in terms 
of generalization. 

Those amazing properties of ELMs may be supported by 
two initiatives: (I-1) the mapping of the original problem to a 
feature space of much higher dimension when compared to the 
dimension of the input space, even without the use of a kernel 
that obeys the Mercer condition [15], as done in SVMs; (I-2) 
the direct exploration of an empirical result of Bartlett [1][2], 
which asserts that the size of the weight vector at the output 
layer is more relevant for the generalization capability than the 
configuration of the neural network, in terms of number of 
neurons and format of the activation function. 

Since it was originally proposed [11], and given that the 
computational cost to train ELMs is very attractive, there have 
been several attempts to improve initiatives I-1 and I-2, 
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looking for gain in performance, possibly at the price of an 
additional computational cost. Concerning initiative I-1, there 
are several alternative proposals in the literature aiming at 
converting the training phase to an incremental procedure, 
with a sequential introduction of neurons at the hidden layer. 
They are called incremental extreme learning machines (I-
ELMs) and some relevant contributions are [7], [8] and [18]. 

The main contribution of this paper is associated with 
initiative I-2 and is restricted to regression problems and 
MLP-like topologies, even though the extensions to 
classification problems and other types of ELM’s topologies 
are straightforward. We concentrate ourselves at the ridge 
regression problem associated with the definition of the 
connection weights at the output layer. Our empirical results 
considering seven benchmarks from the literature, clearly 
indicates that it is consistently worthwhile to refine the search 
for the regularization parameter in the ridge regression 
problem. Until now, the more advanced result, presented in 
[10], is associated with a rather crude search (discretely 
sampling an interval of admissible values) for a single value 
for the regularization parameter of the ridge regression 
problem, using a validation dataset to guide the search. Here 
we start from this sampling procedure and introduce an 
additional golden section search to deeply refine the value of 
the regularization parameter. Besides, we are no more looking 
for a single value for the regularization parameter for each 
regression task, as done in [10]. In fact, once defined the 
number of hidden neurons and the regression task, the random 
configuration of the connection weights at the hidden layer 
strongly influences the optimal choice of the regularization 
parameter. 

The paper is organized as follows: Section II briefly 
formalizes extreme learning machines, with emphasis on the 
formulation and solution of the ridge regression problem 
associated with the training phase. Section III explains the 
motivation and fundamental aspects of the refined search we 
are proposing here. Section IV presents the benchmarks and 
the obtained results, followed by a comparative analysis with 
the state-of-the-art ELM and also with conventional MLP. 
Section V outlines some concluding remarks and some 
perspectives for the further steps of the research. 

II. EXTREME LEARNING MACHINES 

A. Preliminaries 

Let us consider the one-hidden layer neural network 
presented in Figure 1. 

The input-output mapping performed by this neural 
network is given in equation (1), as follows: 
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In equation (1), k ∈ {1,…,r} is the index of the output and 
l ∈ {1,…,N} is the index of the input-output pattern belonging 
to the training dataset. Notice the existence of a fixed input 
equal to 1 associated with each neuron in the network. 

 
1 

xl1 

xlm 

+ f 

v2m 

v21 

v20 

+ f 

vnm 

vn1 

vn0 

+ f 

v1m 

v11 

v10 

+ 

w1n 

w12 

w11 

y
l2 

y
l1 

y
ln 

sl1 ^ 

1 

1 

w10 1 

+ 

wrn 

wr2 

wr1 

slr  ^ 

wr0 1 

 

Fig. 1. One-hidden layer neural network with m inputs, n hidden neurons, 
and r outputs. 

The activation of each hidden neuron j ∈ {1,…,n} for each 
input pattern l ∈ {1,…,N} is going to be represented as: 
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Now it is possible to express, in a single matrix H, the 
activation of all neurons at the hidden layer for all the input 
patterns, producing: 
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Denoting [ ]Tknkkk www L10=w , and inserting a 
column of 1’s as the first column of H, the k-th output kŝ  

(k ∈ {1,…,r}) of the neural network in Figure 1, for all the 
input patterns, is then provided by: 
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Notice that, even if you change the activation function f(⋅), 
thus producing distinct neural network models, such as MLP, 
RBF and even SVM [10], the algebraic structure of equations 
(1) to (4) remains the same. 

B. The regularized optimization problem: ridge regression 

In ELMs, solely the weights at the output layer are 
adjustable, with the weights between the input and hidden 
layer being randomly defined. The number n of hidden 
neurons may also be defined a priori. 

For each output k, k ∈ {1,…,r}, to obtain the weights at 
the output layer, the available dataset is divided into training 



and validation, producing the training dataset { }N
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The weights at the output layer of the k-th neuron are the 
solution of the following regularized optimization problem: 
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Given the value of C and supposing N > (n+1), the solution 
is expressed by: 
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The validation dataset ( ) ( ){ } vN

l
v

lk
v

l s 1, =x  should be employed to 

properly set the value of the regularization parameter C. 

