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Abstract

This work consist in the identification of nonlinear
dynamic systems using two functions with  the
backpropagation algorithm. Four optimization methods
were implemented for a convergence comparation:
Gradient, Momentum, Conjugate Gradient and
Levenberg-Marquardt. The main objective was show, by
the results, that the Levenberg-Marquardt method
presented a better performance in the identification of
the researched sysems. Moreover, this work
investigated the influence of the inputs in the network
training performance.

1. Introduction

The modern era of neural networks began with the
pioneaing work of McCulloch and PFitt's (1943.
During the dasdcal period of the perceptron in the
1960, it seamed as if neura networks could do
anything. But then camethe bodk by Minsky and Papert
(1969, who used mathematics to demonstrate that there
are fundamentals limits on what single-layer perceptron
can compute.

It was neel to wait until the 1980s for the solution of
these basic problems to emerge. In 1982 Hopfidd used
the ideaof an energy function to formulate anew way
of understanding the mputation performed by
rearrent networks with symetric synaptic connedions.
This particular class of neura networks with feedback
attracted a great deal of attention in the 198G, and in
the curse of time it has come to be known as Hopfield
networks.

In 196 the development of backpropagation
algorithm was reported by Rumehart, Hinton, and
Williams. This agorithm has emerged as the most
popular leaning algorithm for the training o multilayer
perceptrons[1].

Since the backpropagation leaning algorithm was
first popularized, there has been considerable research
on methods to accderate the mnvergence of the
algorithm. This research falls roughly into two
categories. The first category involves the devel opment
of ad hoc techniques. These techniques include such
areas as varying the leaning rate, using momentum and
rescaling variables. Another caegory of research has
focused on standard numericd optimization techniques
[2].

System identification has an extensive literature. The
first detail ed study of this subject using neura networks
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appeaed in Narendra and Parthasarathy (1990. System
identification is the eperimenta approach to the
modeling of a processor a plant of unknown parameters
[1].

For linea systems, if the order is known, the
structure of the model can be chosen so that one is l€ft
with the task of parameter estimation. This does not,
however, apply to nonlinea system identification,
where the structure of the model has to be justified.
Since the true system is not known, it must be assumed
that it belongs to a spedfied st and that the
parameterized model chosen can theoretically redize
the input-output behavior of any system belonging to
that class Presented in this fashion, identification
reduces to a parameter estimation problem [3].

Some of the advantages of using artificia neura
networks as the model for system identification are: (a)
ability to approximate abitrary nonlinea funtionas to
any degreeof accuracy; (b) they are adaptive, thus they
can take data and lean from it, often capturing subtle
relationships; (¢) they can handle crrupt or incomplete
data, thus providing a measure of fault tolerance and
(d) they are highly parale, which alows numerous
independent operations to be exeauted simultaneously
[4].

The @mparation made in this work among the
performance of the optimization methods in the
identification of the two nonlinear functions aim at to
define, by theresults, wich of them present a fastest and
more accurate mnvergence So that, in futures works
with nonlinea functions it will be possble apply
direaly the more dficient method here defined.

2. Backpropagation network

The backpropagation algorithm derives its name
from the fact that the partia derivatives of the st
function ( performance measure) with resped to the free
parameters (synaptic weights and biases) of the network
are determined by backpropagating the error signas
(computed by the output neurons) through the network,
layer by layer [1].

The main advantage of the backpropagation method
is that the theaching performance is dradticaly
improved hy the introduction of the hidden layer. On the
other hand, the man disadvantages of the
backpropagation error lie in (@) proper sdedion of
suitable system parameters which are necessary to
reduce the time of learning and (b) the eistence of a
large number of local minima on the solution and the



difficulty in determining the global optimum within it
[5].

The backpropagation algorithm use as performance
index the mean square error and is provided with a set
of examples of proper network behavior [6]:

{pl'tl}'{pZ'tZ}' ""{pq'tq}

Py —input tothenetwork,

D)

t, —corresponihg targeoutput.

The dgorithm should adjust the network parameters
in order to minimize the mean square error. That way,
the firg step is to propagate the input forward through
the network. The eguations that describe this operation
are

0 _

a =p,

()
aMl = m+ (W mHom bm+1)

3

for m=0, 2, ..., M-1,

a=aM (4)
where
p —input vedor,
a™! —output vedor of thelayer (m+1),

f™! _transfer functions of the layer (m+1),
W™ _weight matrix of the layer (m+1),

b™? —bias vedor of thelayer (m+1).

The next step is to propagate the sensitivities
backward through the network:

sM =-2fM (nM)(t—a), (5)

sm = gm (nm)(Wm+1)T (Sm+l)
for M-1,...,2, 1.

