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Abstract

We present behavioraly active, self-growing neural
mechanisms for pattern categorization based on multi-
feature extraction that can be used in (real-time) robotic
applications. By using these mechanisms, robot agents
are able to learn a pattern representation for different
regions detected in a restricted environment and also to
categorize already known (learned) patterns. As a prac-
tical result, the robotic agents, doted with an attentional
mechanism, are able to perform a visual monitoring task
of their underlying space. That is, they are able to con-
struct attentional maps of the environment, and to keep
the maps consistent with a current perception of the scene
dealing in an efficient manner with new or already known
pattern representations.

1. Introduction

We propose the use of neural mechanisms for discrim-
inating objects in a scene based on a model that extract
multi-features from input sensory data. Data reduction
and abstraction combined with self-growing classifying
mechanisms for categorization are the key ingredients of
the system, allowing it to be applied in robotic agents that
operate in real-time environments. Our interest topics are
objects (or sometimes regions of interest) in a restricted
robot environment. Attention control and pattern catego-
rization will be employed as a basis to provide interac-
tion between the robot and the environment. By using a
previously developed attentional behavior [6], our robotic
system is able to foveate (verge) its eyes (cameras) onto
aregion of interest, to maintain attention on the region as
needed, and to shift its attentional focus when the current
region is no more of interest. In this work we deal with
the problem of improving its performance in pattern cat-
egorization behavior. We show experiments and demon-
strations involving a visual monitoring task. The goal is
to learn how to construct attentional maps of the environ-
ment, learning the characteristics of all present objects,
dealing with new or already known categories. After such
a world representation is constructed the robotic agent
can perform other tasks involving atttention and pattern

463

recognition. Based on the pattern categorization behav-
ior, we developed a pure reactive system, that chooses ac-
tions based on its reduced and abstracted perceptual state
rather than by using a geometric model, as in classical
robotics. Moreover, we developed an active behavioral
strategy which provides a way to interact with dynamic
environments in real-time.

2. Background and Related Work

Several new approaches have been suggested using
multi-feature extraction as basis for perception [1, 2]. In
general transfer functions gather information from multi-
feature maps abstracting data and promoting recognition
or identification behaviors. Viola [3] provides a good
approach based on Bayesian theory to construct com-
plex features from images in a hierarchical network that,
after some training, is able to recognize objects given
the projections (images) of them. Rybak et al. [4] de-
scribe an interesting approach for recognition, suggest-
ing a sequential search for verifications of image frag-
ments whose contents are processed in parallel. Rao and
Ballard [5] provide a set of operators based on Gaussian
partial derivatives for feature extraction, which are mo-
tivated by biological models. In past work [6] we pro-
vided an interesting anpratically workingfeature based
model for perception. In relation to the above works
our model includes an improved (practically feasible) set
of features extracted from real-time sequences of stereo
images. For categorization we used appearance-based
(semi-invariant) features abstracted from Gaussian oper-
ated images plus stereo and motion patterns as input to an
associative memory. The last was implemented by using
a multi-layer perceptron trained with a back-propagation
algorithm (BPNN) [7]. In the current work we present
improvements over the previous mechanism used for cat-
egorization [6]. Besides the BPNN approach, we include
experiments using a self-organizing map (SOM) [8] with
a self-growing mechanism. We describe how features are
extracted from the images and are mapped into an address
of the long term memory, by using both SOM and BPNN
approaches. We present comparisons and points to their



main advantagesand problems. An interestingcharac-
teristic of bothmechanismslsointroduceds their self-
growing capabilities. By usingthis ability, the system
memorystartswith no knowledge,discorersnew repre-
sentationgn automaticway, and self-updates/gres its
networkasnecessaryo dealwith a currentlyknown set
of objects.

3. Environmentsand data abstraction

We usesensorydataprovidedby two platformsin the
experiments. The first, alsousedin [6], is a “BiSight”
stereoheadthat canbe seenin the top of the humanoid
torso“Magilla” presentedn Figurel. It consistf two
videocamerasnountedbna TRCBiSightheadproviding
four mechanicatlegreesof freedom(DOF): pantilt, left
vergence,andright vergence.Imagesfrom eachcamera
inputinto a pipelinedarray (image)processo(IP) from
“Datacube”. This dedicateddevice, ableto performim-
ageprocessingoperationdn real-time(up to 30 frames
persecond)js usedmainly to reduceandabstractata.

