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Abstract This article presents a new strategy to search for satisfactory wavelengths assignments in an optical link considering 
the Four Wave Mixing (FWM) effect in optical fibers. The FWM effect is taken into account for the calculation of the fiber 
Noise Figure for each wavelength. In this work we analyze the assignments when there are additions and droppings of wave-
lengths, considering the best and satisfactory assignments by using exhaustive and genetic algorithms (GA), respectively. A new 
crossover operator for the GA utilized was developed and tested. With this approach the distributions of wavelengths are ob-
tained from modified one genetic algorithm, which considers the quality of service criterion based on Bit Error Rate. We show 
that our new crossover operator outperforms the previous one presented in the literature. 

Keywords Optical Communications, Wavelength Assignment, Four wave mixing, Nonlinear effects, Search Algorithm, Ge-
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1    Introduction  

Due to the increasingly demand on telecommunica-
tion data traffic, the number of multiplexed channels 
in optical-transmission systems is growing consid-
erably as well. However, the transmission of many 
high power optical channels in WDM systems causes 
nonlinear effects, such as Four Wave Mixing (FWM) 
[1-5], this, mainly in links that use dispersion shifted 
(DSF) [1] or non-zero dispersion shifted fibers 
(NZDSF) [2]. As a result, estimating the FWM im-
pact on transmission performance is becoming very 
important for the design and the evaluation of system 
performance.  
 H. A. Pereira et al [6] described the problem and 
presented one technique to grow the number of ac-
tive channels according to the power level overcom-
ing the inconveniences of FWM. In Fig. 1 the arrows 
represent four assigned wavelengths in 16 channels 
grid in a given optical link. For the experiments of 
this work, the configurations 6/12, 8/16 and 10/20 
were used. In all cases, the binary representation 
indicates that the states set to 1 means activated 
channel. 

 
Fig. 1 - A 4 wavelength assignment in a 16 channels optical link. 

Even though it is highly advisable to tackle the 
non-linearities of FWM in some systems, to evaluate 
the performance of all possible configurations can be 
very time consuming. For example, suppose we have 
a grid with Nt channels positions and Ni wavelengths 
assigned, the number of possibilities is given by (1). 
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 Pereira et al [6], have already considered some 
improvements to the above mentioned problem using 
Genetic Algorithms (GA). However, after repeating 
their reported experiments, we have observed that 
the inheritance within the GAs utilized is not fully 
transmitted for the new generations. 

In this paper we propose a novel approach to 
search solutions that minimizes the Four Wave Mix-
ing problem by using elitism and improving per-
formance of the crossover operator.   

This work is organized as follows: Section 2 
contains a brief review of optical transmission per-
formance evaluation and the GAs used to search rea-
sonable solutions. In Section 3 we present our ap-
proach to tackle the problem. In Section 4 we de-
scribe the experimental set-up and methodology. 
And in Sections 5 and 6, respectively, results and 
conclusions are provided. 

2   Background 

2.1 Optical Transmission Performance Evaluation 

Hill et al were the first to investigate the FWM effect 
experimentally in a single mode fiber, estimating the 
power generated by the process [4]. Shibata et al 
proposed a formulation to include the efficiency de-
pendence of the FWM with the channel frequency 
separation, fiber length, chromatic dispersion, and 
dispersion slope [5]. Whereas Song et al [2] pro-
posed a more sophisticated model considering the 
depletion of the pump signals due to the fiber loss 
coefficient. Inoue [7] considered the balance of the 
amplifier noise and the FWM noise in a cascaded 
link through a simple expression, determining the 
system input signal power range.  

  0   1  0   0   1  0   0  0   0   1  0   0   1  0  0   0 

Genes of an individual (i.e. channels of a link) 

(1)



 On the other hand, the noise figure is an impor-
tant parameter to determine the system performance 
and many formulations have been proposed; Baney 
et al [8] reported a noise figure definition in terms of 
measurable parameters considering an optoelectronic 
model. The noise factor is defined as the ratio be-
tween the OSNR in the optical fiber input (OSNRin) 
and the OSNR in the optical fiber output (OSNRout). 
The OSNR can be expressed as follows: 
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where >< 2
signali  is the photocurrent generated by 

the optical signal of power level ( signalP ) and it is 

proportional to the detected electrical signal power, 
and   >∆< 2

Noisei  is the mean-square value of a sin-
gle-sided noise power spectrum [8]. 

