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Abstract

This paper discusses three structures for neural
control of a flexible link using the Feedback-Error-
Learning technique. This technique aims to acquire the
inverse dynamic model of the plant and uses a neural
network acting as an adaptive controller to improve the
performance of a conventional non-adaptive feedback
controller. The non-collocated control of a flexible link
is characterized as a non-minimum phase system,
which is difficult to be controlled by most control
techniques. Three different neural approaches are used
in this paper to overcome this difficulty. The first and
second structures use a virtual redefined output as one
of the inputs for the neural network and feedback
controllers, while the third employs a delayed
reference input signal in the feedback path and a
tapped-delay line to process the reference input before
presenting it to the neural network.

1. Introduction

There aremany interess in flexible link systems,
principdly in sone fields for instarce the aerospace
industry mainy due t the ue d light-weight
materias in large space structuseard flexible space
robots The use b lightweight structure resits in an
overdl system wih a lowe enery consumgon, faster
operdion ard lowe cost However, tle contrd of
flexible systera ae more dificult to implemen than
the contrd of rigid bodies kecaus the greateinfluence
of unmoddled dynamics caupling dfects structural
nondinearities ard erors in the esimation o physical
parameters.

In this paper we disciss thee structure tha use
neurd netwoik (NN) techniques to contrd a flexible
link system The usag d first ard secord approaches
were proposed by [8] and the usag d third approach
was proposd by [6]. All structures u® a NN in a
contrd stratey known a Feedback-Eror-Learning,
FEL [3] [1]. This strateg utilizes a convetional
feedbak contrdler (CFQ concurertly with a NN
adaptée oniine usirg the ouput of the CFC asits aror
signal The CRC shoutl & least Ie able ¢ staliize the
systen unde contrd when use without the neural
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network. The Feedback-Eor-Learnirg strateg ams to
acquie the inverse dymaics modé of the plant under
control.

One grea difficulty for mog control strategi® when
deding with flexible syster is tte fad¢ that the are in
gener& non-minimum phas plants In the firs and
secord approache this ppblem is surpassk by feed-
backing a redefind outpu of the flexible systemwhich
is al® usel to generat the iput signal fo the NN
contrdler. In the thid approab the nonminimum
pha® characterisc d the plart is dedt by using as the
input for the CRC the compariso between a delayed
refererce imput signal aml the actud output of the
flexible systen while the NN contrdler receives the
refererce signdatfter it has keen fed throudn a tepped-
delay line [4].

This pape is structurd as fdlows: in the second
setion the nordinear mathem#ical model d the
flexible link systen is intraduced and tke experimental
seup is presenta in the third s«dion. In the fourth
sedion ouput redefinitim goproadh for tip postion
contrd is discussedin the fifth sdion the input
delayel approah is investgated in the sixh sedion
somre pelimentd resuls ae presentedard in the last
sedion conclusios ae drawn.

2. Mathematical M odeling

Fig. 1 shows a structue compose o a flexible beam
where one ed is fixed on a rigid rotaing hib ard the
othe end is free The flexible structures exdted by an
actuato at the hib with a togue 1. The structure haa
rigid body amgular displacemenn 6 and & elasic
deformetion y(x,t), wher x is the pogtion o a point
along the beam sud tha 0<x<|I, ard | is the length
of the beam The variable & be contrdled is the total
angula displacemert of the bean tip, v, written as
Viip = 8+ y(1,0)/l.

Considerim |, the hib inettia, r the radiis d the
hul p the mas pe unit of length o one d the flexible
appendagel the lengh o the ppendagem the mas
of the acceleromter a the tip o the flexible link, the
line () and da (.) the patial derivatives with resgd to
space am time, respetively, the kindic energ of the
flexible systen can he epressel in the fdlowing
equdion:
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where E is the modulus of dagticity and | is the aoss
sedional area moment of inertia The assumed modes
method is used to transform the distributed system in a
discrete one. The mode shape function ¢ (X) and the
characteristic equation taken are described in [5].
Applying the generalized Lagrange ejuation

i L %:Q,WheretheLagrangianisL:T—V,
dt oq oq

q=[6n.n,]" (one rigid bady angular displacement
and two elastic modes), and Q=[7r00Q]", results the
following matrix equation for the discrete flexible
system:
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Figure 1 — Schematic of the flexible link

3. Experimental Setup

The eperimental system under consideration is
composed of two flexible appendages attached to arigid
hub at the middie and driven by a brushlessDC motor.
The output of the plant is defined by: 1) a tachometer
and a potentiometer, which measure the hub angular
velocity, 6 , and the hub position, 6, respedively; 2)
one accderometer at the beam tip, which measure the
tip accderation, y(I,t), and by analog integrations the
tip velocity, y(I,t), and the tip displacement, y(I,t);
3) a full strain-gage bridge which measure the dastic
deformation at a known position along the beam. A
cylindrical air-bearing system provides a frictionless
base to the hub and the beam.

