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Abstract

APLS, an approximate algorithm for solving the Par-
tial Least-Squares problem is presented. When deal-
ing with more than one dependent variable in the stan-
dard PLS modeling, one must compute eigenvectors of
the mixed independent and dependent variables matrix,
thus introducing a time overhead in the algorithm. APLS
provides an approximate method for this calculation with
competitive modeling error and improved running time.
In our experiments, APLS shows a 30% faster running
time when compared to the standard PLS algorithm.

1. Introduction

The PLS algorithm [1] has been widely used as
a chemometric tool for Near-Infrared spectral analysis
[2, 3, 4]. The simplicity of the technique and robust-
ness of the generated model, also make the partial least-
squares approach a powerful tool for factor analysis, be-
ing applied to many other areas such as process monitor-
ing, marketing analysis and image processing [5, 6, 7].
In this paper, we propose APLS, an approximate al-
gorithm for solving the Partial Least-Squares problem.
In the classical PLS modeling, the eigenvectors of the
mixed independent and dependent variables matrix must
be computed in the case of two or more dependent vari-
ables. This can be accomplished for example using neural
techniques such as Hebbian learning [8]. APLS provides
an approximate method for this calculation, not relying
on any convergence criteria.
In order to measure the performance of APLS, we report
some experiments with the wheat data set for chemomet-
rics [9] and two other data sets containing combustible
NIR spectra [10]. The APLS model shows a competitive
quality when compared to the standard PLS model. Simi-
lar prediction errors and corresponding number of factors
were observed. Moreover, since it is not a convergence
dependent technique, it shows a 30 % faster running time.

In section 2, we present the standard PLS algorithm.
In section 3, our approximate version is described. In sec-
tion 4 a running time analysis of the algorithm is made,
and in section 5 the empirical results obtained with the
selected data set are shown.

2 PLS Algorithm

2.1 Modeling

Partial Least Squares (PLS) is a multivariatestatistical
method, based on the use of factors, which is aimed at
prediction [1]. The goal is to predict the values of a set
of variablesy based on the observed values of a set of
variablesx. As an example,x may be formed by the
values of a time series window andy be taken as the value
of a single future observation, or as the values of a set of
future points in the same time series.

The construction of a PLS model requires a set of ob-
servation samples (patterns) and also their respective fu-
ture values. LetX be the matrix containing in its rows the
patterns of observations andY be the matrix containing
in its rows the effective values to be predicted.

The PLS method is a modeling procedure that simul-
taneously estimates underlying factors in bothX andY .
These factors are then used to define a subspace inX that
is more adequate to modelY . With PCR [4], the rotation
defined by the eigenvectors is used to find a subspace in
X that subsequently is used to modelY . The approach
taken by PLS is very similar to that of Principal Compo-
nent Analysis (PCA) [11], except that factors are chosen
to describe the variables inY as well as inX. This is
accomplished by using the columns of theY matrix to
estimate the factors forX. At the same time, the columns
of X are used to estimate the factors ofY . The resulting
models are

X = TP +E

Y = UQ+ F

where the elements ofT andU are called the scores of
X andY , respectively, and the elements ofP andQ are
called the loadings. The matricesE andF are the errors
associated with modelingX andY with the PLS model.

The T factors are not optimal for estimating the
columns ofX as is the case with PCA , but are rotated
so as to simultaneously describe theY matrix.

In the ideal situation, the sources of variation inX
are exactly equal to the sources of variation inY , and
the factors forX andY are identical. In real applica-
tions,X varies in ways not correlated to the variation in
Y , and thereforet 6= u (t andu are columns ofT and
U , respectively). However, when both matrices are used
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to estimate factors, the factors for theX andY matrices
have the following relationship:

u = bt+ �

whereb is termed the inner relationship betweenu andt
and is used to calculate subsequent factors if the intrinsic
dimensionality ofX is greater than one. Geometrically,
this states that the vectorsu andt are approximately equal
except for their lengths.

The main advantage of PLS is that it incorporates
more information in the model-building phase.

2.2 The Algorithm

The Partial Least-Squares algorithm, as described in
[1], can be decomposed in the following steps:

1. given a data set for training, a regression model is
built. This is the calibration or training step;

2. given an independent data set, called test set, pre-
dictions are made using the model that has just been
built.

In the following subsections these two steps are ex-
plained.

2.2.1 Model Training

The standard PLS algorithm, as described in figure 1,
uses as the training set then�m matrixX, and then� l
matrixY. Observe thatX contains then observations of
m independent variables.Y contains the corresponding
values for the dependent variables.

At each iteration, the following factors are calculated
regarding the regression model between the scores forX
andY :

1. the weightswi;

2. the regression vector coefficientsbi for the inner re-
lation;

3. the loadings represented bypi.