The photocurrent generated by the optical sig-
nal can be expressed as 
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where ℜ  is the photo detector responsively. Whe-
reas the noise corresponds to: 
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where B0 is the channel optical bandwidth and 
Snoise(f) is the noise spectral power density. 

Therefore, considering the additive source 
spontaneous emission in the input we have [8]: 
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For the fiber output, with the FWM generated 
power added to the attenuated source spontaneous 
emission plus attenuated shot noise, we have: 
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where >∆< 2
FWMi  corresponds to the noise square 

mean value due to additive noise components gener-
ated by FWM processes. L is the fiber length and α  
is the linear attenuation coefficient. Therefore, the 
noise factor of the optical fiber can be written as [6]: 
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In this approach there are many additive noise com-
ponents interacting with the signal channel along the 
transmission. Considering a square law photo detec-
tor, one can evaluate the square mean value of noise 
considering the beating processes between the signal 
and the n additive noise components. The result is 
given by [6]: 
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where P0 is the signal power attenuated in the fiber 
output and Pi (i=1,2,...,n) are the noise power com-
ponents in the signal wavelength. 

Therefore, one can calculate the linear output 
OSNRout that is equal to the linear input OSNRin di-
vided the total noise factor as in (7), the fitness func-
tion. Furthermore, the Quality of service (QoS) of the 
channels can be evaluated through the BER estima-
tion and the BER depends directly on OSNRout. 
Therefore, one can determine a minimum acceptable 
OSNRout to maintain the QoS of every channel. In our 
case, the target is to find a wavelength assignment in 
a Grid so the channels respect these constrain, i.e., 
our fitness function should return the OSNRout of the 
worst channel. For a minimum BER of 10-12, the 
minimum OSNRout is approximately 23 dB. 

 
2.2 Evolutionary Computation 

In 1975 John Holland published a seminal work 
about Evolutionary Computation based on Darwin 
and Mendel theories [9]. Since then, several applica-
tions that use GA have been put forward and utilized 
in many distinct domains to solve real-world prob-
lems. The use of GA is growing steadily in many 
domains where there is the need for searching of 
suitable solutions in high dimensional spaces. 

GAs are mostly used in searching and optimiza-
tion problems because of their robustness, efficacy 
and flexibility. This technique of the Computational 
Intelligence area, profits greatly from principles of 
natural competition and evolution. As opposed to 
that, conventional algorithms operate in a pre-
established and rigid manner (i.e. script-like algo-
rithm). 

Normally a genetic algorithm considers the fol-
lowing concepts: (i) there is a space in which all pos-
sible solutions for the problem are mapped to, (ii) it 
is possible to devise a set containing candidate solu-
tions for the problem, that is, population (iii) the fit-
ness of each candidate solution is possible to be 
evaluated, (iv) candidate solutions can mix among 
themselves to share their “expertise” on solving the 
problem; (v) candidates with better fitness win the 
survival competition and will form the next genera-
tion of the population. 

In a Darwinian perspective, GAs presents the 
following computational steps: (i) random generation 
of individuals to form the initial population, (ii) eval-
uation of fitness of individuals and (iii) selection of 
individuals with higher aptitude to be part of the next 
generation of candidate solutions. In the selection of 
individuals one may consider principles such as elit-
ism, crossover and mutation. This process, in known 
as reproduction and as a whole it can be repeated 
until a satisfactory solution is achieved [10].  
2.3 Representation, Selection and Genetic Operators 

In GAs individuals of the population have a geno-
typic representation of the parameters of the solution 
mapped as genes, comprising their genotypes. This 
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representation can be, for example, group of binaries 
values for every aspect related to the solution. As 
distinct values are actually assigned to the genes 
(phenotype) different fitness are evoked by each in-
dividual.  

