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Abstract

We present a way to store and to recall different envi-
ronment navigation mapsin a neural network. The model
is built upon the idea that a navigation map can be writ-
ten asthe solution of the Laplace's problem with suitable
boundary conditions applied to obstacles and goalsin the
environment. The inherent compression of information
coming from that allows us to have good storage perfor-
mances with a reduced number of synaptic connections.

1. Introduction

Some recent works in robotics have focused on the
use of harmonic potential functions for path planning
[1, 2, 3, 4]. This is an interesting extension of the poten-
tial field technique where a potential is built from the su-
perposition of functions representing obstacles and goals.
The gradient descent in the resulting potential provides a
navigation map.

In the harmonic function method, the solution of the
Laplace’s equation is used in the place of heuristic poten-
tial shapes what brings a series of advantages, the most
important being the absence of spurious minima. There-
fore the harmonic function method provides a complete
algorithm to reach a known goal in a generic environ-
ment.

What is important to us in this work is that the com-
putation of the harmonic functions in a grid involves a
dynamics where the value of the potential in one site is
replaced by the average value of neighboring sites. This
resembles an attractor neural network dynamics in a very
special network - a place-cells network. Place-cells are
pyramidal cells found in the rats hippocampal region that
have its firing activity correlated with the position of the
animal in the environment. [5, 6, 7, 8, 9]. It is believed
that the whole hippocampal region serves as memory de-
vice for topographic maps [10, 11, 12]. Therefore we
propose a bridge between artificial algorithms and bio-
logical models for spatial memory and navigation. In our
analogy, however, the neural activities arising from the
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harmonic map represent hitting probabilities [4] instead
of the subject’s position in an absolute frame of refer-
ence. In spite of that, we keep calling them place-cells
because of its inherent property of having activity corre-
lated with position. We pursuit further this idea combin-

ing the place-cell network with a context network to store
multiple environments.

In what follows we describe the harmonic function
method and the complete neural network model that im-
plements it for various environments. Results and per-
spectives are discussed in the end.

2. Harmonic functions method

A harmonic function on a domaii ¢ R? is a func-
tion which satisfies Laplace’s equation

d
Vig=Y"
i=1

In the case of robot path planning, the boundarl obn-
sists of the boundaries of all obstacléd’() and targets
(OT¢).

In the harmonic functions method the environment
is explored and the positions of obstacles and goals are
stored in a matrix. Each entry of the matrix represents
a point in the environment that is divided in a discrete
lattice, or occupancy grid. The Laplace’s equation (1) is
solved numerically under the constraints that sites with
obstacles have fixed valugs and sites with targets have
fixed valuesp;, with p; < p,. The actual values are of
no importance. Here for practical purposes we consider
p, = +1 andp; = —1.

For atwo dimensional environment the numerical cal-
culation can be implemented by the dynamics below, also
known as Jacobi's Method,
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Ero (1)

(+1  if obstacle
pe(t+1)=< —1 iftarget (2)
he(t) otherwise

pr(t) is the place-cell activity ( potential ) at the grid
pointr, and the input function,.(¢) depends on the algo-
rithm we use to solve the Laplace’s problem. For nearest



neighborsin a squardattice, the positionsarewritten as
r = (4, j) andwe have

hij(t) %(piq—l,j(t) +pi—1,j(t)
+ pijs1(t) +pi,j—1(t))

If we alsoconsidersecondheighborst becomes

(3)

1
hij(t) = g(pz'+1,j(t)+pi_1,j(t)+pi,j+1(t)
+ pij-1(t) R Pitt,j+1(t) + pict i1 ()
20
+ pi-l—l,j—l(t)‘i‘pi_lyj_l(t)) (4)
Thereforegenericallywe canwrite
(5)

hr(t) = Z Wrr’ Dy (t)
{r")

where(r’) aresumsover neighborsaandtheweightsiv,.,
are hardwiredaccordingto the topology of the grid, in
suchawaythatthestablestateof thenetworkis asolution
of the Laplaceequation.

