
Proceedings of the V Brazilian Conference on Neural Networks -V Congresso Brasileiro de Redes Neurais
pp. 541-546, April 2-5, 2001- Rio de Janeiro-RJ-Brazil

541

The Levenberg-Marquardt Method Applied in Nonlinear Dynamic Systems

Silva, A. P. C., Khater, E.
DEMEC/FUNREI

E-mails: lasid@funrei.br, khater@funrei.br

Abstract

This work consist in the identification of nonlinear
dynamic systems using two functions with the
backpropagation algorithm. Four optimization methods
were implemented for a convergence comparation:
Gradient, Momentum, Conjugate Gradient and
Levenberg-Marquardt. The main objective was show, by
the results, that the Levenberg-Marquardt method
presented a better performance in the identification of
the researched systems. Moreover, this work
investigated the influence of the inputs in the network
training performance.

1. Introduction

The modern era of neural networks began with the
pioneering work of McCulloch and Pitt’s (1943).
During the classical period of the perceptron in the
1960s, it seemed as if neural networks could do
anything. But then came the book by Minsky and Papert
(1969), who used mathematics to demonstrate that there
are fundamentals limits on what single-layer perceptron
can compute.

It was need to wait until the 1980s for the solution of
these basic problems to emerge. In 1982 Hopfield used
the idea of an energy function to formulate a new way
of understanding the computation performed by
recurrent networks with symetric synaptic connections.
This particular class of neural networks with feedback
attracted a great deal of attention in the 1980s , and in
the course of time it has come to be known as Hopfield
networks.

In 1986 the development of backpropagation
algorithm was reported by Rumelhart, Hinton, and
Will iams. This algorithm has emerged as the most
popular learning algorithm for the training of multilayer
perceptrons [1].

Since the backpropagation learning algorithm was
first popularized, there has been considerable research
on methods to accelerate the convergence of the
algorithm. This research fall s roughly into two
categories. The first category involves the development
of ad hoc techniques. These techniques include such
areas as varying the learning rate, using momentum and
rescaling variables. Another category of research has
focused on standard numerical optimization techniques
[2].

System identification has an extensive literature. The
first detailed study of this subject using neural networks

appeared in Narendra and Parthasarathy (1990). System
identification is the experimental approach to the
modeling of a process or a plant of unknown parameters
[1].

For linear systems, if the order is known, the
structure of the model can be chosen so that one is left
with the task of parameter estimation. This does not,
however, apply to nonlinear system identification,
where the structure of the model has to be justified.
Since the true system is not known, it must be assumed
that it belongs to a specified set and that the
parameterized model chosen can theoreticall y realize
the input-output behavior of any system belonging to
that class. Presented in this fashion, identification
reduces to a parameter estimation problem [3].

Some of the advantages of using artificial neural
networks as the model for system identification are: (a)
abilit y to approximate arbitrary nonlinear funtionals to
any degree of accuracy; (b) they are adaptive, thus they
can take data and learn from it, often capturing subtle
relationships; (c) they can handle corrupt or incomplete
data, thus providing a measure of fault tolerance; and
(d) they are highly parallel, which allows numerous
independent operations to be executed simultaneously
[4].

The comparation made in this work among the
performance of the optimization methods in the
identification of the two nonlinear functions aim at to
define, by the results, wich of them present a fastest and
more accurate convergence. So that, in futures works
with nonlinear functions it wil l be possible apply
directly the more eff icient method here defined.

2. Backpropagation network

The backpropagation algorithm derives its name
from the fact that the partial derivatives of the cost
function (performance measure) with respect to the free
parameters (synaptic weights and biases) of the network
are determined by backpropagating the error signals
(computed by the output neurons) through the network,
layer by layer [1].

The main advantage of the backpropagation method
is that the theaching performance is drasticall y
improved by the introduction of the hidden layer. On the
other hand, the main disadvantages of the
backpropagation error lie in (a) proper selection of
suitable system parameters which are necessary to
reduce the time of learning and (b) the existence of a
large number of local minima on the solution and the

542

diff iculty in determining the global optimum within it
[5].