The rationale of GAs is that by combining char-
acteristics of different individuals the resulting “off-
spring” might perform better (as a solution for the 
problem – hence, reducing the time of the search).  

In this paper, as for the selection of individuals, 
we have applied the roulette wheel method. Com-
plementary to that, in order to guarantee diversity 
and inheritance of good features, we also included 
modified forms of crossover and mutation operators 
[10]. After each generation, the elitism operator is 
applied. 

3   The Contributed Approach  

As described in the previous section, genetic al-
gorithms (GA) can be defined by a set of integrated 
components, which can be implemented in many 
different ways. The flowchart in Fig. 2Erro! Fonte 
de referência não encontrada. shows a regular GA. 
Notice the presence of crossover, mutation and selec-
tion operators. 

For the problem at hand a series of standard pro-
cedures present in GAs would not work. Therefore 
some adaptations have to be performed in order for 
the technique to be to excel in this particular problem 
(i.e. Wavelength Assignment in optical Links).  

 

 
Fig. 2 - Schematic view of a regular Genetic Algorithm 

3.1 The Existing Crossover Operator 

Traditional one point crossover considers 50% 
of each parents’ code for the descendants, i.e. 50% 
from one parent contribution and other 50% inher-
ited from the second one. In the problem at hand, this 
could not be applied straightway. The reason is sim-
ple; the number of actives transmitters has to be the 

same at anytime through generations; hence, an es-
pecial crossover had to be adapted to this constraint.  

One previous work have tackled this task and 
offered a reasonable contribution to the problem [6], 
where GAs were applied in the wavelength assign-
ment in optical links for the first time. For the exist-
ing operator, refer to the steps below and also, to Fig. 
3. 

• Previous crossover step-1 – randomly select 
one position in the transmission grid where the 
transmitter is activated in Ind1 (i.e. individual 1) 
and, an inactivated in Ind2 (i.e. individual 2), 
then swap them over; 
• Previous crossover step-2 – randomly select 
other position in the transmission grid where the 
transmitter is inactivated in Ind1 and activated in 
Ind2 and also swap them over;  
• Previous crossover step-3 – keep the two 
just produced offspring as new candidate solu-
tions for the problem. 
 

 
Fig. 3 - Illustrative example of the previous crossover [6]. 

As a matter of fact, according to this implemen-
tation, just few cross inheritance will happen at max-
imum rate, refer to (9). Where i is the inheritance 
rate and N is genotype’s length. If you want to guar-
antee that the maximum inheritance rate be achieved, 
you should force the chosen position to be equivalent 
in Ind1 and Ind2. 

 
1002 ⋅= Ni  

 
The genetic information from just one parent to 

be copied to the offspring surpasses the expected 
50%. It can be calculated by (10), and the obtained 
values suggest that this method is much similar to a 
mutation operator than a crossover one.  

 
ic −=100  

 
For example: an experimental individual 12/6 

which represent 6 actives channels in 12, has c = 
83% and a maximum i = 17%. 

 
3.2 The Proposed Crossover Operator 

The major contribution proposed in this work 
regards to the previous crossover operator described 
in section 3.1.  

The new proposed operator for crossover was 
out forward to allow better inheritance of features 
from parents to their offspring.  

The novel crossover approach fixates one parent 
contribution towards the offspring as of 50%, while 
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it allows the second parent inheritance rate to be  
50% for individuals of any size. For the new opera-
tor, refer to the steps below and also, to Fig. 4. 