The dynamics(2) clips the obstacleandtamgetactivi-
tiesto fixedvaluesandallowsthefreespacecells (whose
position is not occupiedneither by an obstaclenor by
a tamget) to relax. The resultingharmonicpotentialim-
printedin the free spacecells actiities interpolatesbe-
tweenthe obstaclesndthetarget. Thereforethe naviga-
tion mapis obtaineddirectly from thegradientdescenbf
theactivities.

3. The Network M odel

Therearetwo distinctneuralelementghatwe needto
consider Placecells,discussedefore representegions
in the ervironment. They are continuousneuronswvhose
actiity, limited betweenp, andp,, dependon the lo-
calizationof goalsandobstaclesn the ervironment. We
introducea secondsetof neurons- the context neurons.
They arebinary neuronswhosepattersof actiity areas-
sociatedvia synapticlearningwith specificervironment
configurationsthatarerepresentedly threestatepatterns

+1 if thereis anobstacldn thesite r
—1 if thereis agoalin thesite r
0  forfreespacecells

px (6)

We considelanetworksystencomposeaf threesub-
networkswith the following properties:

¢ Network 1: It is a feed-forwardnetworkthat asso-
ciateservironmentpattern{p¥ },.c1 to contet pat-
tern{&!'}i=1,. m.

e Network 2: It is a feed-forwardnetworkthat asso-
ciatescontext pattern{¢'};=1 s to ernvironment
patterns{p¥ }vcr1.

¢ Network 3: It is anattractometworkwith local con-
nectionsthat implementsthe dynamicsin equation

().
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3.1. Thenetwork 1 - Context recall

A given ernvironmentcan be associatedo a specific
internal state(contet) via synapticstrengthening.This
associationcan be obtainedthrough usual supervised
learningalgorithms.We considemtrainingsetcomposed
of P ervironment patternswith correspondingcontext
patterns

({phtver & Ya=1, M)p=1,..,P

Thep pattersare N x N vectorswith componentst1 or
zero. Sincewe assumehat mostof the environmentis
free spacethey arerathersparse.Theé patternsare M -
dimensionalvectorswith componentshosenrandomly
from thedistribution

PO =1oE-1)+ Laery @
Theactiity of acontet neuronis givenby
sq = sgn (hy) (8)
with thelocalfield givenby
9)

he = Z Jarpr

The synapticweightsare calculatedaccordingto an it-
eratve Hebbianmethod(for instanceRosenblats Algo-
rithm) with correctiongyivenby

AJar = 6(_]7'5&:5) n gg p# (10)

where©(z) is the Heaviside’s function. The network1
enablesa recollectionof a contet after a partial explo-
rationof aknown ervironment.

3.2. Thenetwork 2 - Environment recall

Contetsin theirturn canbe usedasakey to recover
the completeervironment configurationof obstaclesas
well asthelocationof thetarget. For thatanassociation
betweencontt andervironmenthasto be stored. This
is the role of the secondgroup of connectionghat we
call network2. Thesesynapsesendinformationfrom
context cellsto environmentcell. Theactiity of anervi-
ronmentcell is givenby

my = f(He, A) (11)

with thetransferencéunctionfor threestates
fle,A) =0 —A) —O(—x = ))

The parametery determinesvhena giveninput pattern
hasto beclassifiedasa+1 ,0 or —1. Or, in otherwords,
if agivencontet meansanobstaclefreespaceor agoal
in a given position. To keep A independenbf learning
thelocal input hasto be normalizedtherefore,

1
Hy = T > Jrasa (12)



with

|Jr| = Z (Jra)z

Thelearningproceduresuitablefor teachingathreestates
networkis somevhatdifferentfrom theoneemployedoe-
fore. We usehereanadaptatiorof the Rosenblats algo-
rithm, basedn apiecaviselinearcostfunction(seefigure
1) [13]. For three-state# reads

+O(qt —HE) ek i p =41
_ H - H i Ho—

AJra — G(Hr + 7—l ) 775(1 If pr - 1 (13)
{O(-HE —77)—  dfpt=0

O(HY —7F) } n &l

wherethe learningparameters- definewindows where
theinputfield H stayafterlearning.We consider

Figurel: Piecavise linearcostfunction.