(6)

where

s" — sensitivities vedor of the last layer. It isthe starting
point for the reaurrencerelationship.

" — senditiviti es vedor of ahidden layer.

F - first derivatives of the transfer function.

Finally, the weights and bias are updated wsing
optimization algorithms.

3. Optimization methods

This work was done @mparing the identification
using four different methods. They were:
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3.1. Gradient:

Based on the firs-order Taylor series expansion
having low convergencerate mainly in developed fases
of the adjuste process where the error issmdl [7].

This agorithm adjusts the wheights in the stegoest
descent diredion (negative of the gradient). This is the
diredion in which the peformance function is
deaeasing most rapidly. It turns out that, athough the
function deaeases most rapidly along the negative of
the gradient, this does not necessarily produce the
fastest convergence The update is done using the
foll owing the equations:

W (k+1) =W (K)-os @) (7)

b™(k +1)=b™ (k)-as ™ (8)

a -learningate

3.2. Momentum:

This method allows a network to respond not only to
the local gradient, but also to recent trends in the error
surface Acting like alow passfilter, momentum allows
the network to ignore small featuresin the error surface
Without momentum a network may get stuck in a
shallow local minimum. With momentum a network can
dlide through such a minimum.

This algorithm is obtained increasing a momentum
coefficient in the gradient equation in order to reduce
the output signal amplitude [6]. The parameters update
equations are;

AWk +1) =y AW (k-1)- [y o " @™, (9)

Ab™(k)=y Ab ™ (k-1)- (L-y Jo s™. (10)

y - mometuncoefficient

3.3. Conjugate-Gr adient:

Based on the seacond-order Taylor series expansion.
It doesn't require the caculation of the sewmnd
derivatives. While in gradient algorithm the seach
diredions at conseautive iterations are orthogond, in the
conjugate-gradient is done a sequence of exact linea
searches along conjugate diredions [6]. Its update
equations are given below:
X1 = Xy Fory Py, 11
and
Pk =- 0k *+ BiPra (12
where



X, - vedor that combine the weight matrix and the bias
at the kth iteration.

p - searcldirection.

0k - gradienavaluatedt x .

By - scdar that can be thosen by different methods.

There ae some variations of conjugate gradient
algoritms. The various versions of the @njugate
gradient are digtinguished by the manner in which the
constant 3, iscomputed.

In this work is used the Fletcher-Reeves update,
where B, iscomputed by the foll owing form:

.
B =2 (13
Ox-19ka

3.4. Levenberg-Marquardt:

This algorithm is oktained by a modification in the
GaussNewton method.
The weights update in the GaussNewton method
isgiven by:

Ay =TI I () a9

The Levenberg-Marquardt modification above the
GaussNewton method consist in the increment of a

parameter [, :

¢ =T )+ T k) @9

where
J(xk ) jacobianmatrix,
v(x, )-error veabr.

When p, is increased it approaches the gradient
algorithm with small leaning rate, when p, is
deaeased to zero the algorithm becomes GaussNewton
[2].

The dgorithm begins with p, set to some small
value. If a step does not yield a smaller value for the
performance index, the step is repeated with
multiplied by some factor & >1. Eventualy the
performance index should deaease, snce we would be
taking a small step in dredion of gradient. If a step
does producea small er value for the performanceindex,
then p, isdivided by § for the next step, so that the

algorithm will approach GaussNewton, wich should
provide faster convergence[6].

4. Reaults

In this work the dynamic systems are characterized
by two nonlinear functions.

4.1. First function

The firg function used in the identification is
showed below:

y, (k+1)=0.3y, (k)+0.6y, (k-1)+f[uk)] (16)
f(u)=0.6sirfe [L)+0.3si(3@ W)+0.1si5@ W) (17)

u(k)=sin(2@ k /250) (18
k = 1:700.

As ainput was used the sinusoid:

u(k)=sin(2@ k /250) (19
k =1:700

As a gtop criterion was used ra error of 10° or
2500 o iterations.

The network architedure was fixed in:
- 1inpu layer with 20neurons.
- 1 hidden layer with 10 neurons.
- 1 output layer with 1 neuron.

