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Abstract

This work propeses a rew method for data
clustering in a n-dimensional space using the Elastic
Net Algorithm which is a variant of the Kohoren
topogaphic map learning algorithm. The Elastic Net
Algorithmis a mechanical metapha inwhich an dastic
ring is attracted by points in a hi-dimensional space
whil e their internal dastic forces try to shun the dastic
expnsion. The different weights associated with these
two kinds of forces lead the elagtic to a gradud
expansion in the direction of the bi-dimensional points.
In this new method, the Elastic Net Algorithm is
employed with the help of a heurigic framework that
improves its performance for application in the n-
dimensiond space of cluster analysis. Tests were made
with two types of data sets: (1) simulated data sets with
up to 1000 pants randomly generated in groups
linearly separable with up to dimension 10 ard (2) the
Fisher Iris Plant database, a well-known daabase
referred in the pattern recognition literature. The
advantages of the method presented here are its
simplicity, its fast and stable @nvergence, beyond
efficiency in cluster andysis.

1. Introduction

Researchers from many areas often encounter
situations best resolved by defining groups of
homogeneous objeds, whether they be individuals,
firms, products, or even behaviors. Strategic dedsions
based on identifying groups within populations, such as
segmentation and target marketing, would not be
possble without an objective methodology. Also in
Biology and Medicine, clustering is desirable, for
example, in the creation of batanic taxonomy and in the
andysis of psychiatric profiles [1]. In these instances,
the analyst searches for “naturad” structures in a set of
experimental observations generally of a multivariate
character.

The most commonly used technique for this purpose
isthe statistical cluster analysis which is a technique for
grouping individuals or objects into clusters © that
objeds in the same duster are more like to one another
than objeds in other clusters[2].

This work presents a new method for multivariate
cluster analysis based on the Elastic Net Algorithm

introduced by Durbin and Will shaw [3] using a heuristic
framework that helps in the task of cluster analysis. In
the next sedions, this method will be detail ed and some
resultswil | be shown.

2. Elastic Net Algorithm

The Elagic Neura Net Algorithm (ENA) is a
heurigtic algorithm, inherently parall e, developed from
a hypothetical “teatrade modd” [4,5] for the
establishment of topographically ordered, neighbor-
preserving projedions between neural structures with
matching geometries. Like Kohonen's Self Organizing
Feature Map (SOFM) [6], the ENA tries to find a
topology preserving map between two spaces.

The dgorithm was originally proposed to solve the
Travelling Sdesman Problem (TSP, a classcal
problem in the field of the Combinatorial Optimization
[7]. The TSPcan be described as: “ Given the position of
N cities, what is the shortest hamiltonian tour (a closed
path in which each city is visited once) joining these
cities ?”

The Elagic Net method considers an “elastic” ring
with M points marked over it and that are subjeded to
two types of forces. intena dtiffness forces Ej;
j=1,2...M which induce the minimization of the length
of the ring, and extena forces Gj; i=12..n and
j=1,2...M which correspond to the attraction of the dty i
over the point j (SeeFigure 1).
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Figure 1. Forces that act on apoint j in the éastic ring
by two cities.

Initidly, the dadtic ring is represented by a small
circle cetered in the entroid o the n cities. In an
iterative procedure, the ring is gradualy and non-
uniformly eongated uwntil it eventually passes



sufficiently nea to dl the cities to define atour around
them (SeeFigure 2).
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Figure 2: The processof expandingthe dastic ring from
the center to the dties.

