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Storage of multiple navigation maps using neural networks
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Abstract

We present a way to store and to recall different envi-
ronment navigation maps in a neural network. The model
is built upon the idea that a navigation map can be writ-
ten as the solution of the Laplace’s problem with suitable
boundary conditions applied to obstacles and goals in the
environment. The inherent compression of information
coming from that allows us to have good storage perfor-
mances with a reduced number of synaptic connections.

1. Introduction

Some recent works in robotics have focused on the
use of harmonic potential functions for path planning
[1, 2, 3, 4]. This is an interesting extension of the poten-
tial field technique where a potential is built from the su-
perposition of functions representing obstacles and goals.
The gradient descent in the resulting potential provides a
navigation map.

In the harmonic function method, the solution of the
Laplace’s equation is used in the place of heuristic poten-
tial shapes what brings a series of advantages, the most
important being the absence of spurious minima. There-
fore the harmonic function method provides a complete
algorithm to reach a known goal in a generic environ-
ment.

What is important to us in this work is that the com-
putation of the harmonic functions in a grid involves a
dynamics where the value of the potential in one site is
replaced by the average value of neighboring sites. This
resembles an attractor neural network dynamics in a very
special network - a place-cells network. Place-cells are
pyramidal cells found in the rats hippocampal region that
have its firing activity correlated with the position of the
animal in the environment. [5, 6, 7, 8, 9]. It is believed
that the whole hippocampal region serves as memory de-
vice for topographic maps [10, 11, 12]. Therefore we
propose a bridge between artificial algorithms and bio-
logical models for spatial memory and navigation. In our
analogy, however, the neural activities arising from the

harmonic map represent hitting probabilities [4] instead
of the subject’s position in an absolute frame of refer-
ence. In spite of that, we keep calling them place-cells
because of its inherent property of having activity corre-
lated with position. We pursuit further this idea combin-
ing the place-cell network with a context network to store
multiple environments.

In what follows we describe the harmonic function
method and the complete neural network model that im-
plements it for various environments. Results and per-
spectives are discussed in the end.

2. Harmonic functions method

A harmonic function on a domain
�������

is a func-
tion which satisfies Laplace’s equation	�
 ��
 �� � ��� � 
 ���� � 
�� (1)

In the case of robot path planning, the boundary of
�

con-
sists of the boundaries of all obstacles (

� ���
) and targets

(
� ���

).
In the harmonic functions method the environment

is explored and the positions of obstacles and goals are
stored in a matrix. Each entry of the matrix represents
a point in the environment that is divided in a discrete
lattice, or occupancy grid. The Laplace’s equation (1) is
solved numerically under the constraints that sites with
obstacles have fixed values� � and sites with targets have
fixed values� � , with � ��� � � . The actual values are of
no importance. Here for practical purposes we consider� ��
� �! and � �"
�#$! .

For a two dimensional environment the numerical cal-
culation can be implemented by the dynamics below, also
known as Jacobi’s Method,

� % & '  (! )"
+*, -  �! if obstacle#$!
if target. % & ' ) otherwise

(2)

� % & ' ) is the place-cell activity ( potential ) at the grid
point / , and the input function

. % & ' ) depends on the algo-
rithm we use to solve the Laplace’s problem. For nearest
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neighborsin a squarelattice,thepositionsarewritten as
r 021 3 4 5 6 andwe have7 8 9 1 : 6+0<;=�> ? 8 @�A B 9 1 : 6�C ? 8 D�A B 9 1 : 6C ? 8 B 9 @�A 1 : 6�C ? 8 B 9 D�A 1 : 6 E (3)

If we alsoconsidersecondneighborsit becomes7 8 9 1 : 6+0<;F�> ? 8 @�A B 9 1 : 6�C ? 8 D�A B 9 1 : 6�C ? 8 B 9 @�A 1 : 6C ? 8 B 9 D�A 1 : 6 E�C+;G H�> ? 8 @�A B 9 @�A 1 : 6�C ? 8 D�A B 9 @�A 1 : 6C ? 8 @�A B 9 D�A 1 : 6�C ? 8 D�A B 9 D�A 1 : 6 E (4)

Thereforegenericallywe canwrite7 I 1 : 6J0(K L I M N�O I I M ? I M 1 : 6 (5)

where P r Q R aresumsoverneighborsandtheweights O I I M
are hardwiredaccordingto the topology of the grid, in
suchawaythatthestablestateof thenetworkis asolution
of theLaplaceequation.