Figurel: Currentconfigurationof UMASS Torso.

Besidegheabove data,we includeexperimentausing
datafrom the simulatedrobot“ Roger-the-C'rab”, seen
in Figure2. As canbeseenin bottomof Figure2, Roger
hastwo unidimensionafetinascomposedf 256 pixels
each.Eachpixel valueis calculatedoy usinga Phongil-
luminationmodelfollowedby a Gaussiamoiseprocess.
This assertsa morenaturalretinalimageandalsosimu-
latesacquiringerrors. Hapticssensorydatais alsocom-
putedin caseRogeris graspingan object. An arbitrated
objectmassand the proprioceptve information relative
to thearmconfigurationis mappedo armtorqueandve-
locity necessaryo lift the object(from which the object
weightcanbe calculated).

In this work context, the main experimentsinvolve
the constructiorandmaintainancef an attentionalmap
of the ervironment. Cateyorization behaior is one of
the basic requirementsfor this task, that is, to iden-
tify/recognizethe patterngepresentingachregion of in-
terestto fill the mapswith correctinformation. Figure
3 shows the main aspectof the systemarchitecturefor
this task. Briefly, input from eachsensoris abstracted
to constructa perceptual buf fer (featuremaps).These
featuresareusedasa patternactivation codein a central
associative memory which matcheghe propertiego a
long term memory(LTM) addressThis LTM hasstored
(or will storefor new objects)all informationaboutthe
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Figure2: Roger-the-Crab andits 1D retinas.

ervironment/objectsThelearning supervisor module
operatesautomaticallyfor eachnew patterndetectedn
theenvironment,increasingheassociatie andlongterm
memorieswith the new patterncodes. The attentional
mechanisnmoperatesasedon the currenttask parame-
tersandon resultsof catgorizationbehaior. It selects
a new action, eventually changingthe currentattention
window (topicof interestlandcalculatingthemovements
to beappliedto the DOFsto attendthe new position.The
seno controllersusetheseparameterto effectively bring
thesystemo anew pose.Thisputsanew setof informa-
tion in the sensorybuffers, re-startingthe cycle (feature
extraction).We describemainly thepartof thesystenre-
latedwith the catgorizationbehaior (associatie mem-

ory).
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Figure3: Systemcontrolarchitecture

3.1 Data Reductionand Abstraction

We provide data reduction by using a multi-
resolution (MR) representationbtainedrom ourrobot
retinas.In simulationit is composef threelevelsof 32
pixelseachandin the stereoheadof 4 levels of 64x64.
TheseMR imagesarecomputeddy applyingmearfilters
ontheoriginal capturedor simulatedymages.Two MR
representationare computedfor eacheye, onefor fur-
therextractionof Gaussiarfieaturesandanotherobtained



from the differencebetweertwo consecutie frames,for
furtherextractingmotionfeatures.

Figure4: MRMF matrices.

A multi-feature (MF) representationver the pre-
vious MR imagesprovides data abstractionto support
high-level behaiors asattentioncontrol andcateyoriza-
tion. Theresultis a multi-resolution-multi-feature
(MRMF) representatioras in Figure 4, for the stereo-
head. The first six columnimagesare Gaussiarpartial
derivativesof gray-level intensityimagesandthelasttwo
arederivativesof framesdifferencerepresentingnotion.
To generatehe Gaussiarpart of this MF representation,
the above MR intensityimagesare convoluted with the
Gaussiarerivative kernelsgivenby:

GO (z) Aeaw”
GW(z) = 2are?™) g (1)
GO (z) = 2aXe™” (2022 + 1)

where (z) € [-s,+s]; a = =5, A = U\/%_W o =
{0.7,1.7,2.9},ands = {3, 5, 7}. Ourrepresentatiofor
motion featuresis computedby applyingthe samefirst
Gaussiamlerivative to the previousMR motionrepresen-
tation. This helpsreducingnoise.In the sterecheadthe
dedicatedP device (Datacubefancomputethe MRMF
atarateof 15framespersecondthusachieving real-time
performancaecessaryn our system.