The graphics are showing the identification obtained
by the four diff erents methods.
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Figure 1 — Comparation between the target and the
neural network outpuit.
Legend: -target -0-0 - network output
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Figure 2 — Comparation between the target and the
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Figure 3 — Comparation between the target and the

Legend:

neural network outpuit.
-target -0-0 - network output

e Levenberg-Marquardt
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Figure 4 — Comparation between the target and the

Legend:

neural network outpuit.
-target -0-0 - network output

The table 1 presents the datas obtained in the
identification of this function allowing a cleaest
comparation of the methods performance

Table 1: Main results

First Function
Method Error Time Iteration
Grad. 6.78970e-5 |26hs 250000
Mom. 4,52908e-5 |20hs 250000
Conj. 0.99915e-5 59m 4939
L. M. 0.96726e-5 2m 34
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The figures 1 to 4 show the graphics of the
identification provided by the Gradient, Momentum,
Conjugate Gradient and Levenberg-Marquardt methods,
respedively. Analysing these figures it's posshle to
notice that the curves representing the target and the
network output are superposed indicaing that was
obtained na gproximation in agreement with the
expeded. Howerver, according table 1 datas it is
verified that the Gradient and Momentum methods
presented similar results and stoped the training by
reaching the number of iterations defined in the stop
criterion. The Conjugate Gradient and Levenberg-
Marquardt were fastest in this function identification
and bah reached the spedfied error as the stop
criterion. The grea gain in the Levenberg-Marquardt
method was in the processng time, wich was
significantly small er than the others threemethods.

4.2. Second function

The seond function used in the identification is
showed below:

yplk +1)=f |y, (k). y,(k -2+ u(k) (20)
where
_ yp(k) wp(k '1) Ebyp(k)+2'q
Dl e ey @
and
u(k)=sin(2@ [k /25) (22)
k=1:102

As inputs were used two wvectors 1x1(2 with
aleatorys e ements.

As a stop criterion was used ma error of 107 or
10000@ o iterations.

The network architedure was fixed in:
- 1inpu layer with 20neurons.
- 1 hidden layer with 10 neurons.
- 1 output layer with 1 neuron.

The graphics are showing the identification obtained
by the four diff erents methods.



e  Gradient method:
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Figure 5 — Comparation between the target and the
neural network outpuit.
Legend:  -target -0-0 - network output
*  Momentum:
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Figure 6 — Comparation between the target and the
neural network outpuit.
Legend:  -target -0-—0-network output

e Conjugate-Gradient:
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Figure 7 — Comparation between the target and the
neural network outpuit.

Legend: -target -0-0 - network output
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e Levenberg-Marquardt:

Approximation Function
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Figure 8 — Comparation between the target and the
neural network outpuit.
Legend: -target  -0- 0 —network output
The table 2 present the main datas oktained in

these identifications alowing a better comparation
among the methods.

Table 2: Main results

Second Function
Method | Error Time Iteration
Grad. 65038e-5 22hs 1000000
Mom. 18.5%-5 31hs 1000000
Con;. 60822e-5 44hs 1000000
L. M. 0.48e-5 12m 311

The figure 5 show the identification provided by the
Gradient method. Analysing this figure it's posshle to
notice that the curves representing the network output
and the target aren’t superposed in all the points. The
table 2 show that this method stoped hy reaching the
number of iterations defined in the stop criterion and it
didn’t reach the error spedfied.

The figure 6 show the identification provided by the
Momentum method. Observing this figure it is posshble
to seethat the arves are superposed. However the table
2 show that this method didn’'t reach the spedfied error
and sop the training by reaching the number of
iterations defined in the stop criterion.

The figure 7 present the identification provided by
the Conjugate Gradient method. Analysing caefully
this graphic it's possble to notice that there is a little
deviation in the arves superpose. Acoording datas in
table 2 this method stoped by reaching the number of
iterations defined in the stop criterion and didn’t reach
the aror spedfied.

The figure 8 present the identification provied by the
Levenber-Marquardt method. In this graphic the arves
are superposed. This method reached the spedfied error
and, moreover, presented a  computational cost
significantly reduced in reation to the other three
methods.



5. Conclusions

It was verified that the Levenber-Marquardt method
was the most suitable method for the identification of
this two studied functions. It represented a great
redution in the computational cost in relation to the
others three tested methods, reducing the
implementation time axd the number of iterations
processed.

It was verified that the use of aeatories inputs
increase the difficulty in the methods convergence
because in the second funtion training was need a high
number of iterations and, nevertheless the spedfied
error wasn't reached in the Gradient, Momentum and
Conjugate Gradiente methods. Only the Levenber-
Marquardt method reached the spedfied error in a
reduced time and number of iterations.

With the objedive of analyse the inputs influencein
the network training the two functions were trained with
yours inputs changed, that is to say, the first function
inputs were applied in the second function and vice
versa. The others parameters were maintained constants.
With the modified inputs the curves of the red and
target output didn't superpose and the error was close
10" in the two functions sowing that the variation of a
single parameter cen influence in the al network
identification capability.

The results obtained in this work are naincentive for
the ntinuity in the performance aalyse of the
Levenberg-Marquardt method in others identification
models, so that generalizations could be done in the
sense of define wich parameters are better adaptables
for cetain functions classes.
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