C. Definition of the regularization parameter 

In the optimization problem in (5), when we set C →∞, we 
obtain the solution without regularization, where only the error 
at the output is taken into account. In this case, kw  is 

unrestricted. 

On the other hand, for C > 0 and finite, there is a 
compromise between the error at the output and the norm of 

kw . To achieve a proper compromise, Huang et al. [10] 

adopted the value of C in the set },2,2,,22{ 2524-2324 ++−
L , so 

that the choice is the one that minimizes the error for the 

validation dataset ( ) ( ){ } vN

l
v

lk
v

l s 1, =x . Notice that, in [10], a single C 

is defined for each regression task. 

III.  THE PROPOSED METHODOLOGY 

We are going to propose a more refined search strategy to 
define the regularization parameter C. The motivation is 
twofold, and has been supported by practical results obtained 
when dealing with regression problems: 

(1) Small deviations in C may guide to significant variation in 
the solution; 

(2) For any reduced search interval with candidate values for 
C, the curve associating the value of C with the validation 
error tends to exhibit a quasi-convex behavior. 

The use of a unidimensional search in the whole interval 
(0,+∞) is not recommended, because the quasi-convexity of 
the curve associating the value of C with the validation error 
may be violated. Given that the quasiconvexity property of the 
aforementioned curve is a necessary condition for the 
application of a unidimensional search, we have decided to 
consider the search procedure of Huang et al. [10] and, after 
the definition of the best choice for C in the set 

},2,2,,22{ 2524-2324 ++−
L , we perform a golden section search 

[5] around this value, taken the right and left neighbor values 
of C in the set as extreme points of the refined search interval. 

Besides, given that for each regression task 50 repetitions 
are going to be performed (see Section IV), we are going to 
proposed one distinct C for each ELM, and not the same C for 
all the ELMs associated with that specific regression task. 

Though more computationally intensive, this new 
procedure conceived to properly optimize the regularization 
parameter C will be shown to exhibit a consistent better 
performance, thus contributing to improve the generalization 
capability of the obtained ELMs. 

IV. EXPERIMENTAL RESULTS 

This section presents the experiments and results obtained 
with the proposed methodology of Section III, as well as 
comparisons with the state-of-the-art ELM [10] and standard 
MLP, trained with a second-order nonlinear optimization 
algorithm [3]. The stopping criterion for the MLP will be the 
minimization of the error for the validation dataset or 1,500 
epochs of training. 

A. Benchmark Datasets 

All datasets considered here are associated with regression 
problems, and have already been considered as benchmarks in 
[10]. However, we adopted here a distinct partition, containing 
training (60%), validation (20%), and test (20%) datasets. 

The datasets present distinct characteristics, including 
number of samples and number of features (dimension of the 
input space). Table I specifies the main aspects of the datasets. 
The datasets Bodyfat, Space-ga, Quake, and Strike can be 
found in [13], and Abalone, Pyrim and Housing are available 
in [4]. It was made a scaling for the input data in the interval 
[−1,+1], and for the output data in the interval [0,+1]. 

TABLE I – Attributes of the Datasets 

Datasets 
Number of 
Samples  

Features 

Pyrim 74 27 
Bodyfat 252 14 
Housing 506 13 
Strike 625 6 
Quake 2178 3 

Space-ga 3107 6 
Abalone 4177 8 

B. Parameters 

The simulations were performed in MATLAB 7.11.0.584 - 
64-bit, running on Intel Core i5-2430M, 2.4GHz with 4GB of 
RAM. The results obtained when employing the methodology 
proposed by Huang et al. [10] will be presented here for 
comparison. As explained at the end of Section II, in this case 
the value of C will be given by one of the elements of the set 

},2,2,,22{ 2524-2324 ++−
L . Table II presents the obtained values 

for each dataset. They are not the same results presented in 
[10], because there the weights of the hidden layer were 
initialized randomly in the range [−1,+1], the number of 
hidden neurons was fixed in 1,000, and there was no test 
dataset there (only training and validation datasets were 
considered). 



TABLE II – Obtained C using the methodology of Huang et al. 
[10] for each dataset 

Datasets C 
Pyrim 20 

Bodyfat 27 
Housing 22 
Strike 22 
Quake 20 

Space-ga 27 
Abalone 28 

In the golden section search implemented to support our 
proposal of Section III, the threshold for the search is the 
minimum between 10-5 and 0.01% of the initial search 
interval. In our experiments, the number of hidden neurons 
was fixed in 100 and the weights of the hidden layer were 
initialized randomly in the range [−0.5,+0.5]. Those values 
differ from the ones adopted in [10], because they produced 
more stable numerical results. Besides the holdout approach 
for validation of the obtained regression models, we will also 
employ here the k-fold cross-validation approach, not 
considered in [10]. 

