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Abstract

This paper discusses three structures for neural
control of a flexible link using the Feedback-Error-
Learning technique. This technique aims to acquire the
inverse dynamic model of the plant and uses a neural
network acting as an adaptive controller to improve the
performance of a conventional non-adaptive feedback
controller. The non-collocated control of a flexible link
is characterized as a non-minimum phase system,
which is difficult to be controlled by most control
techniques. Three different neural approaches are used
in this paper to overcome this difficulty. The first and
second structures use a virtual redefined output as one
of the inputs for the neural network and feedback
controllers, while the third employs a delayed
reference input signal in the feedback path and a
tapped-delay line to process the reference input before
presenting it to the neural network.

1. Introduction

There are many interests in flexible link systems,
principall y in some fields, for instance the aerospace
industry, mainly due to the use of light-weight
materials in large space structures and flexible space
robots. The use of lightweight structures results in an
overall system with a lower energy consumption, faster
operation and lower cost. However, the control of
flexible systems are more difficult to implement than
the control of rigid bodies because the greater influence
of unmodelled dynamics, coupling effects, structural
non-linearities, and errors in the estimation of physical
parameters.

In this paper, we discuss three structures that use
neural network (NN) techniques to control a flexible
link system. The usage of first and second approaches
were proposed by [8] and the usage of third approach
was proposed by [6]. All structures use a NN in a
control strategy known as Feedback-Error-Learning,
FEL [3] [1]. This strategy utilizes a conventional
feedback controller (CFC) concurrently with a NN
adapted on-line using the output of the CFC as its error
signal. The CFC should at least be able to stabilize the
system under control when used without the neural

network. The Feedback-Error-Learning strategy aims to
acquire the inverse dynamics model of the plant under
control.

One great difficulty for most control strategies when
dealing with flexible systems is the fact that they are in
general non-minimum phase plants. In the first and
second approaches this problem is surpassed by feed-
backing a redefined output of the flexible system, which
is also used to generate the input signal for the NN
controller. In the third approach the non-minimum
phase characteristic of the plant is dealt by using as the
input for the CFC the comparison between a delayed
reference input signal and the actual output of the
flexible system while the NN controller receives the
reference signal after it has been fed through a tapped-
delay line [4].

This paper is structured as follows: in the second
section the nonlinear mathematical model of the
flexible link system is introduced and the experimental
setup is presented in the third section. In the fourth
section output redefinition approach for tip position
control is discussed, in the fifth section the input
delayed approach is investigated, in the sixth section
some experimental results are presented, and in the last
section conclusions are drawn.

2. Mathematical Modeling

Fig. 1 shows a structure composed of a flexible beam
where one end is fixed on a rigid rotating hub and the
other end is free. The flexible structure is excited by an
actuator at the hub with a torque τ. The structure has a
rigid body angular displacement θ and an elastic
deformation y(x,t), where x is the position of a point
along the beam, such that 0 ≤ x ≤ l, and l is the length
of the beam. The variable to be controlled is the total
angular displacement of the beam tip, νtip written as
νtip = θ + y(l,t)/l.

Considering Ih the hub inertia, r the radius of the
hub, ρ the mass per unit of length of one of the flexible
appendage, l  the length of the appendage, mt the mass
of the accelerometer at the tip of the flexible link, the
line (’) and dot (.) the partial derivatives with respect to
space and time, respectively, the kinetic energy of the
flexible system can be expressed in the following
equation:
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The elastic potential energy is:

(2)

where E is the modulus of elasticity and I is the cross-
sectional area moment of inertia. The assumed modes
method is used to transform the distributed system in a
discrete one. The mode shape function φj (x) and the
characteristic equation taken are described in [5].
Applying the generali zed Lagrange equation
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, where the Lagrangian is L = T – V,

q = [θ η1 η2]
T (one rigid body angular displacement

and two elastic modes), and Q = [τ 0 0]T, results the
following matrix equation for the discrete flexible
system:
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F = [τ 0 0]T (8)

Figure 1 – Schematic of the flexible link

3. Experimental Setup

The experimental system under consideration is
composed of two flexible appendages attached to a rigid
hub at the middle and driven by a brushless DC motor.
The output of the plant is defined by: 1) a tachometer
and a potentiometer, which measure the hub angular

velocity, θ
�

, and the hub position, θ, respectively; 2)
one accelerometer at the beam tip, which measure the
tip acceleration, ),( tly

��

, and by analog integrations the

tip velocity, ),( tly
�

, and the tip displacement, ),( tly ;

3) a full strain-gage bridge which measure the elastic
deformation at a known position along the beam. A
cylindrical air-bearing system provides a frictionless
base to the hub and the beam.