4. The Output Redefinition Approach

The output redefinition approach can be performed
by two different schemes. Wang and Vidyasagar ([9])
proposed to use as output of the flexible system the so-
caled reflected tip position (RTP), v, defined as
va=h(0,y(l,t)) = 6 —y(l,t)/l. Later on, Madhavan and
Singh ([2]) proposed a generalized version where the
output is redefined as, va=6+ay(t)/l , where
-1<a< 1 In this more genera version, they showed
that there is a critical value 0 < a* < 1, such that for
a > a* the zero dynamics related to this redefined
output are unstable, and for —1< a <a* the zero
dynamics are stable. Hence an inverse dynamics
controller can be designed to contral the tip position.
The value of a* depends on the payload, and it takes its
small est value when the payload is zero.

In [8] it was proposed two posshle NN structures to
control thetip position of the flexible link system using
the redefined output v, The first structure was call ed
Inverse Dynamic Modd Learning (IDML) and is
shown in Fig. 2. The second structure was called
Nonlinear Regulator Learning (NRL) and is $own in
Fig. 3.

In bath dsructures the CFC control law is
ucfc = KZ(Vr _Va)+K1(vr _va)+KO(Vr _Va)' the

learning rule for the NN is W= yu,, du, / ow, where y
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Figure 2 — Structure of the Inverse Dynamic Model
Learning (IDML)
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Figure 3 — Structure of the Nonlinear Regulator
Learning (NRL)

is the learning rate. The NN output is u, =®(r ,w)

where r, is the NN input and w is the NN weight
matrix. In the IDML structure, the NN input is

calculated as 1, = f,(0,0,y,yv, ). whilein the NRL
structure is r, = f (V, v, v, vV, =v Vv, —v_,0,y,¥).
In bath structures the term v, is the reference input
signal for tip position and the term v, is the redefined
output. A conventional feedback controller is used as an
ordinary controller to guarantee asymptotic stahbility
during the learning period and its output is fed to the
NN as its output error signal. After the learning phase,
the NN should acquire an arbitrarily close model of the
inverse dynamics of the plant. Then one @n say that
the eror equation will give by K,é+K,é+K elO,

where e = v, — v,, which means that the tracking error
e should convergeto zero [§].

These sructures accepted any type of NN like
Perceptrons, CMAC's etc. In this work we used only 3-
layers Perceptrons and the training algorithm used was
BackPropagation. The weights are initialized randomly
between input and hidden layers and zero between
hidden and output layers, in such way that at the
beginning of training the output of NN is zero, so this
procedure avoids to unstabilize the system at the
beginning of training session. Another point used in
training of NN is the learning rate used were small, in
spite of large learning rate speeds up the training, this
can easily unstahili ze the system because @n bring the
NN into regions with no good minima. At all, the
training goes in well-known procedure; the weights are
initi ali zed, the BP algorithm is ran and the results are
obtained; if not a goad result is obtained the procedure
is repeated, if ese then the training is gopped and the
NN is considered learned.
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5. TheInput Delayed Approach

The structure of the adaptive antrol proposed by
[6] is wown in the Fig. 4. The structure originally
proposed by [3] is modified by the introduction of two
basic modifications: a) the high-order differentiators for
the reference signal were substituted by a tapped delay
line of L length; and b) the input reference signal is
delayed by M sampling periods ([4]) before it is
compared with the real tip position of the beam, given
by vip = 8+ y(1,t)/l.

Asaming that the plant is a stable SISO linear
dynamic system with atransfer function G(2), the linear
NN transfer function is given by:

”(Z):ﬁ +tBz .+ B
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<

Asauming that the dosed logp control without
the NN is gable, the polynomias &2 and (2
converge:
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From the structure shown in Fig. 4, onefinds:

cfc |.Z M6 (Z)Gn(Z)JVr (12)

such that if Gy(2) = 2™/G(2), then vi(2)/vi(2) = 2V and
ucfc(z)/ Vr(z) =0

Neural Network

Figure 4 — Structure of input delayed approach

The NN training problem can be seen as an
optimization problem, where the objedive isto oltain a
NN which minimizes the st function J as defined
bel ow:

2= 2ede s, (-0 T via)f E 09

=8, B Bl (14
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The st function, J, will have a unique minimum
if the matrix 92J/0B"? is positive-definite, where:

0°3/op” =E{p(@V; (2|l (2y; (2] }aF' a8

The [ parameters are found by solving the
equations:

F'p =F" = E[(z""'é(z)v:(z))(Lp(z)v:(z))] (17)

which will have a unique solution if the input reference
signal v, has enough exciting properties, such that F
is a positi ve-definite matrix. However, to calculate F '

and F' it is necessry to know the plant transfer
function G(2) and its associated polynomials &2 and
Y(2). Hence as G(2) is unknown, a learning algorithm
with a simple gradient descent search can be used. In
this case, the following learning rule for the parameters
B isderived:

00J O
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Sincethe polynomial (2) is unknown, Rios Neto et
al. ([7]) proposed to use another (maybe guessed)
polynomial as its approximation, such that eg. 18
bemmes:
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6. Experimental Results

Both approaches were tested in a simulation of the
system described in sedion 3. The input deayed
approach was implemented in real time wntral too.

