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Abstract 
 
This work presents a method for non-linear fuzzy 

model identification. The main characteristic of the 
method is the automatic determination of the number of 
fuzzy sets in the domain of each input variable and the 
further optimization of their location by a gradient 
descent algorithm. The output rule parameters are also 
optimized by a Least Square Error minimization. The 
fuzzy sets are determined in such a way that the 
resultant fuzzy rule base is readable by domain experts. 
The methodology is applied to numerical examples 
found in the literature. 

 

1 Introduction 

Several methods for identification of fuzzy models 
have been reported in the literature ([1] [2] [3] [4], 
among others). Whatever the fuzzy model type, the 
model parameterization requires to determine the fuzzy 
sets that will be used to describe the considered 
variables. In the fuzzy literature, the structure 
identification problem is often restricted to this specific 
task. It means that the variable selection is previously 
done using conventional techniques.  

This paper presents a fuzzy model identification 
method where the fuzzy model structure is defined 
automatically and further optimized by a gradient 
descent algorithm. The model output parameters are 
computed by Least Square Error (LSE) optimization.  

The global strategy is based on an incremental 
building of the rule base that results in a good 
compromise between numerical precision and 
readability. Furthermore, no assumption is made 
concerning the model granularity, i.e. the number of 
input fuzzy sets. 

The remainder of this paper is organized as follows: 
the next section introduces fuzzy systems and presents a 
vector-matrix formulation of fuzzy reasoning. In section 
three, the structure identification method is presented for 
SISO systems. The optimization of fuzzy sets location 
and the optimization of rules output parameters are also 
described. Finally, the method efficiency is illustrated 
through four numerical examples found in the literature. 

 

2 Fuzzy Models 

2.1 Preliminaries and notation 
For many applications, the mathematical 

representation of natural language concepts through 
fuzzy sets is done by the definition of a base variable 
x , whose domain RX ⊂  is the numerical support 
where concepts can be expressed 

Fuzzy sets allow a meaningful representation of 
concepts (often vague, uncertain or imprecise) expressed 
in natural language. A fuzzy set is defined as: 

( ){ }XxxxA A ∈= ,)(,~ µ  (1) 

where X is the universe (often the numerical support) 
and ]1,0[: →XAµ  is the function that denotes the 

membership of an element Xx ∈  to the fuzzy set A~ .  
The values Xx ∈  are described using ordered 

linguistic terms that belong to a descriptor set 
{ }mAA ,,1 !=A . The meaning of each term A∈iA  

is given by the fuzzy set iA~ .  
The collection of fuzzy sets used to describe the base 

variable forms a fuzzy partition { }mAA ~,,~~
1 !=A  of the 

base variable domain. It allows a fuzzy discretization [5] 
of the base variable domain. In this work, it is assumed 
that strong fuzzy partitions are used: 

Xxxi Ai
∈∀=∑ ,1)(µ . (2) 

Furthermore, as the aim of this work is the 
identification of fuzzy models that can be interpreted by 
domain experts, it is considered that the membership 
functions are triangular-shaped1 and normalized in such 
a way that: 

1)(,, 00 i
=∈∃∀ xXxi Aµ . (3) 

Strong normalized triangular fuzzy partitions are 
completely determined by the location of the triangle 
vertices. A fuzzy partition A~  can thus be parameterized 
by the set { }maap ,,1 !=A , whose elements can be 
viewed as prototypes (best representatives) of the fuzzy 
sets forming partition A~  (see Figure. 1). Trapezoidal 

                                                           
1 Notice that triangular-shaped membership functions are inherently 
convex. 
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membership functions are used for the two fuzzy sets at 
each end of the domain, as shown in Figure. 1, to deal 
with off-limit points. 
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Figure. 1: Triangular shaped membership functions. 
The structure identification of a fuzzy model aims to 

determine the number and location of prototypes that 
define the fuzzy partition over the domain of each 
variable. Actually, it consists in determining the 
partition granularity. The greater the number of fuzzy 
sets in a fuzzy partition, the smaller the granularity is. 
The representation is then more precise but less 
convenient for linguistic interpretation. The granularity 
is thus related to the generality or precision of the fuzzy 
description. 