4. The Output Redefinition Approach

The output redefinition approach can be performed
by two different schemes. Wang and Vidyasagar ([9])
proposed to use as output of the flexible system the so-
called reflected tip position (RTP), νa, defined as
νa = h(θ ,y(l,t)) = θ – y(l,t)/l. Later on, Madhavan and
Singh ([2]) proposed a generali zed version where the
output is redefined as, νa = θ + α y(l,t)/l , where
−1 < α < 1. In this more general version, they showed
that there is a criti cal value 0 < α*  < 1, such that for
α > α* the zero dynamics related to this redefined
output are unstable, and for –1 < α < α* the zero
dynamics are stable. Hence, an inverse dynamics
controller can be designed to control the tip position.
The value of α* depends on the payload, and it takes its
smallest value when the payload is zero.

In [8] it was proposed two possible NN structures to
control the tip position of the flexible link system using
the redefined output νa  The first structure was called
Inverse Dynamic Model Learning (IDML) and is
shown in Fig. 2. The second structure was called
Nonlinear Regulator Learning (NRL) and is shown in
Fig. 3.

In both structures the CFC control law is
)(K)(K)(Ku arararcfc νννννν −+−+−= 012
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, the

learning rule for the NN is w/uuw ncfc ∂∂= γ
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Figure 2 – Structure of the Inverse Dynamic Model
Learning (IDML)

Figure 3 – Structure of the Nonlinear Regulator
Learning (NRL)

is the learning rate. The NN output is )w,r(u nn Φ=
where rn is the NN input and w is the NN weight
matrix. In the IDML structure, the NN input is

calculated as ),y,y,,(fr ann νθθ
�

�

= , while in the NRL

structure is )y,y,,,,,,(fr ararrrrnn

�

�

�����

θννννννν −−= .

In both structures the term νr is the reference input
signal for tip position and the term νa is the redefined
output. A conventional feedback controller is used as an
ordinary controller to guarantee asymptotic stabilit y
during the learning period and its output is fed to the
NN as its output error signal. After the learning phase,
the NN should acquire an arbitraril y close model of the
inverse dynamics of the plant. Then one can say that
the error equation will give by 0012 ≅++ eKeKeK

���

,

where e = νr – νa, which means that the tracking error
e should converge to zero [8].

These structures accepted any type of NN li ke
Perceptrons, CMAC's etc. In this work we used only 3-
layers Perceptrons and the training algorithm used was
BackPropagation. The weights are initiali zed randomly
between input and hidden layers and zero between
hidden and output layers, in such way that at the
beginning of training the output of NN is zero, so this
procedure avoids to unstabili ze the system at the
beginning of training session. Another point used in
training of NN is the learning rate used were small , in
spite of large learning rate speeds up the training, this
can easil y unstabili ze the system because can bring the
NN into regions with no good minima. At all , the
training goes in well -known procedure: the weights are
initiali zed, the BP algorithm is ran and the results are
obtained; if not a good result is obtained the procedure
is repeated, if else then the training is stopped and the
NN is considered learned.

5. The Input Delayed Approach

The structure of the adaptive control proposed by
[6] is shown in the Fig. 4. The structure originall y
proposed by [3] is modified by the introduction of two
basic modifications: a) the high-order differentiators for
the reference signal were substituted by a tapped delay
line of L length; and b) the input reference signal is
delayed by M sampling periods ([4]) before it is
compared with the real tip position of the beam, given
by νtip = θ + y(l,t)/l.

Assuming that the plant is a stable SISO linear
dynamic system with a transfer function G(z), the linear
NN transfer function is given by:
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Assuming that the closed loop control without
the NN is stable, the polynomials δ(z) and ψ(z)
converge:
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From the structure shown in Fig. 4, one finds:

( ) ( ) ( ) ( )[ ] r
nM

cfc zGzzzzu νψδ −= − (12)

such that if Gn(z) = z−M/G(z), then νtip(z)/νr(z) = z−M and
ucfc(z)/ νr(z) = 0

Figure 4 – Structure of input delayed approach

The NN training problem can be seen as an
optimization problem, where the objective is to obtain a
NN which minimizes the cost function J as defined
below:

( ) ( )( )( ) 



 −= −

2
*
r

T*
r

M )z(z)z(zzE
2

1
J νβψνδ (13)

[ ]T
L10

* ββββ �= (14)



640

[ ]T
r

L
rr

*
r )z(z)z(z)z()z( νννν −−= �

1 (15)

The cost function, J , will have a unique minimum

if the matrix *22 J β∂∂  is positi ve-definite, where:

( )[ ] ( )[ ]{ } lT*
r

*
r

*22 F)z(z)z(zEJ ∆νψνψβ =∂∂ (16)

The βi parameters are found by solving the
equations:

( )( ) ( )( )[ ])z(z)z(zzEFF *
r

*
r

Mr*l νψνδβ −== (17)

which will have a unique solution if the input reference

signal νr has enough exciting properties, such that 
lF

is a positi ve-definite matrix. However, to calculate 
rF

and 
lF  it is necessary to know the plant transfer

function G(z) and its associated polynomials δ(z) and
ψ(z). Hence as G(z) is unknown, a learning algorithm
with a simple gradient descent search can be used. In
this case, the following learning rule for the parameters
βi is derived:
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Since the polynomial ψ(z) is unknown, Rios Neto et
al. ([7]) proposed to use another (maybe guessed)
polynomial as its approximation, such that eq. 18
becomes:
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6. Experimental Results

Both approaches were tested in a simulation of the
system described in section 3. The input delayed
approach was implemented in real time control too.

