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Abstract

This work proposes a new method for data
clustering in a n-dimensional space using the Elastic
Net Algorithm which is a variant of the Kohonen
topographic map learning algorithm. The Elastic Net
Algorithm is a mechanical metaphor in which an elastic
ring is attracted by points in a bi-dimensional space
while their internal elastic forces try to shun the elastic
expansion. The different weights associated with these
two kinds of forces lead the elastic to a gradual
expansion in the direction of the bi-dimensional points.
In this new method, the Elastic Net Algorithm is
employed with the help of a heuristic framework that
improves its performance for application in the n-
dimensional space of cluster analysis. Tests were made
with two types of data sets: (1) simulated data sets with
up to 1000 points randomly generated in groups
linearly separable with up to dimension 10 and (2) the
Fisher Iris Plant database, a well -known database
referred in the pattern recognition literature. The
advantages of the method presented here are its
simplicity, its fast and stable convergence, beyond
efficiency in cluster analysis.

1. Introduction

Researchers from many areas often encounter
situations best resolved by defining groups of
homogeneous objects, whether they be individuals,
firms, products, or even behaviors. Strategic decisions
based on identifying groups within populations, such as
segmentation and target marketing, would not be
possible without an objective methodology. Also in
Biology and Medicine, clustering is desirable, for
example, in the creation of botanic taxonomy and in the
analysis of psychiatric profiles [1]. In these instances,
the analyst searches for “natural” structures in a set of
experimental observations generall y of a multivariate
character.

The most commonly used technique for this purpose
is the statistical cluster analysis which is a technique for
grouping individuals or objects into clusters so that
objects in the same cluster are more like to one another
than objects in other clusters [2].

This work presents a new method for multivariate
cluster analysis based on the Elastic Net Algorithm

introduced by Durbin and Will shaw [3] using a heuristic
framework that helps in the task of cluster analysis. In
the next sections, this method will be detailed and some
results wil l be shown.

2. Elastic Net Algorithm

The Elastic Neural Net Algorithm (ENA) is a
heuristic algorithm, inherently parallel, developed from
a hypothetical “ tea-trade model” [4,5] for the
establi shment of topographically ordered, neighbor-
preserving projections between neural structures with
matching geometries. Like Kohonen’s Self Organizing
Feature Map (SOFM) [6], the ENA tries to find a
topology preserving map between two spaces.

The algorithm was originall y proposed to solve the
Travell ing Salesman Problem (TSP), a classical
problem in the field of the Combinatorial Optimization
[7]. The TSP can be described as: “ Given the position of
N cities, what is the shortest hamiltonian tour (a closed
path in which each city is visited once) joining these
cities ?”

The Elastic Net method considers an “elastic” ring
with M points marked over it and that are subjected to
two types of forces: internal stiffness forces Ej;
j=1,2...M which induce the minimization of the length
of the ring, and external forces Cij; i=1,2...n and
j=1,2...M which correspond to the attraction of the city i
over the point j (See Figure 1).

Figure 1: Forces that act on a point j in the elastic ring
by two cities.

Initiall y, the elastic ring is represented by a small
circle centered in the centroid of the n cities. In an
iterative procedure, the ring is gradually and non-
uniformly elongated until it eventually passes
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sufficiently near to all the cities to define a tour around
them (See Figure 2).

Figure 2: The process of expanding the elastic ring from
the center to the cities.

Let the coordinates of a city i be denoted by the
vector xi and those of point j on the ring by yj. The
forces of attraction of the cities over a point j in the ring
are proportional to the distance between the city and the
point, having the direction of the line that passes
through the city and the point: Ci j = wi j (xi – yj), where
the parameters wi j define the proportions. The two
elastic forces that act upon a point j of the ring are
proportional to the distance between the point j and its
two neighboring points j−1 and j+1: Ej = Ej+1 + Ej−1 = K
(yj+1 – yj) + K (yj−1 − yj) or Ej = K (yj+1 − 2 yj + yj−1),
where K is a control parameter of the algorithm.
Summing the two types of forces leads us to the
resultant that actuates on point j. The movement ∆yj of
the point j of the elastic ring is assumed to be
proportional to this resultant, or
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where α and β are weight coefficients. The control
parameter K is a scale factor which decreases every ℵ
iterations, li ke the lowering of the “temperature” in the
optimal Simulated Annealing Method [6]. The
procedure of lowering K allows the ring to approximate
the cities because the internal forces are reduced in
relation to the external ones. The proportions wi j are
calculated with the help of a power function φ that
defines an exponential decreasing influence of a city
over a point as the distance between the two increases.
The proportions are normalized with the division of the
power function of one point by the total values of the
power functions for all the points:
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The power function is given by
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that for an initially high value of K, the power function
expresses an equally high influence of all the cities over
all the points of the ring. As K decreases, the power
function establi shes a selective influence of a city over
its nearest ring point.