Thedynamics(2) clips theobstacleandtargetactivi-
tiesto fixedvaluesandallowsthefreespacecells(whose
position is not occupiedneitherby an obstaclenor by
a target) to relax. The resultingharmonicpotentialim-
printed in the free spacecells activities interpolatesbe-
tweentheobstaclesandthetarget.Thereforethenaviga-
tion mapis obtaineddirectly from thegradientdescentof
theactivities.

3. The Network Model

Therearetwo distinctneuralelementsthatweneedto
consider. Placecells,discussedbefore,representregions
in theenvironment.They arecontinuousneuronswhose
activity, limited between?�S and ?�T , dependson the lo-
calizationof goalsandobstaclesin theenvironment.We
introducea secondsetof neurons- the context neurons.
They arebinaryneuronswhosepattersof activity areas-
sociatedvia synapticlearningwith specificenvironment
configurations,thatarerepresentedby threestatepatterns

U I 0WVX Y C ; if thereis anobstaclein thesite Z[ ; if thereis a goalin thesite ZH
for freespacecells

(6)

Weconsideranetworksystemcomposedof threesub-
networkswith thefollowingproperties:\ Network 1: It is a feed-forwardnetworkthat asso-

ciatesenvironmentpattern] U ^I�_ I ` a A to context pat-
tern ] b ^8 _ 8 c�A B d d d B e .\ Network 2: It is a feed-forwardnetworkthat asso-
ciatescontext pattern ] b ^8 _ 8 c�A B d d d B e to environment
patterns] U ^I�_ I ` a A .\ Network 3: It is anattractornetworkwith local con-
nectionsthat implementsthe dynamicsin equation
(2).

3.1. The network 1 - Context recall

A given environmentcanbe associatedto a specific
internalstate(context) via synapticstrengthening.This
associationcan be obtainedthrough usual supervised
learningalgorithms.Weconsideratrainingsetcomposed
of f environment patternswith correspondingcontext
patterns 1 ] U ^I _ I ` a 4 ] b ^T _ T c�A B d d d B e 6 ^ c�A B d d d B g
The U pattersare hjikh vectorswith componentsl ; or
zero. Sincewe assumethat mostof the environmentis
freespace,they arerathersparse.The b patternsare m -
dimensionalvectorswith componentschosenrandomly
from thedistributionf�1 b 6J0n;G�o 1 b [ ; 6�Cp;Gko 1 bqC ; 6 (7)

Theactivity of a context neuronis givenbyr T 0 r s t 1 7 I 6 (8)

with thelocal field givenby7 T 0uK I+v T I ? I (9)

The synapticweightsare calculatedaccordingto an it-
erative Hebbianmethod(for instanceRosenblatt’sAlgo-
rithm) with correctionsgivenbyw v T I 0�x�1 [ 7 ^T b ^T 6Jy(b ^T U ^I (10)

where x�1 z�6 is the Heaviside’s function. Thenetwork1
enablesa recollectionof a context after a partial explo-
rationof a known environment.

3.2. The network 2 - Environment recall

Contexts in their turn canbeusedasa key to recover
the completeenvironmentconfigurationof obstaclesas
well asthelocationof thetarget. For thatanassociation
betweencontext andenvironmenthasto be stored.This
is the role of the secondgroup of connectionsthat we
call network2. Thesesynapsessendinformation from
context cellsto environmentcell. Theactivity of anenvi-
ronmentcell is givenby{ I 0�|�1 } I 4 ~�6 (11)

with thetransferencefunctionfor threestates|�1 z�4 ~�6J0�x�1 z [ ~�6 [ x�1 [ z [ ~�6
The parameter~ determineswhena given input pattern
hasto beclassifiedasa C ; ,

H
or [ ; . Or, in otherwords,

if a givencontext meansanobstacle,freespaceor agoal
in a given position. To keep ~ independentof learning
thelocal input hasto benormalized,therefore,

} I 0�;� � I � K T v I T r T (12)
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with � ��� � �u� ��� � � � � �
Thelearningproceduresuitablefor teachingathreestates
networkis somewhatdifferentfrom theoneemployedbe-
fore. We usehereanadaptationof theRosenblatt’salgo-
rithm,basedin apiecewiselinearcostfunction(seefigure
1) [13]. For three-statesit reads

� � � � �
�������� �������
��� � � ��������� �J��� �� if � �� � ���� � � ���� � �� � �J�q� �� if � �� � � �¡ � � �q���� � �  ¢ � � if � �� �¤£� � ���� � � �¢ �J¥��q� ��

(13)

wherethe learningparameters
�

definewindows where
theinput field � stayafterlearning.We consider� ¦� �¨§�� © ��ª �� ¦¢ �¨§�� © � ª �

« « « « « «¬ ¬ ¬ ¬ ¬ ¬ ­ ­ ­ ­ ­ ­® ® ® ® ® ®¯ ¯ ¯ ¯° ° ° °
0 λλ− +

}ε

Figure1: Piecewise linearcostfunction.

