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Abstract

We present behavioraly active, self-growing neural
mechanisms for pattern categorization based on multi-
feature extraction that can be used in (real-time) robotic
applications. By using these mechanisms, robot agents
are able to learn a pattern representation for different
regions detected in a restricted environment and also to
categorize already known (learned) patterns. As a prac-
tical result, the robotic agents, doted with an attentional
mechanism, are able to perform a visual monitoring task
of their underlying space. That is, they are able to con-
struct attentional maps of the environment, and to keep
the maps consistent with a current perception of the scene
dealing in an efficient manner with new or already known
pattern representations.

1. Introduction
We propose the use of neural mechanisms for discrim-

inating objects in a scene based on a model that extract
multi-features from input sensory data. Data reduction
and abstraction combined with self-growing classifying
mechanisms for categorization are the key ingredients of
the system, allowing it to be applied in robotic agents that
operate in real-time environments. Our interest topics are
objects (or sometimes regions of interest) in a restricted
robot environment. Attention control and pattern catego-
rization will be employed as a basis to provide interac-
tion between the robot and the environment. By using a
previously developed attentional behavior [6], our robotic
system is able to foveate (verge) its eyes (cameras) onto
a region of interest, to maintain attention on the region as
needed, and to shift its attentional focus when the current
region is no more of interest. In this work we deal with
the problem of improving its performance in pattern cat-
egorization behavior. We show experiments and demon-
strations involving a visual monitoring task. The goal is
to learn how to construct attentional maps of the environ-
ment, learning the characteristics of all present objects,
dealing with new or already known categories. After such
a world representation is constructed the robotic agent
can perform other tasks involving atttention and pattern

recognition. Based on the pattern categorization behav-
ior, we developed a pure reactive system, that chooses ac-
tions based on its reduced and abstracted perceptual state
rather than by using a geometric model, as in classical
robotics. Moreover, we developed an active behavioral
strategy which provides a way to interact with dynamic
environments in real-time.

2. Background and Related Work
Several new approaches have been suggested using

multi-feature extraction as basis for perception [1, 2]. In
general transfer functions gather information from multi-
feature maps abstracting data and promoting recognition
or identification behaviors. Viola [3] provides a good
approach based on Bayesian theory to construct com-
plex features from images in a hierarchical network that,
after some training, is able to recognize objects given
the projections (images) of them. Rybak et al. [4] de-
scribe an interesting approach for recognition, suggest-
ing a sequential search for verifications of image frag-
ments whose contents are processed in parallel. Rao and
Ballard [5] provide a set of operators based on Gaussian
partial derivatives for feature extraction, which are mo-
tivated by biological models. In past work [6] we pro-
vided an interesting andpratically workingfeature based
model for perception. In relation to the above works
our model includes an improved (practically feasible) set
of features extracted from real-time sequences of stereo
images. For categorization we used appearance-based
(semi-invariant) features abstracted from Gaussian oper-
ated images plus stereo and motion patterns as input to an
associative memory. The last was implemented by using
a multi-layer perceptron trained with a back-propagation
algorithm (BPNN) [7]. In the current work we present
improvements over the previous mechanism used for cat-
egorization [6]. Besides the BPNN approach, we include
experiments using a self-organizing map (SOM) [8] with
a self-growing mechanism. We describe how features are
extracted from the images and are mapped into an address
of the long term memory, by using both SOM and BPNN
approaches. We present comparisons and points to their
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main advantagesand problems. An interestingcharac-
teristicof bothmechanismsalsointroducedis their self-
growing capabilities. By using this ability, the system
memorystartswith no knowledge,discoversnew repre-
sentationsin automaticway, and self-updates/grows its
networkasnecessaryto dealwith a currentlyknown set
of objects.

3. Envir onmentsand data abstraction
Weusesensorydataprovidedby two platformsin the

experiments. The first, alsousedin [6], is a “BiSight”
stereoheadthat canbe seenin the top of the humanoid
torso“Magilla” presentedin Figure1. It consistsof two
videocamerasmountedonaTRCBiSightheadproviding
four mechanicaldegreesof freedom(DOF):pan,tilt, left
vergence,andright vergence.Imagesfrom eachcamera
input into a pipelinedarray(image)processor(IP) from
“Datacube”. This dedicateddevice, ableto performim-
ageprocessingoperationsin real-time(up to 30 frames
persecond),is usedmainly to reduceandabstractdata.