An energy function E that is always minimized (for
constant K) as the algorithm progress can be defined:
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This energy function has the property that:
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For fixed K, the path will converge to a (possibly
local) minimum of E. At large values of K the energy
function is smoothed and there is only one minimum
(which do not correspond to a tour). At small values of
K, the energy function contains many local minima
corresponding to possible tours for the cities, and the
deepest minimum is the shortest possible tour [8].

This is a special case of the general problem of best
preserving neighborhood relations when mapping
between different geometrical spaces. In our approach
we extended these characteristics for clustering in n-
dimensional spaces.

2.1. ANN interpretation of ENA

The Elastic Net Algorithm is a variation of the
Kohonen topographic map learning algorithm that
exhibits many of the same key qualitative features.

Consider an ANN system with M hidden units and N
input units:

The training steps of the algorithm are:
• Step 0: Initialize weights wj(0), j=1,...,M, to small

values.
• Step 1: Compute response, ri j(t), of each hidden unit

j to the ith stimulus pattern xi, i=1,...,N, over the
input units at iteration t:
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• Step 2: Update weights. Let xi be the ith element of
the training set. For j=1,...,M:
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• Step 3: If wj(t) – wj(t-1) < ε for all j=1,...,M then
stop. Otherwise, let t=t+1 and return to step 1.

The weight update rule in the ENA possesses many
of the same qualitative features as the original Kohonen
learning rule. First, hidden units compete among
themselves to select the hidden unit that is maximally
responding. This competition is quantitatively
instantiated by the denominator in (5). Second, units
which are responding most strongly are trained with the
stimulus pattern at a higher learning rate. This
assumption is quantitatively instantiated by the ri j(t)[xi –
wj(t)] term in the weight update rule in (6). Third,
assuming that the hidden units are labeled such that
hidden units j and j+1 are located physically next to one
another, the second term of the weight update rule tends
to make the average value of the weight vectors of the
neighboring units j−1 and j+1 closer to the weight
vector for unit j [9].

3. The Hierarchical Elastic Net Algorithm

In this section, a new hierarchical clustering method
will be presented in which the ENA will be inserted.
The main advantages of this approach are the decrease
of the complexity of the calculations performed and, as
a consequence, the decrease of the number of iterations
necessary to the convergence of the method.

This method has in two stages:
• First stage: the points in the space are reduced. This

is done by matching the pair of points that are closer.
The points matched are removed and a third point is
generate at the middle of the distances among them.
This process continues until only 3 points result.

• Second stage: application of the ENA in a
hierarchical way. The points that remained in the
previous phase are duplicated, i.e. they are
unmatched in the inverse way. The ENA is then
applied to converge for the points that generated
these elastic ring points. When the algorithm
converges, again the points of the elastic band are
duplicated and the algorithm is applied for the points
that generated them. This process continues until the
algorithm converges for the last group of points that
are the original points of the space.

The illustration below displays a graphic
representation of the stages of the hierarchical method.

Figure 3: First stage: (a) Original points distributed in
the space (b) The black points are generated by the
matching of pairs of closest points  (c) the generated
points are matched again until the presence of only three
of them. Second stage: (d) The three points of the early
stage are duplicated and the ENA is applied only for its
generators (e) The process is repeated until the
generators are the original points (f) At the end of the
process, all original points are associated with a point on
the elastic band.

The final elastic ring will then form an
unidimensional ordered mapping of the n-dimensional
space points.

Some restrictions are made for better performance of
the method. The pair of closer points are matched only
if there is not some generated point whose distance for
one of these points is smaller than the distance among
them. In this case, the points are repeated so that in the
next iteration one of them tries to match with this
generated point. This measure tries to avoid possible
crossings in the tour once it inhibits the matching of
points that are distant. If there are 4 points at the end of
the 1st phase, only the two closer are matched and the
others are repeated in a way of always leaving 3 points
to form the initial elastic band. The points that didn't
match in the 1st stage are not duplicated in the 2nd stage.

In the original ENA, the number of points that form
the initial elastic ring is at least twice the number of
points of the space. Using the method developed above,
the number of points of the elastic ring is the same as
the number of points of the space. This reduces the

(a) (b)

(c) (d)

(e) (f)
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number of forces between the space points and the
points of the elastic band, and consequently it reduces
the complexity of the algorithm. Moreover, due to the
initial position of the points on the elastic ring  (where
each two points of the elastic band are positioned at
stocking distance among two entrance points), they tend
to reach very fast their nearest points of the space, again
reducing the number of iterations.

4. Experimental Results

A line graph was used to visualize the results of the
method. This graph traces the final sequence of the
elastic points and the relative distances between each
adjacent point. Every time a larger jump appears
between two points in the graph, there is a group
change. In this way, the process of definition of the
groups is responsibility of the speciali st that decides (as
in the classical dendogram of the hierarchical
techniques of clustering) the number and size of the
clusters.

Two types of data sets were tested: (1) simulated
data sets with up to 1000 points randomly generated in
groups linearly separable with up to dimension 10 and
(2) the Fisher Iris Plant database, a well -known database
taken from the pattern recognition literature.