Thepresenceof theparameter
ª

causelearningto be
moreseverethanwhat is imposedby the trainingsetas-
sociatedwith equation(11). In fact, to learnthe training
set
ª ��£

is sufficient. A finite
ª
, however, allows the

retrieval propertiesto bemorerobustin presenceof addi-
tional noise.Both

©
and
ª

canbeoptimized,for a given
trainingsetandnoise,to producemaximalstorage.

3.3. The network 3 - Navigation map generation

Theplace-cellnetworkintegratestheenvironmentre-
call with the generationof thenavigation map.Anatural
way to do thatis to considerthefollowing dynamics± ���³²�� ´ µ � � µ ¶ © � (14)

wheré
�

is thelocalinputdefinedin equation(5) and � �
is thecontext input definedin equation(12). The trans-
ferencefunctionis²�� ·"� ¸ ¶ © � � �� � ��� if

¸�¹(©·
if
¸�º�» � ©�¶ © ¼� � if
¸�½ � © (15)

Consequentlythe storedenvironmentpatterns� � , serve
asa maskfor theLaplace’s dynamics.

Equation(14) togetherwith (8) and(11) composean
attractorsystemthatstoresnavigationmapsfor multiple
environments. Analytical resultsfor its storageperfor-
manceswill be publishedelsewhere. Herewe areonly
concernedwith thedemonstrationof its plausibility. For
thatwe implementit for storageof simpleenvironments.

Thefigure2 shows thegeneralneuralnetworkarchi-
tecturefor a smallenvironment.

J ar

r aJ

W r r’

a=1...M

N

N

Figure2: Neuralnetworkarchitecturefor a small envi-
ronmentcoveredby ¾n¿�¾ placecellsanda context re-
call networkwith À inputcomponents.

4. Results

Thefigures3 and4 show theactualenvironmentand
the navigation mapcomputedby a neuralnetwork. The
figuresexemplify recallcueby context.

During learningthe environmentpatternswere pre-
sentedin a cyclic fashionand equation(13) was com-
puted,in periodof 30 interactions.In thespecificcaseof
figures3 and4 threedifferentenvironmentswerestored.
The learningparameters

©��Á£ Â Ã
and
ª �Ä£ Â Å

produced
thebestresultsfor storage.

In 3b and4b the black (white) squaresrepresentthe
portionsof theenvironmentrecalledasobstacles(goals)
by thecontext network.Thearrowsrepresentthegradient
descenton theharmonicpotentialcalculatedby equation
(14) usingexpression(3) after300iterationsteps.

5. Conclusions

Theproposednetworkis composedof Æ � ¾ � � À
neurons.But thenumberof synapticweightsscaleslikeÇ ¾ � � À � Å � . More importantlythenumberof modi-
fiable synapsesis equalto Ç ¾ � À . This is unusualin
attractorneuralnetworks,like Hopfieldnetworks,whose
numberof synapsesis alwaysof order Ç Æ � . In fact,
for storageof generic( random) patternsis alwaysbet-
ter to usedthemaximumnumberof synapticparameters
available. In spiteof that, theuseof a lower numberof
synapsesdoesnot reducethenetworkperformancehere.
This is only possiblebecausethepatternsthatinterestus
to storearenot random. They sharean importantprop-
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(a)

(b)

Figure3: Navigationmapfor anenvironmentwith some
obstacles(black rectangles)and a target (white rectan-
gle). (a) The actualenvironment. (b) Navigation map
computedby a neuralnetworkwith ÈÊÉ�ÈÊËÍÌ Î�ÉÏÌ Î
and ÐÑË�Ò Ó .
erty – they are the solutionsof Laplace’s equationfor
Dirichlet’s boundaryconditions. In fact, the boundary
conditions( that describethe environment for us ) de-
terminecompletelythe whole place-cellactivity pattern
thereforeonly theboundaryconditionsareneededto be
stored.This a niceexampleof informationcompression
achievedby a physicalsystem.
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