As already stated, there is a key difference between
PLS and other regression methods [1] such as PCR. Both
methods construct a regression on principal components,
however the model constructed by PLS also uses infor-
mation from the dependent variableY to bias the princi-
pal components. In fact, as we can see in the second and
third lines of figure 1, the weighting factorwi being an
eigenvector ofX>Y Y >X, provides a better quality for
the prediction step.

Standard PLS

for i = 1 to m

R eigenvector ofX>YY>X
associated with the
largest eigenvalue

wi  R=kRk

ti  Xwi

b>
i
 t>

i
Y=t>

i
ti

pi  X>ti

pi  pi=kpik

X X � tip
>
i

Y Y � tib
>
i

end

Figure 1: Standard PLS algorithm.

PLS Prediction

for i = 1 to k
ti  Xwi

y y+ tib
>
i

X X� tip
>
i

end

Figure 2: Standard PLS algorithm for the prediction ofy.

2.2.2 Prediction Step

Given a trained model, obtained as described in the pre-
vious section, one can make predictions by using an in-
dependent data setX. Figure 2 shows the algorithm for
this step. It should be noticed that the number of desired
factors for the prediction is indicated by the variablek.

A common procedure, when determining the optimal
number of factorsk to be used in the prediction, consists
in calculating a statistic for the lack of model accuracy
called PRESS [1] (Prediction Residual Sum of Squares)
which is sum of the squared prediction error usingk fac-
tors. This kind of method [4] uses an independent data
setX with an already known variableY: PRESS is cal-
culated for each value ofk, and the one that yields the
minimum PRESS indicates the recommended number of
factors to be chosen.

3. APLS: Approximate PLS Algorithm

As shown in the previous section, the eigenvector of
the matrixX>Y Y >X associated with the largest eigen-
value must be computed for each desired factor. One
could use neural network techniques such as Hebbian
learning [8], based on a learning rate and thus pro-
viding an iterative algorithm with a convergence crite-
rion. APLS substitute this step by an approximate non-
iterating one.
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3.1 The Algorithm

Let G be the matrixX>Y Y >X. For each factor,
we must find the eigenvectorw of G associated with the
largest eigenvalue.

When Y has only one dependent variable (l = 1)
the matrixG has rank 1 and the corresponding eigen-
vector is simplyX>Y . This eigenvector corresponds to
the unique non-zero eigenvalue(X>Y )>(X>Y ). On the
other hand, whenl � 2 that is not true anymore. Never-
theless, one can decompose the matrixG in the following
way:

G = X>(Y1Y
>
1 + Y2Y

>
2 + � � �+ YlY

>
l )X

and then,

G = X>Y1Y
>
1 X + � � �+X>YlY

>
l
X (1)

whereYi (1 � i � d) corresponds to theith column of
Y . For a simpler notation, we write (1) as

G = G1 +G2 + � � �+Gl

whereGi = X>YiY
>
i
X for i = 1; : : : ; l.

As we can see, the eigenvectorw ofG associated with
the largest eigenvalue is also an eigenvector of the sum of
the l already known matricesGi of rank 1. It is accept-
able that the eigenvectorwi of matrixGi with the largest
eigenvalue�i will have a greater influence onw, and that
eigenvectors having little correlation withwi (towards or-
thogonality) will have little contribution to the sum de-
scribed in (1). It follows that a simple approximation for
w can be obtained through the following scheme:

1. For eachi = 1; : : : ; l, calculate the eigenvectorwi

and eigenvalue�i of Gi given by the following rela-
tions

wi = X>Yi

�i = w>
i
wi

2. Find the eigenvectorw(1) corresponding to the
largest eigenvalue�(1), defined by

�(1) = max
1�i�l

f�ig

3. Calculatew by

w =
lX

i=1

�iwi(w
>
i w(1)) (2)

and apply normalizationw w=kwk.

Equation (2) offers an explicit form for the computa-
tion of w, not requiring any kind of convergence criteria
such as presented by Hebbian learning or PLS.

The results obtained show an algorithm with a com-
petitive quality of prediction and an improved running
time, as will be detailed in the following sections.

4. Running Time Analysis

Let X and Y be(n�m) and(n� l) matrices respec-
tively. For both PLS and APLS, considering the code
presented in Figure 1, we can describe each factor calcu-
lation by the two steps that follows:

1. Compute the eigenvectorw associated with the
largest eigenvalue. This corresponds to the first two
assignments in Figure 1;

2. Compute the regression vector coefficientsb, load-
ingsp and residuals matrices. This corresponds to
the remaining assignments in Figure 1.