2.2 TSK fuzzy systems 
A very popular fuzzy model is the one introduced by 

Takagi, Sugeno and Kang [6][7], often called the TSK 
fuzzy model in the fuzzy system literature [4]. In the 
simplified or zero order TSK fuzzy model, the rule 
conclusions are stored in a column vector θθθθ  and the 
rules for SISO (Single Input Single Output) systems are 
written as: 

if  iAisx   then   iy θ=ˆ . (4) 

For an input Xtx ∈)( , the output of a zero order 
TSK fuzzy model is computed by the vector expression: 

.θ.θ.θ.θ)()(ˆ tty w= . (5) 
where ( )))((,)),(()(

1
txtxt

mAA µµ !=w  are the vector 
whose components are the fire strengths of rule 
premises [4] and ( )mθθ ,,1 !=θθθθ t is the parameter 
vector. 

The extension of the method to MISO (Multiple 
Inputs Single Output) models is achieved by considering 
the input variables as components of a vector. The rules 
are written as: 

If  irri AisxandandAisx ...11  then  iy θ=ˆ . (6) 
where ( )Mθθ ,,1 !=θθθθ  is the parameter vector whose 
components are the outputs of TSK rules 

All the combinations of terms in the premises must 
be considered in such a way that the model is complete, 
i.e. it produces an output for whatever input values. The 
MISO fuzzy model described by rules like (6) is 
analogous to the SISO fuzzy model described by rules 
like (4). Its output is computed as in  (5):  

.θ.θ.θ.θ)()(ˆ tty w= . (7) 
were ( )Mθθ ,,1 !=θθθθ  and each component of the fire 
strength vector is computed as: 
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(8) 

The TSK fuzzy model is often called neuro-fuzzy 
model in the literature, since the zero order TSK model 
is equivalent to a radial basis neural network [4]. The 
ANFIS neural network is an implementation of the first 
order TSK model in a neural network like topology. In 
ANFIS, the number of rules are fixed by the expert, the 
location of fuzzy sets are optimized by a gradient 
descent algorithm and the output parameters are 
computed by the solution of the LSE problem. 

In next section, a structure identification method is 
presented were where the fuzzy model structure is 
defined automatically and the further optimized by a 
gradient descent algorithm and the model output 
parameters are computed by LSE optimization 

3 Fuzzy model identification 

Generally, fuzzy model identification methods 
follow the three generic steps stated in the introduction: 
structure identification, parameter estimation and model 
validation.  

The structure identification of a fuzzy model consists 
of the determination of the model type and the number 
and location of fuzzy sets in the domain of each 
variable. The model parameters are generally associated 
with the rule base. The model validation must check the 
model precision, but also must certify that the model is 
readable by domain experts. 

For rule base parameter estimation, recent methods 
fall into a Least Square Error (LSE) minimization 
problem [8][2][4]. From this point of view, 
identification of fuzzy systems is close to classic non-
linear model identification. 

The problem of structure identification of a fuzzy 
system is much more difficult. When available, the 
expert knowledge may be used to fix the number of 
fuzzy sets associated to each variable. In such a case, the 
optimization of the parameters that determine the 
location of fuzzy sets is computed by non-linear 
optimization [8]. Some methods use the back 
propagation algorithm in a neural network-like 
formulation of the fuzzy system [8] [4]. Such methods 
have some drawbacks related to non-linear optimization, 
such as the dependency on initial conditions. Besides the 
resulting fuzzy sets may not be meaningful for domain 
experts. 

When no a priori knowledge is available, most 
methods use training data clustering for the 
determination of the model structure [1][9][3]. Several 
clustering techniques have been reported in the literature 
(such as Fuzzy c-Means and Fuzzy ISODATA), but 
results are very dependent on the choice of some 
parameters and, again, on the number of clusters (fuzzy 
sets) to represent each variable. Yager and Filev [4] 
have developed a clustering method where the number 
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and location of clusters are computed by the value of a 
distribution function defined over pre-defined cluster 
center candidates.  

An other methodology for fuzzy model structure 
identification, which is not based on data clustering has 
recently been developed [10] [11]. The method begins 
with a model with only two fuzzy sets to represent each 
variable. In the refining phase, new fuzzy sets are 
created at each iteration over the variable domain, and 
rule base parameters are computed. The iterative process 
continues until a specified tolerance is achieved.  