The backpropagation algorithm use as performance
index the mean square error and is provided with a set
of examples of proper network behavior [6]:

{ } { } { }qq2211 t,p ..., ,t,p,t,p (1)

output. target ingcorrespond t

network, theinput to p

q

q

−

−

The algorithm should adjust the network parameters
in order to minimize the mean square error. That way,
the first step is to propagate the input forward through
the network. The equations that describe this operation
are:

p, a0 = (2)

()1mm1m1m1m b aW f a ++++ += (3)

for m=0, 2, ..., M-1,

Ma a = (4)

where
p – input vector,
am+1 – output vector of the layer (m+1),
fm+1 – transfer functions of the layer (m+1),
Wm+1 – weight matrix of the layer (m+1),
bm+1 – bias vector of the layer (m+1).

The next step is to propagate the sensitivities
backward through the network:

()(),a-t n F 2- s MMM
�

= (5)

()() ()1mT1mmmm s W n F s ++=
�

(6)
for M-1, ..., 2, 1.

where
sM – sensitivities vector of the last layer. It is the starting
point for the recurrence relationship.
sm – sensitivities vector of a hidden layer.

F
�
 - first derivatives of the transfer function.

Finally, the weights and bias are updated using
optimization algorithms.

3. Optimization methods

This work was done comparing the identification
using four different methods. They were:

3.1. Gradient:

Based on the first-order Taylor series expansion
having low convergence rate mainly in developed fases
of the adjuste process, where the error is small [7].

This algorithm adjusts the wheights in the steepest
descent direction (negative of the gradient). This is the
direction in which the performance function is
decreasing most rapidly. It turns out that, although the
function decreases most rapidly along the negative of
the gradient, this does not necessaril y produce the
fastest convergence. The update is done using the
following the equations:

() () () ,a� �kW1kW
T1mmmm −−=+ (7)

() () .� �kb1kb mmm −=+ (8)

rate learning - α

3.2. Momentum:

This method allows a network to respond not only to
the local gradient, but also to recent trends in the error
surface. Acting li ke a low pass filter, momentum allows
the network to ignore small features in the error surface.
Without momentum a network may get stuck in a
shallow local minimum. With momentum a network can
slide through such a minimum.

This algorithm is obtained increasing a momentum
coefficient in the gradient equation in order to reduce
the output signal ampli tude [6]. The parameters update
equations are:

() () () () ,a s � �-1 - 1-k
� �
 � 1k

� � T1-mmmm =+ (9)

() () () .s � �-1 - 1-k
� �
 � k

� � mmm = (10)

tcoefficien mometum- γ

3.3. Conjugate-Gradient:

Based on the second-order Taylor series expansion.
It doesn’ t require the calculation of the second
derivatives. While in gradient algorithm the search
directions at consecutive iterations are orthogonal, in the
conjugate-gradient is done a sequence of exact linear
searches along conjugate directions [6]. Its update
equations are given below:

 ,p � x x kkk1k +=+ (11)
and

1-kkkk p g- p β+= (12)
where

543

kx - vector that combine the weight matrix and the bias
at the kth iteration.

.at x avaluatedgradient - g

direction.search - p

kk

k

kβ - scalar that can be chosen by different methods.

There are some variations of conjugate gradient
algoritms. The various versions of the conjugate
gradient are distinguished by the manner in which the
constant kβ is computed.

In this work is used the Fletcher-Reeves update,
where kβ is computed by the following form:

1-k
T

1-k

k
T
k

k
gg

gg
=β (13)

3.4. Levenberg-Marquardt:

This algorithm is obtained by a modification in the
Gauss-Newton method.

The weights update in the Gauss-Newton method
is given by:

() ()[] () ()kk
T1

kk
T

k x� xJ xJxJ-
	
 −

= (14)

The Levenberg-Marquardt modification above the
Gauss-Newton method consist in the increment of a
parameter kµ :

() ()[] () ()kk
T1

kk
T

k x xJ I xJxJ- x νµ
−

+=∆ (15)

()
() or.error vect - x

matrix,jacobian - xJ

where

k

k

ν

When kµ is increased it approaches the gradient

algorithm with small learning rate, when kµ is
decreased to zero the algorithm becomes Gauss-Newton
[2].

The algorithm begins with kµ set to some small
value. If a step does not yield a smaller value for the
performance index, the step is repeated with kµ
multiplied by some factor 1>ϑ . Eventually the
performance index should decrease, since we would be
taking a small step in direction of gradient. If a step
does produce a smaller value for the performance index,
then kµ is divided by ϑ for the next step, so that the
algorithm will approach Gauss-Newton, wich should
provide faster convergence [6].