Let the mordinates of a city i be denoted by the
vector x; and those of point j on the ring by y;. The
forces of attraction of the cities over apoint j in thering
are proportional to the distance between the dty and the
point, having the diredion of the line that passes
through the city and the point: G; = w; (X —Y;), where
the parameters w; define the proportions. The two
elagtic forces that act upon a point j of the ring are
proportional to the distance between the point j and its
two neighboring pointsj-1 and j+1: E = Ej,; + 4 = K
Vi =Y) + K Y= y) or B =K (s = 2y + Yj-1),
where K is a @ntrol parameter of the dgorithm.
Summing the two types of forces leads us to the
resultant that actuates on point j. The movement Ay; of
the point j of the dastic ring is asamed to be
proportional to this resultant, or

ij' :azvvij (X; _yj)+ﬁK(yj+l_2yj +yj—1)' Q)

where o and 3 are weight coefficients. The ntrol
parameter K is a scale factor which decreases every [
iterations, like the lowering of the “temperature” in the
optimal Smulated Anneding Method [6]. The
procedure of lowering K allows the ring to approximate
the dties becuse the interna forces are reduced in
relation to the external ones. The proportions w; are
calculated with the help o a power function ¢ that
defines an exponential deaeasing influence of a city
over a paint as the distance between the two increases.
The proportions are normalized with the division of the
power function of one point by the total values of the
power functions for all the points:

W = ol x; —y; I,K) )
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The power function is given by
ox; -y, *,K) =exp(—=|x; =y, [ /2K?). Note
that for an initially high value of K, the power function
expresses an equally high influence of all the dties over
al the points of the ring. As K deaeases, the power
function establishes a seledive influence of a city over
itsneaest ring point.

An energy function E that is aways minimized (for
congtant K) as the algorithm progresscan be defined:

E:—GKZMZ(P(C’,K)"'%ZWJH_yj |2 (3)
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This energy function has the property that:

K 9E.

Ay, = oy
I

(4)

For fixed K, the path will converge to a (posshly
local) minimum of E. At large values of K the energy
function is smoathed and there is only one minimum
(which do not correspond to a tour). At small values of
K, the energy function contains many loca minima
corresponding to posshle tours for the dties, and the
degoest minimum is the shortest posshble tour [8].

Thisisa speda case of the general problem of best
preserving neighborhood relations when mapping
between different geometrical spaces. In our approach
we etended these dharacteristics for clustering in n-
dimensional spaces.

2.1. ANN inter pretation of ENA

The Elagtic Net Algorithm is a variation of the
Kohonen topographic map leaning algorithm that
exhibits many of the same key qualitative features.

Consider an ANN system with M hidden unitsand N
input units:

Thetraining steps of the dgorithm are:

* Step O Initialize weights w;(0), j=1,...,M, to small
values.

» Step 1 Compute response, rij(t), of each hidden unit
j to the ith gimulus pattern x;, i=1,...,N, over the
input units at iteration t:
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* Step 2 Update weights. Let x; be the ith element of
the training set. For j=1,...,M:

w,(t+2) = w, (1) +ai Ok —w, O]+

. (6)

+ B, W, 0+ 2w, () -, (0]

*  Step 3 If Ow(t) —w;(t-1)0 < € for al j=1,..,M then
stop. Otherwise, let t=t+1 and return to step 1

The weight update rule in the ENA possesses many
of the same qualitative features as the original Kohonen
leaning rule. First, hidden units compete among
themselves to sdect the hidden unit that is maximally
responding. This competition is quantitatively
instantiated by the denominator in (5). Seand, units
which areresponding most strongly are trained with the
gimulus pattern at a higher learning rate. This
assumption is quantitatively instantiated by the ri;(t)[x; —
w;(t)] term in the weight update rule in (6). Third,
asaiming that the hidden units are labeled such that
hidden unitsj and j+1 are located physically next to ane
another, the seand term of the weight update rule tends
to make the average value of the weight vedors of the
neighboring units j—1 and j+1 closer to the weight
vector for unit j [9].

3. The Hierarchical Elastic Net Algorithm

In this ®dion, anew hierarchical clustering method
will be presented in which the ENA will be inserted.
The main advantages of this approach are the decrease
of the complexity of the caculations performed and, as
a consequence the deaease of the number of iterations
necessary to the convergence of the method.