TABLE III – Simulation Results (Holdout) 
ELM with fixed C (see Table II) – 100 hidden neurons 

Datasets 
RMSE 
Valid. 

Dev. 
Valid. 

RMSE 
Test 

Dev. 
Test 

Traininig 
Time(s) 

Pyrim 0.1112 0.0372 0.1152 0.0394 0.0162 
Bodyfat 0.0296 0.0122 0.0340 0.0127 0.0197 
Housing 0.0857 0.0118 0.0854 0.0136 0.0268 
Strike 0.2735 0.0119 0.2735 0.0118 0.0240 
Quake 0.1730 0.0077 0.1724 0.0071 0.0636 

Space-ga 0.1814 0.1151 0.1756 0.0859 0.0908 
Abalone 0.0756 0.0027 0.0770 0.0029 0.1221 

C. Simulations Results – Part I 

All results will be presented after 50 runs, so that it will be 
exhibited root mean squared error (RMSE), standard deviation 
(Dev.), and training time. Before each run, the training, 
validation, and test datasets are reshuffled and are the same for 
all methods. 

Table III shows the results for the simulations with C fixed 
in the values of Table II. Table IV shows the obtained results, 
with holdout, for MLP and for the proposal of this paper, with 
a refined search for C (denoted Variable C). 

Even though the training time is a bit higher when 
compared to the results in Table III, the gain in performance 
(validation error) is significant to justify the application of the 
golden section search. There is improvement in all cases and 
the computational cost is still much lower than the one 
produced by the MLP training, with a competitive 
generalization performance (except for the Strike dataset). 

In the k-fold partitioning, the search is performed based on 
the mean squared error of k folders, finding the optimal C as 
the one with the best average performance considering each 
one of the k folders as the validation dataset. The results of 
these experiments are presented in Table V. Here, there is no 
comparison with the results in [10], because their experiments 
are restricted to the holdout approach only. 

The training time using k-fold cross-validation is higher 
when compared to the holdout case. However, the results are 
more reliable and the improvement in accuracy is noticeable. 
We applied the Wilcoxon Signed-Rank Test in order to check 
for statistical difference in accuracy, when performing the 
golden section search for the parameter C, compared to MLP 
and the proposal in [10]. 

TABLE IV – Simulation Results (Holdout): MLP and Variable C – 100 hidden neurons 

Datasets 
MLP ELM – Variable C 

RMSE 
Valid. 

Dev. 
Valid. 

RMSE 
Test 

Dev. 
Test 

Training 
Time(s) 

RMSE 
Valid. 

Dev. 
Valid. 

RMSE 
Test 

Dev. 
Test 

Training 
Time(s) 

Pyrim 0.1104 0.0321 0.1438 0.0537 3.5131 0.1030 0.0338 0.1194 0.0426 0.0955 
Bodyfat 0.0245 0.0116 0.0321 0.0133 12.8177 0.0248 0.0125 0.0306 0.0141 0.2346 
Housing 0.0740 0.0121 0.0809 0.0124 24.8912 0.0818 0.0117 0.0843 0.0145 0.3051 
Strike 0.1451 0.0198 0.1705 0.0384 29.8012 0.2504 0.0176 0.2978 0.1283 0.3747 
Quake 0.1719 0.0078 0.1733 0.0070 103.3229 0.1725 0.0077 0.1732 0.0072 0.8964 

Space-ga 0.1326 0.0045 0.1336 0.0048 147.3941 0.1367 0.0048 0.1478 0.0304 1.2787 
Abalone 0.0748 0.0026 0.0766 0.0025 198.1542 0.0750 0.0026 0.0770 0.0033 1.7191 

 
TABLE V – Simulation Results (k-fold): MLP and Variable C – 100 hidden neurons 

Datasets 
MLP ELM – Variable C 

RMSE 
Valid. 

Dev. 
Valid. 

RMSE 
Test 

Dev. 
Test 

Training 
Time(s) 

RMSE 
Valid. 

Dev. 
Valid. 