4. Results

In this work the dynamic systems are characterized
by two nonlinear functions.

4.1. First function

The first function used in the identification is
showed below:

() () () ()[]kuf1k0.6yk0.3y1ky ppp +−+=+ (16)

() () () ()u�50.1sinu�30.3sinu�0.6sinuf ⋅⋅+⋅⋅+⋅= (17)

() ()250k / �2sinku ⋅⋅= (18)
k = 1:700.

As a input was used the sinusoid:

() ()250k / �2sinku ⋅⋅= (19)
k = 1:700

As a stop criterion was used na error of 10-5 or
250000 of iterations .

The network architecture was fixed in:
- 1 input layer with 20 neurons.
- 1 hidden layer with 10 neurons.
- 1 output layer with 1 neuron.

The graphics are showing the identification obtained
by the four differents methods.

• Gradient method

0 100 200 300 400 500 600 700
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

inputs

o
u
t
p
u
t
s

 Approximation Function

Figure 1 – Comparation between the target and the
neural network output.

Legend: ____ - target -o-o - network output

544

• Momentum

0 100 200 300 400 500 600 700
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

inputs

o
u
t
p
u
t
s

Approximation Function

Figure 2 – Comparation between the target and the
neural network output.

Legend: ____ - target -o-o - network output

• Conjugate Gradient

0 100 200 300 400 500 600 700
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 inputs

o
u
t
p
u
t
s

Approximation Function

Figure 3 – Comparation between the target and the
neural network output.

 Legend: ____ - target -o-o - network output

• Levenberg-Marquardt

0 100 200 300 400 500 600 700
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

inputs

o
u
t
p
u
t
s

Approximation Function

Figure 4 – Comparation between the target and the
neural network output.

 Legend: ____ - target -o-o - network output

The table 1 presents the datas obtained in the
identification of this function allowing a clearest
comparation of the methods performance.

Table 1: Main results

First Function
Method Error Time Iteration
Grad. 6.78970e-5 26hs 250000
Mom. 4.52908e-5 20hs 250000
Conj. 0.99915e-5 59m 4939
L. M. 0.96726e-5 2m 34

The figures 1 to 4 show the graphics of the
identification provided by the Gradient, Momentum,
Conjugate Gradient and Levenberg-Marquardt methods,
respectively. Analysing these figures it’s possible to
notice that the curves representing the target and the
network output are superposed indicating that was
obtained na approximation in agreement with the
expected. Howerver, according table 1 datas it is
verified that the Gradient and Momentum methods
presented similar results and stoped the training by
reaching the number of iterations defined in the stop
criterion. The Conjugate Gradient and Levenberg-
Marquardt were fastest in this function identification
and both reached the specified error as the stop
criterion. The great gain in the Levenberg-Marquardt
method was in the processing time, wich was
significantly smaller than the others three methods.

4.2. Second function

The second function used in the identification is
showed below:

() () ()[] ()ku 1-ky ,ky f 1ky ppp +=+ (20)

where

() ()[] () () ()[]
() ()1-ky ky 1

2.5 ky1-ky ky
 1-ky ,kyf

2
p

2
p

ppp
pp

++

+⋅⋅
= (21)

and

() ()25k / �2sin ku ⋅⋅= (22)
k=1:102

As inputs were used two vectors 1x102 with
aleatorys elements.

As a stop criterion was used na error of 510− or
1000000 of iterations.

The network architecture was fixed in:
- 1 input layer with 20 neurons.
- 1 hidden layer with 10 neurons.
- 1 output layer with 1 neuron.

The graphics are showing the identification obtained
by the four differents methods.

545

• Gradient method:

0 20 40 60 80 100 120
-1

-0.5

0

0.5

1

1.5

2

2.5
Approximation Function

inputs

o
u
t
p
u
t
s

Figure 5 – Comparation between the target and the
neural network output.

Legend: ____ - target -o-o - network output

• Momentum:

0 20 40 60 80 100 120
-1

-0.5

0

0.5

1

1.5

2

2.5

inputs

o
u
t
p
u
t
s

Approximation Function

Figure 6 – Comparation between the target and the
neural network output.

Legend: ____ - target -o –o – network output

• Conjugate-Gradient:

0 20 40 60 80 100 120
-1

-0.5

0

0.5

1

1.5

2

2.5

inputs

o
u
t
p
u
t
s

Approximation Function

Figure 7 – Comparation between the target and the
neural network output.