Following this phaseanattentionaprocesghatis not
relevant to describehere computesattentionalfeatures
from the aborve setanddirectsthe robotsto a tarmget re-
gion.

3.2 Feature Vectorsfor Categorization
Oncetherobotis “looking” to aregion, we compute
from the abose mapsthe featuresetfor cateyorization:
intensity, texture, shape, motion, size, andweight.
Eachintensity vector7*) (thesubscriptc” denoteat-
egorizationbehaior), madefor resolutionlevel £, is cal-
culatedasanaveragein thevicinity of thecorresponding
Gaussiamesponsg(¥). Eachcomponenbf thetexture
vector7T!*) is the variancein the vicinity of a Gaussian
responseln a similarway, eachshapevectorsék) is the
variancein thevicinity of stereodisparity(ng)). Stereo
disparity is computedin the previous attentionalphase
usingthe above secondorder Gaussianntensity G(2).
Motion Mik) is anaveragein the vicinity of the magni-
tudeM®) of theabore MR motionimage alsocomputed
in the previous attentionalphase.We extract the size of
an objectby using edgedetectorga segmentationpro-
cess)in simulationor by using normalizedmomentsin
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the sterecheadimages.Analogouslytheweight(only in

simulation)is extractedfrom thearmssensorsAll of the
above featuresare normalized. As a resultof the above

averagingandvariancefeaturematchings moretolerant
of scaling,rotation,andshift.

4. Categorization Behavior

We usedtwo typesof classifiersn theexperimentgo
provide catgorizationbehaior: aback-propagationeu-
ral networkanda self organizingmap (SOM) [8]. They
are self-groving, that means,we seta thresholddeter
mined empirically to tell whethera representatioris a
new one;if theactivationfor agivenpatternis below this
value thelearning supervisor modulecanbeautomat-
ically invokedinsertingthenew featuresetinto LTM and
updating(creatingnenv nodes/BPNNor neurons/SOM)
and retrainingthe BPNN or SOM classifier Note that
in this situation(noidentificationat agiventrial), anarm
or eventhe eyescanbe movedto geta bettersensoryre-
sponse.In fact, after a certain(small) numberof trials,
the representatioganbe classifiedasnew or identified,
thenthe currentpositionin the attentionalmapscanbe
updatedandattentionafocuschanged.

4.1 The Back-propagationClassifier

The BPNN is a feed-forwardand totally connected
multi-layer perceptron. Activation propagategorward,
that meansfrom the input layer, to the hidden(or inter-
mediate)ayer(s),thento the outputlayer. The acquired
knowledgeis codifiedin thesynapsegor weights)in each
connectionbetweenthe network unities (nodes). The
weightsare adjustedby a training process. The activa-
tion obtainedin the lastlayerdeterminesn answermep-
resentingthe activation obtainedby the whole network.
The BPNN algorithmis currentlywell definedandmore
detailscan be found in works like [9, 10, 7]. Figure5
shaws the structureof the BP netusedhere. It hasone
input nodefor eachinput feature. The numberof nodes
in theoutputlayerchangeslynamicallyby usingtheself-
growing mechanisma new nodeis createdor eachnew
representatiodetected A weightedfunctionof the min-
imum andmaximumerrorduring trainingis usedasthe
thresholdo defineif arepresentatiois newv. Thenumber
of hiddennodesis determinedcempirically. Actually, 1.5
timesthe numberof outputnodesgivesgoodresults.

One
Output
for each
Object

Input
Features

Figure5: Topologyof BPNN used.