Figure1: Currentconfigurationof UMASSTorso.

Besidestheabovedata,weincludeexperimentsusing
datafrom the simulatedrobot “

���������
- 	�
 � - � ��
�� ”, seen

in Figure2. As canbeseenin bottomof Figure2, Roger
hastwo unidimensionalretinascomposedof 256 pixels
each.Eachpixel valueis calculatedby usinga Phongil-
luminationmodelfollowedby a Gaussiannoiseprocess.
This assertsa morenaturalretinal imageandalsosimu-
latesacquiringerrors.Hapticssensorydatais alsocom-
putedin caseRogeris graspinganobject. An arbitrated
object massand the proprioceptive informationrelative
to thearmconfigurationis mappedto armtorqueandve-
locity necessaryto lift theobject(from which theobject
weightcanbecalculated).

In this work context, the main experimentsinvolve
theconstructionandmaintainanceof anattentionalmap
of the environment. Categorizationbehavior is one of
the basic requirementsfor this task, that is, to iden-
tify/recognizethepatternsrepresentingeachregionof in-
terestto fill the mapswith correctinformation. Figure
3 shows the main aspectsof the systemarchitecturefor
this task. Briefly, input from eachsensoris abstracted
to constructa � ������� ��	�� 
���� ����� ��� (featuremaps).These
featuresareusedasa patternactivationcodein a central
�����������
 	 �����! "�# "�$��% which matchesthepropertiesto a
long termmemory(LTM) address.This LTM hasstored
(or will storefor new objects)all informationaboutthe

Figure2:
���������

- 	�
 � - � ��
�� andits 1D retinas.

environment/objects.The
����
���&��'&(�)� �*� �����$�����$� module

operatesautomaticallyfor eachnew patterndetectedin
theenvironment,increasingtheassociativeandlongterm
memorieswith the new patterncodes. The attentional
mechanismoperatesbasedon the currenttask parame-
tersandon resultsof categorizationbehavior. It selects
a new action,eventually changingthe currentattention
window (topicof interest)andcalculatingthemovements
to beappliedto theDOFsto attendthenew position.The
servo controllersusetheseparametersto effectivelybring
thesystemto anew pose.Thisputsanew setof informa-
tion in the sensorybuffers, re-startingthe cycle (feature
extraction).Wedescribemainlythepartof thesystemre-
latedwith thecategorizationbehavior (associative mem-
ory).
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Figure3: Systemcontrolarchitecture

3.1 Data Reductionand Abstraction

We provide data reduction by using a
 � � 	 � -���#�,��� ��	 ���$& (MR) representationobtainedfrom ourrobot

retinas.In simulationit is composedof threelevelsof 32
pixelseachandin the stereoheadof 4 levelsof 64 - 64.
TheseMR imagesarecomputedby applyingmeanfilters
on theoriginal captured(or simulated)images.Two MR
representationsarecomputedfor eacheye, one for fur-
therextractionof Gaussianfeaturesandanother, obtained
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from thedifferencebetweentwo consecutive frames,for
furtherextractingmotionfeatures.

Figure4: MRMF matrices.

A
 � � 	 � - � �.
 	�� ��� (MF) representationover the pre-

vious MR imagesprovides data abstractionto support
high-level behaviors asattentioncontrol andcategoriza-
tion. The result is a

 � � 	 � - �����,��� ��	 �/�$& -
 � � 	 � - � �.
 	�� ���

(MRMF) representationas in Figure 4, for the stereo-
head. The first six columnimagesareGaussianpartial
derivativesof gray-level intensityimagesandthelasttwo
arederivativesof framesdifferencerepresentingmotion.
To generatetheGaussianpartof this MF representation,
the above MR intensity imagesareconvolutedwith the
Gaussianderivativekernelsgivenby:

02143�576�8�9;:=< �#>@?#A
021�B7576�8�9;:=C 
 < ��> 1 ?�A 5D8
021FEG576�8�9;:=C 
 < ��>G?#A 6'C 
 8�EIH=J�9 (1)

where
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;

 : S BEUT A , <V: BT�W EGX , Y :

Z�[�\4] Q J \4] Q C \ ^�_
, and

� : Z#` Q�a�Q ]�_
. Our representationfor

motion featuresis computedby applyingthe samefirst
Gaussianderivativeto thepreviousMR motionrepresen-
tation. This helpsreducingnoise.In thestereohead,the
dedicatedIP device (Datacube)cancomputetheMRMF
atarateof 15framespersecond,thusachieving real-time
performancenecessaryin oursystem.

