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Resumo—Time series modelling is a subject of in-
terest to several fields of knowledge. The challenge of
dealing with this type of data is to develop computatio-
nal instrumentals able to handle with different features
related to non-stationarity as well as uncertainty pre-
sent in most of real processes. In that context, dynamic
fuzzy systems have shown capable of dealing with these
aspects. Hence, this paper presents a case study that
aims to provide empirical evidence that validate the
ability of dynamic fuzzy systems for modelling and
forecasting non-stationary time series. The dynamic
fuzzy model is based on Takagi-Sugeno fuzzy systems,
with a learning algorithm based on the recursive version
of the Expectation Maximization optimization method.
The study considers the modelling of a bond price
time series. The model is evaluated with and without
the dynamic learning in order to verify the effect
of the learning process over the model performance.
Additionally, the fuzzy model is also compared to an
offline neural network. The results show the potential
of fuzzy systems with dynamic learning for modelling
non-stationary time series and changes over time.

I. Introduction

Several problems arise in the process of obtaining mo-
dels for time series, beginning with the availability of data,
the selection of the input variables, the set of hypotheses
to consider as a basis for the development of the model
structure and the proper choice of the optimization algo-
rithm in order to achieve an appropriate model in terms of
structure, performance and robustness. A variety of these
processes arise in various sectors such as the energy sector,
financial and economics among others, where processes are
most often admittedly not stationary.

Most of the real problems from which time series are
collected be highly non-linear, and the application of linear
estimation methods may lead to significant misspecifica-
tion of both the structure and dynamics of the system. A
second major problem arises from the fact that many of
the theoretical concepts underlying empirical models are
actually quite vague and there is considerable uncertainty
about the precise meaning and range of key input varia-
bles.

In recent years, dynamic models based on computa-
tional intelligence tools have emerged as powerful new
tools for the development of time series models, where
the ability to adaptation to changes in the dynamics

of the system is critical. Among all these tools in the
area of computational intelligence, dynamic fuzzy systems
show capable of handling the uncertainties inherent to
those real problems. Furthermore, the fuzzy systems allow
the extraction of knowledge through the analysis based
on their structure rules, which is favorable in analyzing
complex problems in fields such as automatic control, data
classification, decision analysis, expert systems, and time
series forecasting [1].

The main advantage of these models is the simulta-
neous adjustment of parameters and the structure, while
providing structures under the principle of parsimony and
the balance between complexity and performance, as well.
A second advantage is the nature of the learning algorithm.
Because of the dynamic algorithm, the model is adjusted
at each iteration of the optimization process considering
only recent information, which is advantageous in terms
of computing power when compared to models with batch
learning or offline. The works detailed in [2], [3] and [4]
are just some examples proposals on models with dynamic
learning.

In that context, this paper presents a case study that
aims to provide empirical evidence that validate the ability
of dynamic fuzzy systems for modelling and forecasting
non-stationary time series. The dynamic fuzzy model used
for this purpose is the one proposed in [5], which is based
on Takagi-Sugeno fuzzy systems [6].

The model structure is defined in two phases. In the
first phase, an initial rule based system composed by a set
of fuzzy rules is generated using a Subtractive Clustering
algorithm (SC), originally proposed in [7], as well as the
offline Expectation Maximization algorithm [8] for the
initial adjustment of all the parameters.

In a second phase, the model is dynamically modified
by a recursive Expectation Maximization algorithm. This
adaptation depends on the complexity of the problem and
the input space partition at each step. That is, input space
is divided into a number of subspaces, and a local model
is assigned for each one of these regions. Because input
partition is modified at each iteration, learning implies in
parameters and structure adjustment.

The fuzzy model is evaluated with and without the
dynamic learning in order to verify the effect of the
learning process over the model performance. Results are
also compared to the ones obtained by an offline multilayer



neural network. The case study is developed considering
the modelling of the Brazilian sovereign bonds time series
(Global 40), a non-linear time series from 2000 to 2007.
Results show empirical evidence in favor of dynamic fuzzy
models against offline models when dealing with non-
stationary time series. After this introduction, the paper
proceeds as follows. Section II presents the fuzzy inference
system and the learning method proposed. Section III the
data and simulation results. Finally, some conclusions are
presented in Section IV.

II. Fuzzy inference system

This section introduces the general structure of the
fuzzy inference system and the learning algorithm for
model structure and parameters update.