4.2 SelfOrganizing Maps

We furtherimplementedhe associatie memoryus-
ing a network basedon the self-olganizingmap intro-
ducedby Kohonen[8]. The networkembedsa compe-
tition paradigmfor dataclusteringby imposingneigh-
borhoodconstrainton the outputunits, suchthat a cer
tain topologicalpropertyin the input datais reflectedin
the output's unit weights.The Euclideandistances con-
sideredas the measureof similarity (dissimilarity) and
the winning neuronis the one with the largestactiva-
tion (the lowestdistance).The updatingprocedurdakes
into accounthe neighborhoodunction,in orderto self-
organizethe network aroundthe winner. Inter-neuron
connectiongssurdateralplasticityto presere thetopol-
ogy of themap(we have choserarectangulatopology).
TheKohonemetworkmovesthe neurongowardsthein-
put probability distribution. In a first stage(off-line) the
netis trainedwith a few objectsby presentingeachab-
stractedieatureandselectingthe winnerneuron.Thisis
madeto roughlyapproximateheinput probability distri-
bution of thefeaturevectors.Thenthewinner'sneighbor
hoodis adaptedn orderto move eachneuron(weighted
with a Gaussiariunction)towardstheinput vector Dur-
ing the on-line stage the quantizatiorerror measurean
eachinput vectorcontrolsthe growing process.Related
worksongrowing Kohonens maphave beenproposedn
[11, 8]. Theallocationprocesf new recognitioncodes
(codebooksis controlledby athresholdvaluethatis em-
pirically found. Thealgorithmcanbe summarizedsfol-
lows:

1. Initialize randomlyall thecodebookvectorsm;; for
i=1,...,Nandj = 1,...., M (MxN is the sizeof
themap);

2. Givenaninputvectorz find thewinnerc asfollows:

| 2 = me |= mini{[| x — m; ||}

3. if thedistancas lessthana certainthreshold

¢ thenadaptthecodebookhewinnerm,
me(t —1) = me(t) + a(t)[z(t) — me(t)]

whereq is thelearningrateparameter

e otherwisefind the secondbestneuronm; and
allocatea new neuronmy, ., = .

Every time a nav neuronis allocated,n reality we allo-
cateanew row or columnbasednthepositionof thetwo
closestneuronswith theinput vectorz. The codebooks
of the othernew neuronsallocatedareinitialized based
ontheinterpolationvectorfoundasfollows:

Mpew = AMc + (1 - )\)mk

5. Experiments and Results

In the experimentaltests both approachebsave been
appliedto the monitoring task with acceptableesults.
Basically mary instancesandtypesof objectsareplaced
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Figure6: Activationsfor objectsin BPNN.

on a table,for the sterechead,or in theroomrepresent-
ing Rogefs work-space. By using the attentionalbe-
havior, our robotic agentsareableto focus attentionon
selectedregions/objectsthus the catgorization beha-
ior canlearntheir characteristicinsertinga representa-
tion for eachonein the systemmemoryandincremen-
tally construct/updatattentionaimaps.In the simulation
platform,if anobjectis notidentifiedonly by visualin-
formation,an arm movementcanbe doneto try anim-
provementin theinformationset(saymeasuringhe ob-
jectweight).

20 B

Training time (sec)

0 1‘0
) Number of objects
Figure7: Trainingperformance.

Figure6 shavs confidencdor theBPNN (simultane-
ousactivationsin its lastlayer), for the objecttypesseen
in Figure2. For eachinstancethe upperline is the high-
estactivation (objecton ideal or learnedpose).The next
line is the lowestactivation yet allowing identification.
Objectposesveredegradedwhenviewed from Roger’s
eyes.Wecouldverify thatrotationsupto 30degreeswere
well supportedoy the system.We note somepartialac-
tivation denotingsomeambiguity betweensmall-circles
andbig-circles,but still underathreshold thusallowing
to discriminatethem.

Several experimentsveredoneto testtheassociatie
memory(BPNN) performance.Figure 7 shavs a graph
with trainingtime in secondsllustrating performances
thenumberof objectsincreasesActually, thisresultwas
obtainedusinginput vectorscomposeaf 112featuresn
the stereoheadplatform. The graphshavs SThenean
apparentlysoft exponentialfunction, a characteristicof
the BP model. In practice,this issuedoesnot compro-
mise the systemperformanceas a model of short-term,
working memoryof ten objects(lessthan 3 sec)seems
guiteacceptableAlso, in apracticalsituation thesystem
would save the synapticweightsandnetworkconfigura-
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c3

Cc1

Figure8: Initial andfinal (SOM) 1D mapsfor raw scat-
tereddata(dueto spaceeasonshottommapis shovnin
2D).

tion (alsotheattentionakues)for futureuse.After acer
tain time, the probability of finding a nev objectwould
beverysmall,notinterferingin systemperformance.