Due to the nonlinear characteristics of the flexible
system as described in section 2, the linear NN was not
able to converge to a good approximation of the delayed
inverse dynamics. Therefore a nonlinear multil ayer
Perceptron was used, with input, one hidden and output
layers, and trained by Back-Propagation (BP) algorithm
[10]. The hidden and output network layers used
hyperbolic tangent and linear functions, respectively.

The variable controlled was only the hub position.
For the input delayed approach Linput and Lhidden , the
number of units in the input and hidden layers, were 50
and 200, respectively, while in the IDML structure
Linput = 5 and in NRL structure Linput = 9. The learning
rate parameters γinput and γhidden used by the BP
algorithm were 0.00005 and 0.00001. The delay for the
inverse model of the system in the input delayed

approach (M) was 1. The simulations were performed
with the minimum of variation in the parameters
among the structures, in order to obtain a comparison
with the same base, so the CFC gains and Lhidden , γinput

and γhidden were the same in all structures.
These parameters were adjusted empiricall y, except

the Linput for IDML and NRL structures. The choice of
the parameters was made considering the properties
and the stabilit y of the system, such as the time of
convergence and the final performance.

A sine signal was used as the reference with a period
of 6 s and amplitude equivalent to a oscill atory
movement of ±45o. During training, the period of the
sine reference signal was presented 20 times. The NN
took from 50 s to 80 s to converge, depending on the
structure.

Fig. 5 shows the hub position curves at the end of
training session for the cases simulated.
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Figure 5 – Hub position curves at the end of training
session

In Fig. 6 it is showed the hub position error during
the training session. Fig. 7, 8 and 9 show the quadratic
mean values (QMV) for the hub position error (E), the
output of the CFC (Ufb), the output of the NN (Unn)
and the control law (U = Unn+Ufb) for input delayed
approach, IDML and NRL structures, respectively. In
these figures, one observes that in the input delayed
approach the control is more influenced by the NN at
the end of training session than in the IDML and NRL
structures. This evidences that in this simulation the
inverse model obtained with IDML and NRL structures
were not so close than obtained by the input delayed
approach.

The real control implemented was only the input
delayed approach. In this implementation, the
sinusoidal reference with a period of 8 s and amplitude
equivalent to a oscill ation of ±20o was used. During
training, a period of the sine reference signal was
presented 85 times. The NN took around 200 s to
converge to a good solution.
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Figure 10- Comparison of the potentiometer and
reference signal for the PID and PID+NN cases

Fig. 10 shows the input reference signal and output
hub position θ at the end of the training session when
the PID controller is used alone and when is used with
the NN.

Fig. 11 shows the output of the tachometer for the
same two cases at the end of the training session. The
tachometer signal for the PID+NN case presents less
harmonic content than when the PID controller was
used alone, meaning that the NN was able to filter out
the higher frequency mode vibration of the beam. The
PID+NN controller gives an output that better
resembles the sine wave reference input signal showing
a better cancellation of the flexible system
nonlinearities.

Fig. 12 shows the QMV of E, Ufb, Unn and U for
the PID+NN case. The QMV were calculated for each
period of the reference signal. This figure shows that at
the end of training session, the QMV of Unn converges
to the QMV of the control signal U, while the QMV of
the CFC output and E are greatly reduced.

reference

potPID

potPID+NN
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Figure 11- Comparison of the tachometer signal for the
PID and PID+NN cases

Figure 12- Quadratic mean values of E, Ufb, Unn and
U for the PID+NN case

7. Conclusions

Three structures for neural control of a flexible link
were presented. In simulation, the input delayed
approach presented better performance, but the size of
the NN was larger (weights matrix between input and
hidden layer was 50x200 elements) than in IDML
structure (5x200 elements) and NRL structure (9x200
elements). Further work is necessary for a better
theoretical and experimental evaluation of structures
controlli ng the same plant. In other hand, the NRL
structure shows to converge faster than others, as
showed by Fig. 7, 8 and 9. In these figures the QMV of
Unn stabili ze in 80 s, 50 s and 40 s, respectively.
Another point to be highlighted is the control law U is
more influenced by Unn in input delayed.

The experimental results obtained with the input
delayed approach showed that the FEL was able to
learn a good approximation of the delayed inverse

dynamics of the plant, with the advantage of using the
real tip position instead of a redefined virtual output of
the plant as was proposed in the output redefinition
approach. Effective control without excessive vibration
was demonstrated by a smoother tachometer signal, as
shown in Fig. 11.
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