Due to the nonlinear characteristics of the flexible
system as described in sedion 2, the linear NN was not
able to converge to a good approximation of the delayed
inverse dynamics. Therefore a nonlinear multil ayer
Perceptron was used, with input, one hidden and output
layers, and trained by Back-Propagation (BP) algorithm
[10]. The hidden and output network layers used
hyperbdli ¢ tangent and linear functions, respedively.

The variable montrolled was only the hub position.
For the input delayed approach Lingy and Lpigden , the
number of unitsin the input and hidden layers, were 50
and 20Q respedively, while in the IDML structure
Linput = 5 and in NRL structure Linpy = 9. The learning
rate parameters VYinpw and VYhigeen Used by the BP
algorithm were 0.00005and 0.00001 The delay for the
inverse model of the system in the input delayed
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approach (M) was 1. The simulations were performed
with the minimum of variation in the parameters
among the structures, in order to oktain a comparison
with the same base, so the CFC gains and Lridgen » Yinput
and Vhiggen Werethe samein all structures.

These parameters were adjusted empirically, except
the Linp, for IDML and NRL structures. The doice of
the parameters was made mnsidering the properties
and the stahbility of the system, such as the time of
convergence and the final performance

A sine signal was used as the referencewith a period
of 6 s and amplitude euivalent to a oscill atory
movement of +45°. During training, the period of the
sine reference signal was presented 20times. The NN
took from 50s to 80s to converge, depending on the
structure.

Fig. 5 shows the hub position curves at the end of
training sesson for the ases smulated.

Position [V]

117
Time [s]

120

Figure 5 — Hub position curves at the end of training
sesgon

In Fig. 6 it is siowed the hub position error during
the training sesson. Fig. 7, 8 and 9 show the quadratic
mean values (QMV) for the hub position error (E), the
output of the CFC (Ufb), the output of the NN (Unn)
and the montral law (U = Unn+Ufb) for input delayed
approach, IDML and NRL structures, respedively. In
these figures, one observes that in the input delayed
approach the mntral is more influenced by the NN at
the end of training sesson than in the IDML and NRL
structures. This evidences that in this smulation the
inverse model obtained with IDML and NRL structures
were not so close than oktained by the input delayed
approach.

The real contral implemented was only the input
delayed approach. In this implementation, the
sinusoidal reference with a period of 8 s and amplitude
equivalent to a oscill ation of +20° was used. During
training, a period of the sine reference signal was
presented 85 times. The NN took around 200s to
converge to a good solution.
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Figure 6 — Hub position error during the training
sesgon
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Figure 7 — Quadratic mean values oktained from input
delayed approach
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Figure 8 — Quadratic mean values obtained from IDML
structure
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Figure 9 — Quadratic mean value obtained from NRL
structure
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Figure 10- Comparison of the potentiometer and
referencesignal for the PID and PID+NN cases

Fig. 10 shows the input reference signal and output
hub position 8 at the end of the training sesson when
the PID controller is used aone and when is used with
the NN.

Fig. 11 shows the output of the tachometer for the
same two cases at the end of the training sesson. The
tachometer signal for the PID+NN case presents less
harmonic content than when the PID controller was
used alone, meaning that the NN was able to filter out
the higher frequency mode vibration of the beam. The
PID+NN controller gives an output that better
resembl es the sine wave reference input signal showing
a better cancdlation of the flexible system
nonlineariti es.

Fig. 12 shows the QMV of E, Ufb, Unn and U for
the PID+NN case. The QMV were cculated for each
period of the reference signal. This figure shows that at
the end of training sesson, the QMV of Unn converges
to the QMV of the @ntrol signal U, while the QMV of
the CFC output and E are greatly reduced.
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Figure 11- Comparison of the tachometer signal for the
PID and PID+NN cases
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Figure 12- Quadratic mean values of E, Ufb, Unn and
U for the PID+NN case

7. Conclusions

Threestructures for neural control of a flexible link
were presented. In simulation, the input delayed
approach presented better performance, but the size of
the NN was larger (weights matrix between input and
hidden layer was 50x200 elements) than in IDML
structure (5x200 elements) and NRL structure (9x200
elements). Further work is necessary for a better
theoretical and experimental evaluation of structures
contralling the same plant. In other hand, the NRL
structure shows to converge faster than others, as
showed by Fig. 7, 8 and 9. In these figures the QMV of
Unn stabilize in 80 s, 50 s and 40 s, respectively.
Anocther point to be highlighted is the @ntrol law U is
more influenced by Unn in input delayed.

The eperimental results oktained with the input
delayed approach showed that the FEL was able to
learn a good approximation of the delayed inverse
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dynamics of the plant, with the advantage of using the
real tip position instead of a redefined virtual output of
the plant as was proposed in the output redefinition
approach. Effedive control without excessve vibration
was demonstrated by a smoather tachometer signal, as
shownin Fig. 11
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