The next section describes the basic ideas of the 
structure determination for SISO model identification. 
The fuzzy sets location optimization and the parameter 
optimization are then described. 

3.1 Structure identification 
For the sake of simplicity, the structure identification 

method is presented for the SISO case. Consider a 
training set T composed by N pairs )(, tyx , 
where ( ))()( txfty = . The objective of the identification 
method is to build a fuzzy system to compute an 
estimation ( ))(ˆ)(ˆ txfty = , which minimizes the Mean 
Square Error (MSE) criterion, defined as: 

( )∑∑
==

−==
Nt

N
Nt

N tytytJ
..

21

..1

21 )()(ˆ)(ξ  (9) 

where N is the number of points in the training set and 
( ))()(ˆ)( tytyt −=ξ  is the residual at each point. 

The structure identification aims to determine the 
prototype set { }maap ,,1 !=A  whose elements define 

the fuzzy partition A~ . The parameter identification 
aims to compute the parameter vector θθθθ  whose 
components are the outputs of each rule.  

The idea of the structure determination is to identify 
a set of learned points TP ⊂  where for each element 
( ) Pi ∈ϕα , , )( ii f αϕ =  defines a TSK rule as (4), 
where iia α=  is the prototype of the triangular 

membership function of the fuzzy set iA~  and ii ϕθ =  is 
the corresponding rule output. Once ( ) Ti ∈ϕα , , the 
fuzzy model output will have a null residual for all 
learned points. The convergence of the method is based 
on the fact that for TP ≡ , the fuzzy model will have a 
null residual for all training points. 

The process starts with the definition of the set of 
input variable domain limits { }21 ,ωω=Ω . In the SISO 
case min1 x=ω  and max2 x=ω . At initialization 
(iteration 0=κ ), the domain limits are used as the 
prototypes of the two first fuzzy sets of the model: 

{ } { }maxmin21 ,,)0( xxaap ===κA  (10) 
which defines the two first rules: 

If  1Aisx   then   1ˆ θ=y  
If  2Aisx   then   2ˆ θ=y  

(11) 

In the same way, the corresponding output values are 
used as the first two rules output: 

( ) ( ))(),(,)0( 2121 afaf=== ϕϕκθθθθ . (12) 
The membership functions of the two limit fuzzy sets 

are trapezoidal to take into account off-limit points 
(Figure 2). All other membership functions generated by 
the algorithm will be triangular. 
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Figure 2: Initial fuzzy sets. 

The limit points are included into the set of learned 
points: 

( ) ( ){ }21 ,;,=)1( ϕαϕακ =P  (13) 
where 11 a=α , 22 a=α , )( 11 af=ϕ  and )( 22 af=ϕ .  

In the refining phase, the process becomes iterative; 
while the mean square error (9) does not reach a 
specified tolerance, the method will search for a new 
point to be included in the set of learned points. In a 
generic iteration κ  with p learned points, the point 
( ) 1, +pϕα  to be included in the set of learned points is 
the farthest point in the training set with respect to the 
approximation error function [10] computed as: 

( ) ( )2

..1
1 )(maxarg, t

Nt
p ξϕα

=
+ = . (14) 

The point ( ) 1, +pϕα  computed as (14) defines a new 
rule as (4). In the new iteration, the prototype set is 
updated, including the new learned point:  

{ }1)1()( +∪−= ppp ακκ AA . (15) 

The prototype set must be reordered so that the 
prototype vector is in a strict ascending order. For 
instance, Figure 3 shows the introduction of the first 
learned fuzzy set into the fuzzy partition A~ . 
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Figure 3: New fuzzy set. 

The set of components of the output parameter 
vector is updated to include the rule output 
corresponding to the new learned point and it is 
reordered in such a way that each component 
corresponds to the rule output associated to each learned 
prototype. 

The global identification error (9) is computed for 
the new model. The iterative process continues until the 
global error is smaller than the specified tolerance. Next 
section presents the optimization of the fuzzy sets 
location in the input variable domain. 