• Novel crossover step-1 – given a pair of 
parents, split them right in the middle. Then, 
each second half of parent, Ind11 and Ind21, will 
be crossed over, forming the first and second 
parts of Ind´1 of Ind´2, respectively (check bot-
tom-left of Fig. 4. This procedure guarantees 
50% of parents’ genetic information passed on 
to the offspring; 
• Novel crossover step-2 – calculate the dif-
ference (diff) of active channels in second half of 
the parents (check top-right of Fig. 4 and equa-
tions 11-12). This difference represents the num-
ber of activations or deactivations in individuals’ 
genotype and directly affects the inheritance rate 
given by (13). A positive diff means activations 
in Ind12 and deactivations in Ind22, while a nega-
tive diff, just the opposite. If diff equals to zero, 
the maximum inheritance rate  50%  is achieved; 
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• Novel crossover step-3 – randomly select 
the channels to be activated and deactivated, ac-
cordingly to step-2; 
• Novel crossover final step – keep the two 
just produced offspring as new candidate solu-
tions for the problem. 

Ind1 0101 1001     Sum = 2

Ind2 0001 0111     Sum = 3

Step 1          Step 2       

.

. .

.

Diff = -1

Ind’1 0101 0111     01010101

Ind’2 0001 1001     00011101.

.

.

Step 3           Offspring

Ind1 0101 1001     Sum = 2

Ind2 0001 0111     Sum = 3

Step 1          Step 2       

.

. .

.

Diff = -1

Ind’1 0101 0111     01010101

Ind’2 0001 1001     00011101.

.

.

Step 3           Offspring

 
Fig. 4 – Illustrative example of the proposed crossover 

Simulations indicate that the average inheritance 
rate is over 33%, refer to section 4 for more details.  

It is important to highlight that the observed re-
sults depends on the probability of activation figures 
in the second half of each individual. So, performing 
a combinatorial analysis on the same example re-
ferred above, we obtained the results that are pre-
sented in Table 1 - Comparative results of probabili-
ties inheritance rate using the novel crossover. 
(hence the mentioned average of inheritance is about 
39%).  

Table 1 - Comparative results of probabilities inheritance rate 
using the novel crossover. 

Occurrence likelihood Inheritance Rate 
7% 17% 

13% 25% 
20% 33% 
26% 42% 
33% 50% 

4   Methodology  

In this section, we present the methodology applied 
to the development of all simulations carried out. 
 
4.1 Experimental set-up 

In order to find the best configuration of active chan-
nels over a transmission link using the binary codifi-
cation, we must consider a satisfactory distribution 
when the OSNR will be greater than 22.9652 dB to a 
BER equal to 10-12. Table 2 presents the values as-
sumed for parameters used in all simulations. 

Table 2 - Simulation Parameters of Communications. 

Parameter Value Definition 
λf 15503.12nm First wavelength of the grid. 
λ0 1544nm Zero dispersion wavelength. 
L 19821m Link length. 
∆f 25GHz Frequency spacing. 

SNRin 38.8dB Input signal-to-noise ratio. 
SNRQoS 22.9652dB SNRout for QoS criterion. 
PSignal - Optical input ower/channel. 

P - Initial population. 
G - Number of generations. 

Pcross 50% Crossover probability. 
Pmut 5% Mutation probability. 

In all experiments the: signal power, the indi-
vidual length and the amount of active channels were 
variable parameters, according to each configuration 
used and presented in Table 3. The others parameters 
were kept constants, where Nt is the total numbers of 
channels and Ni are the active channels.  

Table 3 - Optimized Genetic Parameters. 

Configuration Population PSignal (mW) 
Nt = 12 and Ni = 6 30 1e-4 to 3.1e-4 
Nt = 16 and Ni = 8 50 1e-4 to 2e-4 
Nt = 20 and Ni = 10 85 1e-4 to 1.7e-4 

 
4.2 Methodology and Results 

We carried out 500 simulations for each GA 
configuration according to the Table 3. The results 
are shown in the tables and graphs below, which 
describe the observed behaviors of each specific al-
gorithm under the established test-conditions. The 
tables present the algorithms used for simulation and 
the number of fitness function [6] calls (fitness 
evaluations) named CF.  

(11)

(12)

(13)



Table 4 and Table 5 contains the values of CF 
obtained for each algorithm using the first GA con-
figuration (Nt = 12, Ni = 6 and Populations = 30) pre-
sented by Table 3 and assuming a specific critic val-
ue of Psignal. 