A. Model structure

Let x
k = [xk1 , x

k
2 , . . . , x

k
p ] ∈ R

p denotes the input
vector at instant k, k ∈ Z

+
0 ; ŷ

k ∈ R is the output model, for
the correspondent input x

k. The input space represented
by x

k ∈ R
p, is partitioned into M sub-regions, and each of

these is represented by a fuzzy rule; k = 0, 1, 2, . . . is the
time index (Figure 1). The antecedents of each fuzzy If-

Then rule (Ri) are represented by their respective centers
ci ∈ R

p and covariance matrices Vi|p×p. The consequents
are represented by local linear models, with output yi, i =
1, . . . ,M defined by:

yki = φk × θi
T (1)

where φk = [1 xk1 xk2 . . . xkp]; θi = [θi0 θi1 . . . θip] is the
coefficient vector of the local linear model for the i − th
rule.

Each input pattern has a membership degree associated
with each region of the input space partition. This is
calculated through membership functions gi(x

k) that vary
according to centers and covariance matrices related to the
fuzzy partition, and are computed by:

gi(x
k) = gki =

αi · P [ i | x
k ]

M
∑

q=1

αq · P [ q | xk ]

(2)

where αi are positive coefficients satisfying
∑M

i=1 αi = 1
and P [ i | xk] is defined according to

P [ i | xk ] = 1
(2π)p/2 det(Vi)1/2

×

exp

{

−
1

2
(xk − ci)V

−1
i (xk − ci)

T

}

(3)

where det(·) is the determinant function. The model out-
put y(k) = ŷk, which represents the predicted value for
future time instant k is calculated by means of a non-linear

weighted averaging of local outputs yki and its respective
membership degrees gki , i.e.

ŷ(xk) = ŷk =

M
∑

i=1

gki y
k
i (4)

B. Learning algorithm

First, an initial structure composed by fuzzy rules is
defined, and its parameters are adjusted via the traditional
Expectation Maximization algorithm, originally proposed
in [8] for mixture of experts models.

Model structure is initialized using the unsupervised
clustering algorithm called the Subtractive Clustering Al-
gorithm (SC), proposed in [7]. This algorithm provide
a set of M clusters from an specific training data set
presented to the algorithm. Patterns processed by the SC
algorithm are composed by the input-output patterns used
in a second stage for model optimization.

These groups are associated to a set of fuzzy rules
codified in the FIS structure. Therefore, after the number
of fuzzy rules is defined, we proceed to initialize the model
parameters, for i = 1, . . . ,M , according to the following
criteria:

• c
0
i = ψ0

i |1...p, where ψ
0
i |1...p is composed by the first

p components of the i−th center found by the SC
algorithm;

• σ0
i = 1.0;

• θ0i = [ψ0
i |p+1 0 . . . 0]1×p+1, where ψ

0
i |p+1 is the

p + 1−th component of the i−th center found by
the SC algorithm;

• V
0
i = 10−4

I, where I is a p× p identity matrix;

• α0
i = 1/M .

Initialization is finalized with the model optimization
of all the parameters using the traditional offline EM
algorithm [8]. After this stage we already have an ad-
justed model ready for estimation purposes. However, as
mentioned before, financial time series usually present
multiple overlying seasonality, trends, structural breaks
and unknown and non-observed causal forces that impact
the phenomenon. In that sense, the necessity of a kind of
model with the capability of self-adaptation to all these
changes is suitable.

Adaptation presents advantages that go from automa-
tic structure and parameter selection to adaptation to
changes in the reasoning environment. Adaptation at each
iteration considers a window size (T) over time. That is,
the last T patterns will influence model parameters and
structure. Therefore, after the FIS has been initialized, it
may activate its capability of self-adaptation by using a
recursive version of the EM algorithm, as well as adding
and pruning operators.

Based on the offline EM algorithm, a recursive version
can be written, obtaining the following estimates:
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Figura 1. A general FIS structure.