3.2 Structure optimization 
The structure identification method presented gives, 

at each iteration, a rough idea of the number of fuzzy 
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sets required to build the fuzzy model. Further structure 
optimization can be achieved by moving the fuzzy sets 
location in order to reduce the MSE criterion (9).  

The ANFIS system [4] is a neuro-fuzzy systems that 
implements TSK fuzzy models in neural networks. The 
ANFIS adaptation algorithm considers fixed number of 
rules and optimizes output parameters and fuzzy sets 
location in a hybrid algorithm that combines LSE 
minimization and back-propagation (gradient descent) 
non-linear optimization.  

In this work this approach is used within the 
structure identification algorithm. The prototype vector 

( )maak ,,)( 1 !=αααα , whose components are the elements 
of the prototype set, represents the fuzzy sets location 
parameters. In the gradient descent algorithm, the update 
rule is given by: 

)()()1( kJkk ∇−=+ ηαααααααα  (16) 
where k is a generic iteration of the gradient descent 
algorithm; η  is the step length2 and )(kJ∇  is the 
gradient of the MSE criterion with respect to the 
prototype vector, which is computed as: 

( )∑
=

−=∇
Nt

N kd
tydtytykJ

..

1

)(
)(ˆ

)()(ˆ)(
αααα

 
(17) 

In SISO models, the derivative of the output vector 
is computed as (see (5)): 

.θ.θ.θ.θ
αααααααα )(

)(
)(
)(ˆ

kd
td

kd
tyd w

=  
(18) 

where Jacobian matrix of the fire strength vector is 
computed as: 
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By using a formulation of the membership function 
is used in such a way that strong fuzzy partitions (3) are 
always obtained as shown in Figure 4, the membership 
function )(x

iAµ  of the fuzzy set iA~  is computed as: 
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Figure 4: Fuzzy set formulation. 

In the structure identification method the trapezoidal 
fuzzy sets in the domain limits are not optimized. In this 

                                                           
2 The step length of the gradient descent algorithm is often called 

learning rate in the neural networks literature. 

case, only a few elements of the Jacobian matrix (19) 
will be different from zero and: 
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The derivatives of the membership functions with 
respect to parameter that represents the center of the 

triangle 
)(
))((
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i
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∂

 and 
)(
))((

ka
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i

i
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∂

 will never be different 

from zero simultaneously. This avoids the problems that 
could arise by the fact that the triangle membership 
function is not continuously differentiable.  

The extension of the structure optimization 
procedure for MISO models is achieved by considering 
the combination of membership functions in (8). 

3.3 Parameter optimization 
The fuzzy model identification algorithm aims to 

determine the prototype set that defines the fuzzy 
partition for each variable and the rule output parameter 
vector θθθθ . 

Consider the matrix mNI ×∈W  that stores the fire 
strenth of all points in the training set, such that: 
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where M is the number of all premise term combinations 
of the SISO model rules. The matrix W is often called 
regressors’ matrix in the system identification literature 
[12]. 

The parameters θθθθ  in (7) are computed by the 
minimization of the residual norm. When the quadratic 
normis used thi optimization problem is known as the 
Least Square Error (LSE) problem [13] 

2min yW −θθθθ
θθθθ

, (25) 

Robust algorithms for the solution of the least square 
problem can be obtained from the singular value 
decomposition (SVD) of the regressors' matrix [13]. 

The parameter optimization is combined with the 
gradient descent learning as in ANFIS adaptation in a 
hybrid-learning rule. In each iteration k of the gradient 
descent algorithm used to update fuzzy sets location 
parameters (the prototype vector) is followed by LSE 
minimization to identify the linear output parameters. 

The extension of the above presented structure and 
parameter optimization method for MISO systems is 
straightforward. 
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4 Applications 

Two numerical examples found in the literature are 
used in this section to illustrate the performance of the 
presented approach. The data for the two examples are 
derived from real processes. 

Example 1: This example deals with the modeling of 
human operator control in a chemical plant. The data 
provided in [14] contain 70 data points with 5 input 
variables and one output. To avoid the “curse of 
dimensionality” due to the number of input variables, 
the most important variables were selected to build the 
model. A general discussion on the selection of input 
variables in fuzzy modeling, (and in this particular 
problem), can be found in [14]. According to the 
regularity criterion presented by Sugeno and Yasukawa 
[14], the input variables 2u  and 3u  were selected to 
build the fuzzy model in this example. The training data 
are thus composed by samples in the form ( ))(),( tytx , 
where [ ])()()( 32 tutut =x  and )(ty  is the output 
variable. 