RMSE 
Test 

Dev. 
Test 

Training 
Time(s) 

Pyrim 0.0872 0.0129 0.1400 0.0298 5.6699 0.0749 0.0222 0.1093 0.0372 2.3481 
Bodyfat 0.0217 0.0055 0.0359 0.0132 19.3082 0.0187 0.0076 0.0318 0.0151 7.9962 
Housing 0.0671 0.0029 0.0784 0.0111 38.7696 0.0726 0.0102 0.0800 0.0129 16.0558 
Strike 0.1283 0.0064 0.1665 0.0456 31.3439 0.2338 0.0186 0.2783 0.0596 19.8318 
Quake 0.1698 0.0017 0.1727 0.0070 117.3793 0.1656 0.0074 0.1724 0.0070 37.2677 

Space-ga 0.1313 0.0012 0.1346 0.0041 238.0573 0.1330 0.0059 0.1397 0.0058 98.5877 
Abalone 0.0743 0.0008 0.0761 0.0028 320.0404 0.0736 0.0029 0.0764 0.0031 132.5398 

 



See Table VI for details. Signals + means that the method 
proposed here is better. Signals ~ and – mean that the results 
are statistically equal or lower in performance, respectively. 
The p-value appears in parenthesis. 

It is well known that ELMs are able to provide competitive 
results when compared with MLPs, in terms of generalization. 
Nonetheless, it is remarkable the gain in the computational 
burden. With the results of this paper, we confirm these results 
and go further, providing a clear evidence that a refined search 
for C can guide to even better results in terms of 
generalization for ELMs, when compared with the state-of-
the-art in [10]. Notice that the optimal values of C we have 
obtained are distinct from the ones in Table II. 
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Fig. 2. Pyrim: Comparison among Infinite C, Fixed C=20 and Variable C. 
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Fig. 3. Bodyfat: Comparison among Infinite C, Fixed C=27 and Variable C. 
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Fig. 4. Housing: Comparison among Infinite C, Fixed C=22 and Variable C. 

D. Simulations Results – Part II 

Now we are going to indicate that a proper choice of C is 
necessary when we vary the number of hidden neurons from 1 
to 100. Besides the C produced by the golden section search 
(called here Variable C), we present the performance with 
Infinite C (absence of regularization), and with the Fixed C 
methodology proposed in [10], using the values in Table II. 
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Fig. 5. Strike: Comparison among Infinite C, Fixed C=22 and Variable C. 
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Fig. 6. Quake: Comparison among Infinite C, Fixed C=20 and Variable C. 
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Fig. 7. Space-ga: Comparison among Infinite C, Fixed C=27 and Variable C. 

Figures 2 to 8 show the root mean squared error (RMSE), 
considering the test dataset, of 50 runs with the holdout 
approach, again with the same datasets for the three curves. 
The use of variable C (one specific value of C for each 
number of hidden neurons) guides to a consistent superior 
performance. 



TABLE VI – Wilcoxon Signed-Rank Test 

 Pyrim Bodyfat Housing Strike Quake Space-ga Abalone 
ELM + Holdout: 

Variable C versus Fixed C 
+ (1.107x10-9) + (5.172x10-9) + (1.628x10-9) + (1.630x10-9) + (1.097x10-8) + (2.395x10-9) + (1.101x10-7) 

Holdout: 
ELM Variable C versus MLP 

~ (0.093) ~ (0.908) − (4.919x10-7) − (7.555x10-10) ~ (0.611) − (7.541x10-10) − (0.016) 

k-fold cross-validation: 
ELM Variable C versus MLP 

+ (0.002) + (0.006) − (6.667x10-4) − (7.553x10-10) + (0.002) − (0.025) ~ (0.674) 
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Fig. 8. Abalone: Comparison among Infinite C, Fixed C=28 and Variable C. 

V. CONCLUDING REMARKS 

The more relevant aspects that make ELMs so attractive 
for application in regression and classification problems are: 
(A1) their extremely low computational cost for training; (A2) 
the easiness with which we access the regularization 
parameter; (A3) the possibility of employing a very broad 
range of activation functions for the neurons at the hidden 
layer; (A4) the robustness of the performance when we vary 
the number of hidden neurons and the interval to set hidden 
layer weights. 

This paper explores all those four aspects to propose an 
ELM with improved generalization capability. Given aspect 
A1, it is reasonable to propose a more demanding 
methodology which still maintains the computational cost at 
low levels. Aspect A2 is fundamental to our methodology, 
once we directly manipulate this parameter. Concerning 
aspects A3 and A4, we have adopted hyperbolic tangent as the 
activation function, and we have arbitrarily fixed (according to 
what has been adopted in the literature) the number of hidden 
neurons and the interval for the uniform random generation of 
the hidden layer weights. 

Basically, we add a golden section unidimensional search 
to refine the choice of the regularization parameter when 
defining the connection weights at the output layer. The 
additional computational cost associated with our proposal is 
fully supported by the consistent gain in performance 
achieved. 

Here the results are restricted to regression problems. 
However, it is straightforward to adapt the same methodology 
to deal with classification problems, and this extension will be 
made as the next step of the research. We are also working on 
the adaptation of the proposed methodology to deal with 
incremental ELMs. 
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