From now on, the vectors xi wil l represent the
coordinates of the points that wil l be clustered in the n-
dimensional space (and no more cities in a plane), and
the vectors yj are the coordinates of the points of the
elastic band. All xi were normalized in the range [0,1].

The chosen parameters for the ENA were: α=1.0,
β=0.1, Kinitial=0.1, rate of decrease of K at each iteration
= 1%. These parameters were shown quite flexible
being used for all databases tested.

4.1. Simulated Sets

The first groups of tests were a set of simulated data.
Nine test groups were generated with 200, 300 (see
Figure 4), 400, 500, 600, 700, 800, 900 and 1000
random points distributed respectively in the spaces R2,
R3, R4, R5, R6, R7, R8, R9 and R10 and contained in 4, 3,
4, 5, 6, 7, 8, 9 and 10 clusters respectively.

Figure 4: Example of a database with 300 random
points distributed in 3 clusters in R3

The information about the real number of clusters
and the members of each class were left ignored in all
the apprenticeships of the method and they were just
used for comparison with the structure discovered by
the process.

The results are shown in the table below:

Table 1:  Simulated databases results

Base Id. 1 2 3 4 5 6 7 8 9

No. of  points 200 300 400 500 600 700 800 900 1000
Dimension of
the space

2 3 4 5 6 7 8 9 10

No. of clusters 4 3 4 5 6 7 8 9 10
Total no. of
iterations

538 475 512 434 301 472 266 277 279

Classification
rate (%)

100 100 100 100 100 100 100 100 100

Each point in the graph represented in Figures 5, 6,
and 7 represents a point of the elastic band that is
associated with an element of the data set. The value of
the y-axis is the distance between the points yj−1 and yj.
Therefore, each pick in the graph represents a larger
relative distance between the points of the elastic band,
meaning a cluster change. Examples of these graphs are
shown below for the data sets with 300 (Figure 5) and
1000 elements (Figure 6).

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Figure 5: Line graph generated from the 300 data set.
Picksrepresent jumps between possible clusters.
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Figure 6: Line graph generated from the 1000 data set
defined in R10
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4.2. I r is Plants Database

The Iris Plants Database, perhaps, is the best known
database found in the literature of cluster analysis.
Fisher's work [10] is a classic in the field and is referred
frequently in cluster analysis texts. The data set contains
3 classes of iris plant with 50 instances each (iris setosa,
iris versicolor and iris virginica). The first class (iris
setosa) is linearly separable from the other two (iris
versicolor and iris virginica); the two last groups are not
linearly separable from one another. Each instance is
formed by four real value inputs: sepal length, sepal
width, petal length and petal width. The result obtained
with the implemented model is seen in the graphic
below (see Figure 7).
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Figure 7: Graph showing results for the Iris plant
database.

This graph shows a label on top of each point of the
elastic band indicating to which class the element is
associated (this information was not used in the
clustering process). We can see a well -separated cluster
labeled with 1 – this cluster is iris setosa plant type. The
method also tried to separate the other two classes
however it partially failed because these classes are
overlapped.

Comparisons were made with traditional hierarchical
methods of clustering (Single Linkage, Complete
Linkage and Ward’s Method) and also with the k-Means
partition method. These methods were not also capable
of separate correctly the types of plant of the Iris
database, besides, the dendograms generated by the
hierarchical methods are more confusing to be
interpreted than the line graph presented in this work
(see Figure 8). Moreover, the mistake percentage found
in this method was almost the same of that found in the
k-Means method.
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Figure 8: Dendograms generated by the hierarchical
methods (Single Linkage, Complete Linkage, Ward’s

Method) for the Iris Plant database

5. Conclusions

This work proposes a new method for data
clustering in a n-dimensional space based on the Elastic
Net Algorithm (ENA). The ENA is a variation of the
Kohonen topographic map learning algorithm that is
much easier to analyze also exhibiting many of the same
key qualitative features. In this approach, the ENA is
employed within a hierarchical framework that
improves the performance of the algorithm. A new
method of visualization was also introduced which uses
a line graph showing relative distances of the elastic
points for the interpretation of the results. Tests were
made with two types of data sets: (1) simulated datasets
with up to 1000 points randomly generated in groups
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linearly separable with up to dimension 10 and (2) the
Fisher Iris Plant database, a well -known database from
the pattern recognition literature. Excellent results (with
100% of success) were reached for the first group of
data, however the method differentiated only one class
of Iris database because the other two are overlapped.
An increase of fuzziness or overlap of the clusters will
degrade the interpretation of the results because groups
tend to get closer, leading to the attenuation of the
nonlinearities between classes. It must be noted that the
decrease of performance also occurs with other
methods. The advantages of the method presented here
are the simplicity of the algorithm, the fast and stable
convergence, and the eff iciency in cluster analysis when
we have well -defined clusters.
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