A very simple fuzzy model obtained at the 
initialization phase, with only 4 rules and no learned 
points, is shown in Figure 5. 
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Figure 5: Initial model. 

The meanings of the terms “small” and “big” for 
each variable are given by the fuzzy partitions of 
variables 2u  and 3u , as shown respectively in the left 
and right top graphs in Figure 5. The output variable 
values in the training set and the fuzzy model 
approximation are plotted as a function of time in the 
lower part of Figure 5. 

This model already gives acceptable results. A more 
precise result, obtained with a fuzzy model described by 

20=M  rules shown in Figure 6. It can be noted from 
Figure 6 that the learned points are located in the region 
where the approximation has the greatest error. This is 
the main characteristic of the structure identification 
method, which allows an automatic discretization of the 
input variable domain. 
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Figure 6: Final model. 

Example 2: This example is the well-known Box & 
Jenkins data set, where the system to be modeled is a 
gas furnace [15]. The original data set is composed of 
296 pairs, where the input variable is the methane 
concentration (the airflow is kept constant) and the 
output variable is the 2CO  concentration.  

This data set has been used to evaluate several 
system identification methods, but the data have not 
always been used in the same way. For a comparative 
study, the discrete formulation used by [11] has been 
used here. A prediction model was built using some past 
outputs of the system as model inputs. In this example, 
the original, one input data set, has been converted into 
a two input data set. Each training point is thus 
expressed in the form ( ))(),( tytx , where 

( ))1(),3()( −−= tytutx .  
A first model containing 36=M  rules has been 

generated with the modified data set (Figure 7). As in 
the previous example, the fuzzy partitions obtained for 
both input variables (respectively )3()(1 −= tutx  and 

)1()(2 −= tytx ) are shown respectively in the left and 
right top graphs in Figure 7. The output variable values 
in the training set and the fuzzy model approximation 
are plotted as function of time in the lower part of 
Figure 7. 

Figure 7: Results with 36=M . 
To allow a direct comparison with the results 

presented by [11], a model described by 90=M  rules 
was also generated. The number of rules M and the 
Mean Squared Error (MSE) (9) of the models obtained 
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in the present approach as well as the models presented 
by [11] and other authors are shown in Table 1. 

It can be seen that the results obtained by the present 
approach are much better than those obtained in [11]. 
The present approach allows the generation of a model 
described by 36 rules that has a better performance than 
the 90-rule model provided by Nakoula and al. [11]. 

Table 1: Comparison of the results. 

Method M MSE 
Box and Jenkins [15] - 0.710 
Tong [16] 19 0.469 
Xu and Lu [17] 25 0.328 
Wang and Langari [9] 5 0.158 
Nakoula and al. [11] 90 0.175 
Present 36 0.153 
Present 90 0.090 

5 Conclusion  

A method for structure and parameter optimization 
of fuzzy models has been proposed. The main 
characteristic of the method is the automatic 
determination of the number of the fuzzy sets and the 
optimization of the location of the vertices of their 
triangular membership functions in the domain of each 
input variable. The structure identification method, 
which is not based on clustering techniques, is original 
and quite simple. The resulting model can be written 
either as a TSK rule base allowing a model linguistic 
interpretation. 

The main contribution of this work is the extension 
of the identification algorithm to allow the optimization 
of the fuzzy sets location by a gradient descent 
algorithm. The contribution of this work can also be 
seen as an extension of the ANFIS neuro-fuzzy system 
to allow automatic determination of the fuzzy system 
structure. 

The applications show that the improvement 
suggested in this work allows a much better performance 
of the identification algorithm. 

The structure determination and the optimization of 
rule output parameters are separated. If more precision 
is required, more complex fuzzy models such as first 
order TSK models can be used.  

The perspectives of this work include the extension 
of the method to the identification of multi-dimensional 
fuzzy sets in the input variable domain. 
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