αk+1
i = αk

i +
1

T
[hki − αk

i ] (5)

c
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k
i +

1

γk+1
i
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i )
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1

γk+1
i

[(yk − yki )
2 − (σ2

i )
k
] (8)

where:

1

γk+1
i

=
hk+1
i

∑k+1
t=1 h

t
i

(9)

An approximation of
∑k+1

t=1 h
t
i can be built considering

the window size T and the recursive equation form inspired
in the adaptive learning of a fuzzy system detailed in [9].
Let Sk+1

i =
∑k+1

t=1 h
t
i, and Si(x

k+1) = hk+1
i . Then Sk+1

i

can be estimated as:

Sk+1
i ≈ Si(x

k+1) +
T − 1

T
Sk
i (10)

Parameters θi are estimated applying a weighted re-
cursive least square algorithm (wRLS), which considers a
forgetting factor over time fforget [10]. Equations of the
RLS algorithm adapted to our problem are defined as:

θk+1
i = θki +C

k+1
i φk × hki (y

k − yki ) (11)

where:

C
k+1
i =

C
k
i

fk
forget + hki (φ

k)TCk
i φ

k
(12)

is the covariance matrix associated with each θi during the
online adaptation. The forgetting factor fforget ∈ (0, 1].
To guarantee stability fforget was slowly increased so that
after a long time fk

forget → 1.0.

Initial conditions for θ0i , i = 1, . . . ,M were given by
the values obtained through model initialization, while
C

0
i = µI, where µ = 104 and I is an identity matrix with

dimensions p+ 1× p+ 1.

After the initialization phase, online adaptation was
undertaken via structure modification based on adding and
pruning operators and parameters update using Equations
(5)-(12).

• Adding: The criterion to judge whether to ge-
nerate a new fuzzy rule was based on the if-
part criterion, which verifies if some existing fuzzy
rule clusters the input vector. Assuming a nor-
mal input data distribution, with a confidence
level of γ%, we can construct a confidence inter-
val [ci − zγ

√

diag(Vi), ci + zγ
√

diag(Vi)], where
diag(Vi) is the main diagonal of the covariance
matrix Vi. In this paper, we get a confidence level
of γ = 72, 86% which requires a zγ value of 1.1,
obtained from the normal distribution table. It is
clear that γ = 72, 86% is the middle chunk, leaving
13,57% probability excluded in each tail. That is:

max
(

P [ i | xk ]
)

i=1,...,M
> 0.1357 (13)

If this condition is not satisfied, it means that there
is no rule that can cluster this input vector, that
is, the input pattern is not covered by any fuzzy
partition. Hence, it is necessary to add a new rule
to the structure, expanding the input space region
detected during the initialization phase or before
the actual time instant k. If it happens, a new rule
is generated with the next initialization:

◦ c
k+1
M+1 = x

k

◦ σk+1
M+1 = 1.0;

◦ θk+1
M+1 = [yk 0 . . . 0]1×p+1



◦ V
k+1
M+1 = 10−4

I, where I is a p× p identity
matrix;

◦ αk+1
M+1 = 10−5.

Even though this value is too small to interfere in
the dynamic of the actual structure, all the αi, i =
1, . . . ,M +1 are re-normalized, so that the sum of
all these coefficients will always be equal to the
unity.

• Pruning: According to the offline Em algorithm,
αi = 1

N

∑N

k=1 h
k
i . Thus, αi can be considered a

measure of the importance that each fuzzy rule has
for the corresponding topology when compared to
the other rules. It occurs because αi is proportional
to the sum of all posterior estimates of membership
functions gki over all the data set. Hence, a th-
reshold for αi is defined, so that every rule with
αi < αmin at each iteration is pruned and elimi-
nated from the actual model structure. However,
after a new rule is created, its corresponding αi will
have a small value. If the pruning operator were
applied immediately, the new rule would thus be
eliminated and there would be no time to verify its
relevance for the model structure.
This problem is resolved by the creation of a new
index, called index of permanence τ . Every time
a new rule is created, its respective τiwill also be
created. As this rule is activated over time, this
index is increased, that is τk+1

i = τki + 1. Thus,
a rule will be a candidate pruning only if its αi

is very small and τki > ǫT , where ǫ > 0 and T is
the same window size used during the sequential
learning. This condition ensures that no new rule
will be pruned immediately after its creation, al-
lowing it to adjust for a minimum period of time
and avoiding useless and abrupt oscillations in the
model structure.

III. Case study

As mentioned in Section I, the aim of this case study is
to provide empirical evidence that show the gains resulting
from the use of a dynamic model for a non-stationary time
series. To delimit the case study, it considered a particular
case of a non-stationary time series, which presents a trend
component, implying at least a change in the first moment
of the series (mean) over time. For this purpose, we
considered the bond price time series namely the Brazilian
Global 40, illustrated in Fig. 2. Data goes from November
8th, 2000 to January 16th, 2007, with a total of 1668
observations on a daily basis.