Legend: ____ - target -o-o - network output

• Levenberg-Marquardt:

0 20 40 60 80 100 120
-1

-0.5

0

0.5

1

1.5

2

2.5

inputs

o
u
t
p
u
t
s

Approximation Function

Figure 8 – Comparation between the target and the
neural network output.

Legend: ____ - target -o- o – network output

The table 2 present the main datas obtained in
these identifications allowing a better comparation
among the methods.

Table 2: Main results

Second Function
Method Error Time Iteration
Grad. 650.38e-5 22hs 1000000
Mom. 18.59e-5 31hs 1000000
Conj. 608.22e-5 44hs 1000000
L. M. 0.48e-5 12m 311

The figure 5 show the identification provided by the
Gradient method. Analysing this figure it’s possible to
notice that the curves representing the network output
and the target aren’t superposed in all the points. The
table 2 show that this method stoped by reaching the
number of iterations defined in the stop criterion and it
didn’ t reach the error specified.

The figure 6 show the identification provided by the
Momentum method. Observing this figure it is possible
to see that the curves are superposed. However the table
2 show that this method didn’ t reach the specified error
and stop the training by reaching the number of
iterations defined in the stop criterion.

The figure 7 present the identification provided by
the Conjugate Gradient method. Analysing carefull y
this graphic it’s possible to notice that there is a little
deviation in the curves superpose. According datas in
table 2 this method stoped by reaching the number of
iterations defined in the stop criterion and didn’t reach
the error specified.

The figure 8 present the identification provied by the
Levenber-Marquardt method. In this graphic the curves
are superposed. This method reached the specified error
and, moreover, presented a computational cost
significantly reduced in relation to the other three
methods.

546

5. Conclusions

It was verified that the Levenber-Marquardt method
was the most suitable method for the identification of
this two studied functions. It represented a great
redution in the computational cost in relation to the
others three tested methods, reducing the
implementation time and the number of iterations
processed.

It was verified that the use of aleatories inputs
increase the diff iculty in the methods convergence,
because in the second funtion training was need a high
number of iterations and, nevertheless, the specified
error wasn’t reached in the Gradient, Momentum and
Conjugate Gradiente methods. Only the Levenber-
Marquardt method reached the specified error in a
reduced time and number of iterations.

With the objective of analyse the inputs influence in
the network training the two functions were trained with
yours inputs changed, that is to say, the first function
inputs were applied in the second function and vice-
versa. The others parameters were maintained constants.
With the modified inputs the curves of the real and
target output didn’ t superpose and the error was close
10-1 in the two functions showing that the variation of a
single parameter can influence in the all network
identification capability.

The results obtained in this work are na incentive for
the continuity in the performance analyse of the
Levenberg-Marquardt method in others identification
models, so that generalizations could be done in the
sense of define wich parameters are better adaptables
for certain functions classes.

References

[1] Haykin, S. Neural Networks: A Comprehensive
Foundation. Prentice-Hall, 1999, 696p.

[2] Martin, T., Hagan, Mohammad, B. Menhaj. Training
Feedforward Networks with the Marquardt
Algorithm. IEEE Trans. on Neural Networks, v. 5,
n. 2, p. 989-993. November 1994.

[3] Levin, U. Asriel, Narendra, S. Kumpati. Control of
Nonlinear Dynamical Systems Using Neural Networks –
Part II : Observabil ity, Identification, and Control. IEEE
Trans. on Neural Networks, v.7, n.1, p. 30-42. January
1996.

[4] Lou, Kang-Ning, Perez, Ronald A. A New System
Identification Technique Using Kalman Filtering and
Multilayer Neural Networks. Artificial Intelli gence
Engeering , 1996. P. 1-8.

[5] Paul, Chinmoy, Kayaba, Naoki, Morishita, Shin,
Hagiwara, Ichiro. Dynamic System Identification by
Neural Network (A New Fast Learning Method Based
on Error Back Propagation). JSME International Journal,
Series C, v. 38, n. 4, p. 686-692. 1995.

[6] Hagan, T. M., Demuth B. H., Beale, M. Neural Network
Design. PWS Publishing Company, 1996.

[7] Khater, Evaldo. Controle de vibração torcional em
sistemas rotativos usando redes neurais multicamadas.
Campinas: Universidade Estadual de Campinas
(UNICAMP), 1998. 126p. Tese de Doutorado.