The presencef the parameter causdearningto be
moreseverethanwhatis imposedby the training setas-
sociatedwith equation(11). In fact, to learnthe training
sete = 0 is sufficient. A finite ¢, however, allows the
retrieval propertiedo bemorerobustin presencef addi-
tional noise. Both A ande canbe optimized,for a given
training setandnoise,to producemaximalstorage.

3.3. Thenetwork 3 - Navigation map generation

Theplace-cellnetworkintegrateghe ernvironmentre-
call with the generatiorof the navigation map.Anatural
wayto do thatis to considerthefollowing dynamics

pr = g(he|Hr, A) (14)

whereh, is thelocalinputdefinedin equation5) and /.
is the context input definedin equation(12). Thetrans-
ferencefunctionis

+1 if y>A
glxly,A) = ez i ye -\ (15)
-1 if y<-=X

Consequentlyhe storedernvironmentpatternsp”, sene
asamaskfor the Laplaces dynamics.

Equation(14) togethemwith (8) and(11) composean
attractorsystemthat storesnavigation mapsfor multiple
ervironments. Analytical resultsfor its storageperfor
manceswill be publishedelsavhere. Herewe areonly
concernedvith the demonstratiorof its plausibility. For
thatwe implementit for storageof simpleervironments.

Thefigure 2 shovs the generalineuralnetworkarchi-
tecturefor asmallervironment.
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Figure 2: Neuralnetworkarchitecturefor a small ervi-
ronmentcoveredby N x N placecellsanda context re-
call networkwith A/ inputcomponents.

4. Results

Thefigures3 and4 shaw the actualervironmentand
the navigation mapcomputedby a neuralnetwork. The
figuresexemplify recallcueby context.

During learningthe ernvironment patternswere pre-
sentedin a cyclic fashionand equation(13) was com-
puted,in periodof 30 interactionsIn the specificcaseof
figures3 and4 threedifferenternvironmentswerestored.
Thelearningparameters. = 0.4 ande = 0.2 produced
the bestresultsfor storage.

In 3b and4b the black (white) squaregepresenthe
portionsof the environmentrecalledasobstacleggoals)
by thecontext network. Thearravsrepresenthegradient
descenbnthe harmonicpotentialcalculatedby equation
(14) usingexpression(3) after300iterationsteps.

5. Conclusions

The proposechetworkis composedf L = N2 + M
neurons.But the numberof synapticweightsscaledike
~ N%(M + 2). More importantly the numberof modi-
fiable synapsess equalto ~ N2M. This is unusualin
attractomeuralnetworks like Hopfield networks whose
numberof synapsess alwaysof order~ LZ2. In fact,
for storageof generic( random) patternss alwaysbet-
ter to usedthe maximumnumberof synapticparameters
available. In spite of that, the useof a lower numberof
synapsesloesnot reducethe networkperformancehere.
Thisis only possiblebecausehe patternghatinterestus
to storearenot random. They shareanimportantprop-
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Figure3: Navigation mapfor anervironmentwith some
obstacleqblack rectanglesland a tamget (white rectan-
gle). (a) The actualervironment. (b) Navigation map
computedby a neuralnetworkwith N x N = 30 x 30
andM = 64.

erty — they are the solutionsof Laplaces equationfor
Dirichlet's boundaryconditions. In fact, the boundary
conditions( that describethe ervironmentfor us) de-
terminecompletelythe whole place-cellactiity pattern
thereforeonly the boundaryconditionsare neededo be
stored. This a nice exampleof informationcompression
achieved by a physicalsystem.
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