The FIS model was run in two modes, the online and
the offline mode. The online mode performed the model
structure and parameters update permanently using the
recursive algorithm detailed in Section II. Only the first
165 input-output patterns were used during the initiali-
zation stage, corresponding to approximately 10% of the
total of available data. Parameter T , which represents a
window size over time, was set up in 21. On the other hand,
ra = 0.05; rba = 1.0 αmin = 0.001 and fforget = 0.95.
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Figura 2. Global 40 bond price.

The offline mode of FIS consisted of defining the mo-
del structure by the SC algorithm, while the parameters
adjustment was performed by the offline version of the
EM algorithm. For doing so, the data set was divided in
two subsets: the training dataset and the testing dataset.
The first one was used for the adjustment of the offline
FIS (batch mode), whereas the second one was used for
validation purposes. The testing data set was composed
by the last thousand of input-output patterns available.

Likewise, a multilayer neural network (MLP) was ad-
justed with a gradient descent algorithm as optimization
technique. All the three models were evaluated for a one
step ahead forecasting task, using as performance index
the root mean square error (RMSE).

Two experiments were carried out; the processing of
the series:

(a) in its first difference (a stationary series) and

(b) in level (a non-stationary series).

Therefore, as a first part of the study, all the three
models processed the first difference of the series. The
differentiation aims to remove the trend component and
consequently, transforms the series into an stationary one,
which is verified applying the ADF teste over the series in
its first difference. The second part considers the proces-
sing of the series with the trend component.

Input selection was performed using a nonparametric
approach known as the partial mutual information (PMI)
criterion [11]. The PMI criterion is a measure of the partial
or additional information that a new input can add to
the existing prediction model [12]. PMI values achieved
for the first twelve lags of the stationary series as possible
explanatory variables are shown in Fig. 3.

Considering the most significative values of the PMI
achieved by each lag, the final set of input variables was
composed by lags 1, 3, 6 and 8. The insertion of lag 5
as input variable did not bring any gain in the models
performance. The variation of the number of rules in the
online FIS during the testing data set is illustrated in Fig.
4, with a number of rules in the model structure varying
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Figura 3. Input selection - PMI.

from 2 to 8. For comparison purpose, the same set of input
variables was used by all the models.
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Figura 4. Evolution of the number of rules - online FIS.

In terms of RMSE, when the models have to deal
with the stationary time series, there is no significative
difference in the RMSE of the three models, as observed
in the first line of Table I. However, the offline ones were
not capable of dealing with the changes over the mean of
the series when the series had to be processed in its original
version (in level). RMSE achieved for each model over the
non-stationary time series is presented in the second line
of Table I.

Forecasting results are also depicted in Fig. 5, where
we can see the difficulty that offline FIS and the MLP
model have to follow the unexpected behaviour of the price
over time; this because those models have no ability of
extrapolation. On the other hand, the dynamic nature of
the online model allow the model to adapt permanently
being thus able to handle these variations resulting from
the non-stationary nature of the process.

Thus, it is important to point that these results do
not intend to favor any model, but to emphasize the
advantage that dynamic models offer when the hypothesis

of a stationarity process is not guaranteed, as it happens
in several real-world problems.
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Figura 5. Results over the non-stationary time series.

IV. Conclusions

This paper presents a case study that considers the
comparison of a model with dynamic learning with other
two models with offline or batch learning in order to
determine the circumstances where a dynamic model could
present some advantages in terms of a one step ahead
RMSE index. The dynamic modelo is based on a Takagi-
Sugeno fuzzy system, whit an online learning based on
the recursive version of the EM algorithm. As reference to
determine possible gains using this model, it was compared
to its offline version and a conventional MLP model, in a
one step ahead bond price time series forecasting. Thus
to delimit the case study, it was considered a time series
with the presence of non-stationary trend component. The
results show that in the case of stationary processes, the
superiority of any model is not guaranteed, since all the
three models are able to deal with this kind of problem.
Moreover, in the case of non-stationary processes, more
specifically with trend component, the dynamic model
considered significantly outperformed the offline models.
Therefore, in those cases, the dynamic model shows to be
more adequate for dealing with changes over time, and
therefore, for the analysis of dynamical systems. Future
research will consider the analysis of online models for
other non-stationary processes.
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