This method hasin two stages:

* First stage: the points in the space ae reduced. This
is done by matching the pair of points that are doser.
The points matched are removed and a third point is
generate at the middle of the distances among them.
This processcontinues until only 3 points result.

* Seoond stage application of the ENA in a
hierarchical way. The points that remained in the
previous phase ae duplicated, i.e. they are
unmatched in the inverse way. The ENA is then
applied to converge for the points that generated
these dagtic ring points. When the agorithm
converges, again the points of the dagtic band are
dugicaed and the algorithm is applied for the points
that generated them. This process continues until the
algorithm converges for the last group of points that
arethe original points of the space

The illugtration below displays a graphic
representation of the stages of the hierarchical method.
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Figure 3: First stage: (a) Original points distributed in
the space (b) The black points are generated by the
matching o pairs of closest points (c) the generated
points are matched again until the presence of only three
of them. Second stage: (d) The three points of the ealy
stage ae duplicaed and the ENA is applied anly for its
generators (€) The process is repeated until the
generators are the original points (f) At the end of the
process all original points are asociated with apoint on
the dastic band.

The final dagtic ring will then form an
unidimensional ordered mapping o the n-dimensional
space points.

Some restrictions are made for better performance of
the method. The pair of closer points are matched only
if there is not some generated point whose distance for
one of these paints is smaller than the distance anong
them. In this case, the points are repeated so that in the
next iteration one of them tries to match with this
generated point. This measure tries to avoid posshle
crossngs in the tour once it inhibits the matching o
points that are distant. If there ae 4 points at the end of
the 1% phase, only the two closer are matched and the
others are repeated in a way of always leaving 3 points
to form the initial dagtic band. The points that didn't
match in the 1% stage ae not dupicated in the 2™ stage.

In the original ENA, the number of points that form
the initial eastic ring is at least twice the number of
points of the space Using the method devel oped above,
the number of points of the dagtic ring is the same as
the number of points of the space This reduces the



number of forces between the space points and the
points of the dastic band, and consequently it reduces
the complexity of the algorithm. Moreover, due to the
initial position of the points on the dastic ring (where
each two points of the dastic band are positioned at
stocking distance among two entrance points), they tend
to reach very fast their nearest points of the space again
reducing the number of iterations.

4. Experimental Results

A line graph was used to visualize the results of the
method. This graph traces the final sequence of the
glagtic points and the relative disances between each
adjacent point. Every time a larger jump appeas
between two points in the graph, there is a group
change. In this way, the process of definition of the
groups is responsihility of the spedalist that deddes (as
in the dasdcd dendogram of the hierarchica
techniques of clustering) the number and size of the
clusters.

Two types of data sets were tested: (1) simulated
data sets with up to 1000 points randomly generated in
groups linealy separable with up to dimension 10 and
(2) the Fisher Iris Plant database, a well -known database
taken from the pattern reaognition literature.

From now on, the vedors x; will represent the
coordinates of the points that will be dustered in the n-
dimensional space (and no more dties in a plane), and
the vedors y; are the mordinates of the points of the
elagtic band. All x; were normalized in therange [0,1].

The tosen parameters for the ENA were: a=1.0,
B=0.1, Kni1ia=0.1, rate of deaease of K at each iteration
= 1%. These parameters were shown quite flexible
being used for all databases tested.

4.1. Simulated Sets

Thefirgt groups of tests were aset of smulated data.
Nine test groups were generated with 200 300 (see
Figure 4), 400, 500, 600, 700, 800, 900 and 1000
random points distributed respedively in the spaces R?,
R, R, R®, R% R, R®, R? and R and contained in 4, 3,
4,5,6,7,8,9and 10 clusters respedively.
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Figure 4: Example of a database with 300 random
points distributed in 3 clustersin R®
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The information about the real number of clusters
and the members of each classwere left ignored in all
the apprenticeships of the method and they were just
used for comparison with the structure discovered by
the process

