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Abstract 
 

This paper describes a one-processing-neuron 
recurrent neural network for application in channel 
equalization using variations on the RTRL (Real Time 
Recurrent Learning ) algorithm for training the neural 
network. The structure is very simple and  its 
computational demand is very low due to the use of only 
one processing neuron in its architecture. Simulation 
results are presented including several cases involving 
BPSK, 8PSK and 16PSK modulation schemes in 
additive Gaussian noise. 
 
 
1. Introdution 
 
1.1. The Equalization Problem 
 

Several digital communication channels, particularly 
those using higher transmission rates are subject to 
intersymbol interference and additive noise. This 
interference is caused by the bandlimited characteristics 
of the channel that causes the spread of the transmitted 
pulses. Moreover, several channels are severely 
disturbed by non-linear distortion as in the case of 
satellite communications, or by the occurrence of fading 
as in mobile communications. Therefore, the use of 
special devices to compensate those disturbances is 
needed. According to the degree of the disturbance, it 
may be necessary to make use of more sophisticated 
techniques in the equalizer design. 
 
1.2. Transmission Modeling 
 

A radio transmission system usually consists of 
three parts. At one end is the transmitter. The transmitter 
accepts information from a source, transforms it into a 
form that can be transmitted and sends it over a Radio 
Frequency (RF) channel. The channel possibly distorts 
the transmitted signal before it reaches the receiver. It is 
then the receiver’s task to decide what signal was 
transmitted, and to turn it into understandable 
information. If everything goes well, the information the 
receiver delivers should coincide with the information 
fed into the transmitter. 

 
 

Figure 1: Components of a Transmission System 
 
1.3. General Structure of an Equalizer  
 

The general structure of a typical equalizer is 
depicted in figure 2. Details on the equalization problem 
and typical structures can be found in [9]. The received 
signal corrupted by additive noise and distorted by the 
channel is filtered or processed by the equalizer and a 
built in decision mechanism produces an estimate for the 
transmitted symbol with a possible delay. 
 

 
Figure 2: The structure of an equalizer 

 
Due to the use modulation the signals involved in the 

transmission model are of complex nature and are 
known as complex envelopes [9]. 
 
2. The Neural Equalizer Structure 
 

Neural networks are being used in many areas of 
engineering and other sciences and represent a 
reasonably new technology that can be used in channel 
equalization. Many communication researchers followed 
that approach and produced successful results using 
neural equalizers [1-6]. Within the field of neural 
networks, recurrent nets can offer very promising results 
as  their inherent time-varying characteristics can 
enhance the properties of a dynamical system 
represented by a recurrent neural network [10]. 

This paper presents a very simple recurrent neural 
network structure with only one processing neuron as 
depicted in  Figure 3. 

The structure may have in fact more than two 
neurons but the second and subequent neurons are the so 
called input neurons and do not process information as 
the first neuron : the processing neuron. The only 
function of the input neuron is to multiply the input by a 
weight w2i (i = 1,N). 
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Figure 3: One Processing  Neuron Recurrent Neuron 
Equalizer  Structure 

 
The neural network architecture may have one or more 
input neurons (receiving the signal to be processed by 
the equalizer) and one processing neuron (the main 
processing unit in the equalizer). The scheme results in a 
computational simple structure and yet efficient in 
equalizing channels as indicated by the simulation 
results. 

The neural input at instant kT (where T is the symbol 
interval) is the signal to be equalized, i.e the channel 
output. The equalized output, i.e. the (processing) neural 
output is given by the equations 

 

 
21 22

2
3

( 1) ( ) ( ) ( ) ( )

( ) ( ( 2) )
N

i
i

s k w k x k w k y k

w k x k i T
=

+ = + +

+ − −∑
 (1) 

 

 
( 1) tanh(Re ( ( 1)))

tanh (Im ( ( 1)))

y k al s k

j h ag s k

+ = + +
+ +

 (2) 

 
 
where tanh(.) is the hyperbolic tangent function, j =  

1− and Real(.) and Imag(.) denote the real and 
imaginary parts of a complex number respectively. 

The equalizer weights { w2i } are obtained by 
training the recurrent neural network using variations on 
the RTRL (Real Time Recurrent Learning) techniques 
[7] based on RTRL training [ 1,8,10 ].  

A summary of the training procedure is given below. 
 Define for the q-th neuron, the sensitivity 
terms,  PRR, PRI, PIR, PII as  
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where the subscripts R and  I denote real and imaginary 
parts respectively. 
 
 The objective function is also defined as 
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where d(k) is the desired symbol (known in the learning 
phase). 
 The recursive equations for (3) are 
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The weight update equation is: 
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where α is the learning rate parameter [10]. 
 

The initial values for the sensitivities are usually set 
to zero. 

 
3. Simulation Results and Conclusions 
 

The neural equalizer described in this paper was 
simulated using representative channel responses. 
Simulations included BPSK, 8PSK and 16PSK  systems 
for several channel responses. The first channel used 
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had a tranfer function in z-transform notation given by  
H1(z) = 1 + 0,7 z-1 ., corresponding to a simple linear 
minimum phase channel with no zeros in the unity 
circle. This channel response was used by Kechriotis et 
all. [1] .For this type of channel linear equalizers 
perform well, particularly those with parameters adapted 
by recursive least squares algorithms [9]. The one-
neuron recurrent neural equalizer  can be viewed  as a 
variation of the RTRL equalizer proposed by Kechriotis 
et all. by the use of training techniques such as the 
teacher forcing method [10] for a faster convergence. 
Basically, this method uses a replacement of the actual 
output of the processing neuron, during training of the 
network, with the corresponding desired response (or 
the target signal) in the computation of the dynamic 
behavior of the network, whenever that desired ouput is 
available. According to Williams and Zipser [11] the 
beneficial effects of teacher forcing are possibility of 
faster training and corrective mechanism during training.   

Training can be achieved using only 50 or 100 
symbols in contrast of 2000 used in [1]. The results were 
obtained based on 500 different realizations using 104 
symbols for each value of SNR . The weights were 
initialized to small random values with a maximum 
value of 10-3 and a learning rate of 0.5. The bit error 
rates are shown in figure 4. Other results, for BPSK 
only, are shown in figure 5  for a partial response 
channel having a double zero on the unit circle with 
H2(z) = 1 -2z-1 + z-2. This response was also used in [1].  
It can be seen that the one-neuron equalizer despite its 
very simple structure performs quite well compared to 
standard equalizers using RLS (Recursive Least 
Squares)  techniques that might need as many as 20 taps 
in their structure. In all cases the equalizer used 3 input 
neurons plus the processing neuron yielding a structure 
with 4 neurons. 

For future developments on the present paper, the 
author is working on the equalization problem using a 
structure similar to the one here presented for time 
varying channels using WSS-US (Wide Sense Stationary 
– Uncorrelated Scattering) channel models which are 
very suitable for modeling time-varying channels. This 
application is of high interest  for cellular 
communications environments. 
 
 

 
 

Figure 4: Bit Error Rate for Channel Response 
H1(z)=1+0.7z-1 

 
 
 

 
 

Figure 5: BER for Channel Response 
H2(z-1)=1-2z-1+2z-1
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