To testthe SOM confidencewe initially conducted
someexperimentsusingraw scattere&ndnotwell com-
porteddata,obtainedfrom Roger’s retinas. We useda
1D mapin orderto grow thenetwork.Ontheoveralleval-
uation,the SOM hasattendedour expectationsn these
initial experimentswith only afew problems.Topof Fig-
ure 8 shaws theinitial phasen which the mapis trained
with few data. Bottom of Figure 8 shaws the final map
with 18 neuronsafter the presentatiorof the abstracted
featuresfor unknown objects. Dueto spacereasonghe
resultinglD mapis shavn in 2D. Becausef usinga 1D
map and of the bad quality of the data(class“f” hasa
very sparsadistribution), aswe canseein the Figure8,
a thresholdwas not a goodcompromiseo allocatenew
neurons. As a result, class“f” wasbrokeninto several
subclasses.

C1

c2

GS] . t2 . c3 C3

Figure9: Growing procesgor the2D map.

Besideghesadnitial experimentswe conductedther
experimentsusingwell comporteddata. In this casethe
SOMworkedwell. With atime performanceaignificantly
betterthanthe BPNN and with almostsameprecision.
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Top of Figure9shavs the a first stagein which the map
is organizedandtrainedwith a few data. Note the clear
orderingmechanisnof the classifiedobjects.Thereafter
thenetworkgrows every time thatanew patterndoesnot
satisfy the thresholdin the Euclideanspace. We usea
2D mapto grow the SOM network. Bottom of Figure9
shaws the final map (36 neurons)after the presentation
of unknavn abstractedeatures.Thetime spentto learn
or classifyeachnew patternpresenteds constanandcan
be ngglected. Sincethe neuronsare ordered just a few
iterationsfor updatinganexisting codebookis neededo
refineit (somel or 2 miliseconds).
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Figure11: Numberof updatesn attentionaimaps

Someevaluationof the algorithmsappliedto a same
ervironment (with the samelight definitions, and the
sameobjects)are shawvn in figure 10, for the simulator
Roger. By using the SOM approachthe systemhas
performeda few morepositiveidentificationgof already
known objects)andafew lessnew-objectdetectionshan
the BPNN approach. Figure 11 shavs anotherevalu-
ation for the numberof map updatesrealizedby using
both approachesSlightly differentresults with bothap-
proachesilternatingoositionin thegraphswereobtained
from otherexperimentsn which thesystenrunsuntil no
more new representationsere detected. Thesediffer-
encesveredueto thethresholdchoserto decidewhether
a representatiorns a nev one. As a practicaldemon-



stration,Figure 12 shovs someselectedpicturesof a se- of featuregsmall)would beusedby the systemjmprov-
guencein which Rogercateyorize all regions/objectsn ing performance We remarkthat othertop-dowvn atten-
its ervironment. tional tasks(for example,searchfor an object)canalso
be formulatedusingthe samemodel.We have testedand
succesfullyusedthe toolsin our basicreal-timerobotic
application,thusallowing it to be appliedin othergen-

< Jhl . W @< & eral, on-line tasks. Finally, anotherpossibility of future
f‘ Lo, o Y| f‘ cx, | work s to testbothapproacheasingamoving fovearep-

resentatior(currently our foveais definedin the image
center). Note that this would save time by avoiding the
executionof physicalmovementsbut, a problemis that
it may degradecateorizationprecision,dueto moreim-
agedistortions.
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In thiswork we tried to give afull setof featuresand
let our classifyingtools useit for cateyorization. An im-
provementcould be doneby usingsomelearningstrat-
egy for featurediscriminability. In this way, the bestset

468