Table 4 - Number of fitness function evaluations for grid size of 12 
channels, 6 active channels, 1 feasible solution, at 0.25 mW of 

power. 

Algorithm CF 
GA Previous 111,83 
GA Proposed 110,706 
GA Previous + elitism 117,674 
GA Proposed + elitism 79,182 
Table 5. Number of fitness function evaluations for grid size of 12 

channels, 6  active channels, 1 feasible solution, at 0.3 mW .  

Algorithm CF 
GA Previous 476,262 
GA Proposed 448,97 
GA Previous + elitism 490,864 
GA Proposed + elitism 277,254 

 
Notice that CF values, obtained with the pro-

posed approach of GA together with elitism, are 
much lower that all other technique we compared to 
(including the proposed GA without elitism); this, 
regardless of power used. 

On the basis of the structure of previous Tables 
4 and 5, Table 6 shows other results using a second 
GA configuration (Nt = 16, Ni = 8 and Populations = 50). 
Table 7 and Table 8 present the obtained results us-
ing a third GA configuration (Nt = 20, Ni = 10 and Pop-
ulations = 85). 

Table 6 - Number of fitness function evaluations for grid size of 
16 channels, 8  active channels, 4 feasible solution, at 0.2 mW.  

Algorithm CF 
GA Previous 2573,49 
GA Proposal 2386,516 
GA Previous + elitism 2588,674 
GA Proposal + elitism 593,018 
Table 7 - Number of fitness function evaluations for grid size of 

20 channels, 10  active channels, 29 feasible solution, at 0.16 mW 
of power. 

Algorithm CF 
GA Previous 6185,648 
GA Proposed 6007,336 
GA Previous + elitism 6562,522 
GA Proposed + elitism 1071,664 
Table 8 - Number of fitness function evaluations for grid size of 
20 channels, 10  active channels, 4 feasible solution, at 0.17 mW 

of power. 

Algorithm CF 
GA Previous 31321,4 
GA Proposed 30867,5 
GA Previous + elitism No solution found 
GA Proposed + elitism 6746 

 

Notice that CF values shown in Tables 7 and 8 
for the proposed approach of GA together with elit-
ism are also much lower (approximately, five-fold 
better); this also, regardless of power. 

By comparing our approach to others, we were 
able to consistently observe better results. Especially 
when the elitism operator was utilized.  

For each GA configuration simulated, different 
behaviors have been acquired. Considering that elit-
ism enhances the algorithms behavior, Fig. 5, Fig. 6 
and Fig 7 show the behaviors of the algorithm that 
uses the proposed GA and the algorithm that uses the 
previous GA, both with elitism incorporated in them. 
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Fig. 5 - Proposed (dots) and previous (squares) GA, both using 

elitism with configuration Nt = 12, Ni = 6 and Population = 30. 
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Fig. 6 - Proposed (dots) and previous (squares) GA, both using 

elitism with configuration Nt = 16, Ni = 8 and Population = 50. 
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Fig. 7 - Proposed (dots) and previous (squares) GA, both using 

elitism with configuration Nt = 20, Ni = 10 and Population = 
85. 

5   Conclusions 

A new approach using genetic algorithms has 
been proposed to the problem of wavelengths as-
signments in an optical link considering the Four 
Wave Mixing effect in fiber optics. Using this ap-
proach a large number of simulations were carried 
out in order to find solutions that minimize the im-
pact of the four wave mixing effect.  

One new crossover operator implementation was 
proposed to improve the simulations results. For 
every problem variation (network environment) the 
behavior of our proposal has produced better results 
than previous solution that utilize GA. Hence, we 
argue that the new crossover implementation is a 
better way to approach the problem revisited in this 
paper. 

The proposed GA with elitism was proved to be 
more efficient than the all previous one simulated 
here. Hence, we are able to obtain lower CF values 
for every tested critical Psignal value. 

For future works, one can perform a full conver-
gence analysis of the proposed algorithm.  
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