Hence, the time complexity of PLS and APLS differ
only in the first step just described.
For PLS, we use the NIPALS algorithm presented in [1],
which is a power method for the largest eigenvector ex-
traction [12]. At each step towards convergence, it is eas-
ily found that aO(nml) time complexity is obtained.
On the other hand, APLS has the sameO(nml) time
complexity.
We can conclude that in the case of NIPALS requiring
only one iteration, the time complexity of both PLS and
APLS are the same. However, this does not occur of-
ten. Usually, NIPALS requires more than 10 iterations to
converge at usual error levels. This makes the APLS ap-
proach faster since it requires no iteration.
In fact, as shown in [12], the error obtained at thekth
iteration of NIPALS for the eigenvector estimatew(k) is
bound by

j sin(�k)j � tan(�0)

����
�(2)

�(1)

����
k

where
cos(�k) =

���w>(1)w(k)
���

and�(1) and�(2) are the largest and second largest
eigenvalues. As we can see, depending of the rate
j�(2)j=j�(1)j the convergence rate can be very slow, mak-
ing the APLS approach relatively faster.

5. Experimental results

We have tested the APLS algorithm on three data
sets. The first one was taken from Kalivas [9]. We used
the data set containing the NIR spectra of100 wheat
samples along with specified protein and moisture con-
tent. Samples were measured using diffuse reflectance
as log (1=R) from 1100 to 2500 nm in 2nm intervals.
Of the 100 spectra, 70 were utilized for training (cali-
bration) and the30 remaining for testing (validation) the
constructed model. Spectra were reduced to contain only
141 response by using every fifth response and then mean
centered.
When comparing the PRESS of the models produced by
standard PLS and APLS we obtained the curves shown in
Figure 3.
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Figure 3: PRESS values for PLS and APLS, data set 1.

25 26 27 28 29 30 31 32 33 34 35
6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

number of factors

P
R

E
S

S
, 
(-

) 
P

L
S

, 
(-

-)
 A

P
L
S

Figure 4: PRESS values of PLS and APLS for data set 1,
around the selected factors.

For a better analysis we plotted in Figure 4 the critical
region containing the optimal number of factors.

As the second data set, we used the light gas oil data
available at Dalhousie University [10]. This set is for the
calibration of light gas oil (and diesel) fuels for hydrocar-
bon content and consists of 115 samples from three sub-
sets for which the spectra over 572 channels have been
obtained. For the calibration and validation matrices we
used the first 70 and remaining 44 samples respectively,
along with the concentrations of the four components in
each sample. Being an outlier, the last sample (115) was
not used.
In Figure 5 we show the performance of PLS and APLS
for the first 100 factors.

Again, for a better understanding, Figure 6 shows a
detailed view in the range of factors from 1 to 10.

As the third data set, we used a set of 30 combustible
samples for which the NIR spectra over 3632 channels
have been measured. Samples were reduced to contain
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Figure 5: PRESS values of PLS and APLS, data set 2.
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Figure 6: PRESS values of PLS and APLS for data set 2,
around the selected factors.

only 363 measures by using every tenth response and then
mean centered. 21 samples were utilized for calibrating
(70% of the set) and the remaining 9 for validating. As
the dependent variables, concentrations of three compo-
nents were used for each sample.

In Figure 7 we show the performance of PLS and
APLS for the first 100 factors.

A detailed view in the range of factor from 1 to 12 is
presented in Figure 8.

As we can see, the results obtained with the APLS
algorithm are very competitive against those of standard
PLS. In Table 1 we summarize our empirical findings.
First the minimum PRESS for both methods are nearly
the same. Second, the chosen number of factors are simi-
lar: for the first data set the best choice is 32 for PLS and
34 for APLS, and for the second data set, 8 factors were
chosen for both models.
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Figure 7: PRESS values of PLS and APLS, data set 3.
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Figure 8: PRESS values of PLS and APLS for data set 3,
around the selected factors.

6. Conclusions

We have presented APLS, an approximate algorithm
for the standard Partial Least-Squares problem. Instead
of computing the eigenvector of the matrixX>Y Y >X
in the case of 2 or more dependent variables, APLS ap-
proximate this result by decomposing the given matrix in
a special way.

We have made experiments with three data sets com-
monly found in the chemometric area, and among the
main characteristics of APLS, we can cite:

1. minimum PRESS found is similar to the one found
by PLS;

2. similar number of factors chosen when compared to
standard PLS;

3. improved running time, since we obtained a 30 %
better time in our experiments.

Table 1: PRESS and Number of Chosen Factors for PLS
and APLS.

Data Set Algorithm Optimal N. Factors PRESS

1 PLS 32 6,12
APLS 34 6,62

2 PLS 8 61,77
APLS 8 61,60

3 PLS 5 184,79
APLS 5 171,09

As we can see, APLS can be considered an alterna-
tive approach to PLS. Furthermore, the parallelization of
APLS is straightforward [13], making it suitable for large
data sets.
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