The results are shown in the table below:

Table 1: Simulated databases results

Baseld. |1 |2 [3 |4 [5 |6 |7 [8 |o
No. of points 200|300 [400 [500 |600|700 {800 [900 |1000
Dimensond 1, |3 14 |5 | |7 |8 |90 |10
the space

No. of clusters |4 |3 (4 |5 6 |7 |8 |9 10
Totalno. of 501475 512|434 (301|472 |266 277|279
iterations

Classification ;41100 (100|100{100{100{100{100{100
rate (%)

Each point in the graph represented in Figures 5, 6,
and 7 represents a point of the eastic band that is
assciated with an element of the data set. The value of
the y-axis is the distance between the points y;—; and y;.
Therefore, each pick in the graph represents a larger
relative distance between the points of the eastic band,
meaning a cluster change. Examples of these graphs are
shown below for the data sets with 300 (Figure 5) and
1000 ements (Figure 6).
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Figure 5: Line graph generated from the 300 data set.
Picks represent jumps between possble dusters.
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Figure 6: Line graph generated from the 1000 data set
defined in R'°



4.2. Iris Plants Database

The Iris Plants Database, perhaps, is the best known
database found in the literature of cluster anaysis.
Fisher'swork [10] isaclassc inthe fidd and isreferred
frequently in cluster analysistexts. The data set contains
3 classes of iris plant with 50 instances each (iris stosa,
iris versicolor and iris virginica). The first class (iris
setosa) is linealy separable from the other two (iris
versicolor and irisvirginica); the two last groups are not
linealy separable from one another. Each instance is
formed by four real value inpus. sepal length, sepal
width, petal length and petal width. The result obtained
with the implemented model is seen in the graphic
below (seeFigure 7).
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Figure 7: Graph showing results for the Iris plant
database.

This graph shows a label on top of each point of the
elastic band indicating to which class the dement is
asciated (this information was not used in the
clustering procesy. We can see awell-separated cluster
labeled with 1 —this cluster isiris stosa plant type. The
method aso tried to separate the other two classes
however it partially failled becuse these dasses are
overlapped.

Comparisons were made with traditional hierarchical
methods of clustering (Single Linkage, Complete
Linkage and Ward's Method) and also with the k-Means
partition method. These methods were not also capable
of separate rredly the types of plant of the lIris
database, besides, the dendogams generated by the
hierarchical methods are more nfusing to be
interpreted than the line graph presented in this work
(seeFigure 8). Moreover, the mistake percentage found
in this method was almost the same of that found in the
k-Means method.
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Figure 8: Dendograms generated by the hierarchical
methods (Single Linkage, Complete Linkage, Ward's
Method) for the Iris Plant database

5. Conclusions

This work proposes a new method for data
clusteringin a n-dimensional space based on the Elastic
Net Algorithm (ENA). The ENA is a variation of the
Kohonen topographic map leaning algorithm that is
much easier to analyze also exhibiting many of the same
key qualitative features. In this approach, the ENA is
employed within a hierarchical framework that
improves the performance of the dgorithm. A new
method of visualization was also introduced which uses
a line graph showing relative distances of the dastic
points for the interpretation of the results. Tests were
made with two types of data sets: (1) simulated datasets
with up to 1000 points randomly generated in groups



linealy separable with up to dimension 10 and (2) the
Fisher Iris Plant database, a well-known database from
the pattern reaognition literature. Excdlent results (with
1006 of success) were reached for the first group of
data, however the method differentiated only one dass
of Iris database because the other two are overlapped.
An increase of fuzzinessor overlap o the dusters will

degrade the interpretation of the results because groups
tend to get closer, leading to the attenuation of the
nonlinearities between classes. It must be noted that the
deadease of performance also ocaurs with other
methods. The advantages of the method presented here
are the smplicity of the dgorithm, the fast and stable
convergence, andthe dficiency in cluster analysis when
we have well -defined clusters.
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