Following thisphase,anattentionalprocessthatis not
relevant to describeherecomputesattentionalfeatures
from the above setanddirectsthe robotsto a target re-
gion.

3.2 Feature Vectorsfor Categorization
Oncetherobot is “looking” to a region, we compute

from the above mapsthe featureset for categorization:��& 	 ��&��.� 	 % , 	 � 8 	�� ��� , � 
 
 � � ,  )� 	 �/�$& ,
�.��b��

, and c �#�d� 
�	 .
Each

�'& 	 ��&���� 	 % vectore 1Pf#5g (thesubscript“c” denotescat-
egorizationbehavior), madefor resolutionlevel h , is cal-
culatedasanaveragein thevicinity of thecorresponding
Gaussianresponse

021Pf#5
. Eachcomponentof thetexture

vector i 14f�5g is the variancein the vicinity of a Gaussian
response.In a similar way, eachshapevector j 14f�5g is the
variancein thevicinity of stereodisparity( k 14f�5> ). Stereo
disparity is computedin the previous attentionalphase
usingthe above secondorderGaussian

��& 	 ��&��.� 	 % 021lE�5 .
Motion m 1Pf#5g is anaveragein thevicinity of themagni-
tude m 1Pf#5> of theaboveMR motionimage,alsocomputed
in the previousattentionalphase.We extract the sizeof
an objectby usingedgedetectors(a segmentationpro-
cess)in simulationor by usingnormalizedmomentsin

thestereoheadimages.Analogously, theweight(only in
simulation)is extractedfrom thearmssensors.All of the
above featuresarenormalized.As a resultof the above
averagingandvariance,featurematchingis moretolerant
of scaling,rotation,andshift.

4. CategorizationBehavior

Weusedtwo typesof classifiersin theexperimentsto
providecategorizationbehavior: aback-propagationneu-
ral networkanda self organizingmap(SOM) [8]. They
are self-growing, that means,we set a thresholddeter-
mined empirically to tell whethera representationis a
new one;if theactivationfor agivenpatternis below this
value,the

����
���&��'&(�!� �$� �#���*�'�,�$� modulecanbeautomat-
ically invokedinsertingthenew featuresetinto LTM and
updating(creatingnew nodes/BPNNor neurons/SOM)
and retrainingthe BPNN or SOM classifier. Note that
in thissituation(no identificationat agiventrial), anarm
or eventheeyescanbemovedto geta bettersensoryre-
sponse.In fact, after a certain(small) numberof trials,
the representationcanbeclassifiedasnew or identified,
thenthe currentpositionin the attentionalmapscanbe
updatedandattentionalfocuschanged.

4.1 The Back-propagationClassifier

The BPNN is a feed-forwardand totally connected
multi-layer perceptron. Activation propagatesforward,
thatmeans,from the input layer, to thehidden(or inter-
mediate)layer(s),thento theoutputlayer. Theacquired
knowledgeis codifiedin thesynapses(or weights)in each
connectionbetweenthe network unities (nodes). The
weightsareadjustedby a training process.The activa-
tion obtainedin the last layerdeterminesananswerrep-
resentingthe activation obtainedby the whole network.
TheBPNN algorithmis currentlywell definedandmore
detailscan be found in works like [9, 10, 7]. Figure5
shows the structureof the BP net usedhere. It hasone
input nodefor eachinput feature.Thenumberof nodes
in theoutputlayerchangesdynamicallyby usingtheself-
growing mechanism;a new nodeis createdfor eachnew
representationdetected.A weightedfunctionof themin-
imum andmaximumerrorduring trainingis usedasthe
thresholdto defineif arepresentationis new. Thenumber
of hiddennodesis determinedempirically. Actually, 1.5
timesthenumberof outputnodesgivesgoodresults.

  One
Output
for each
 Object

 Input
Features

Figure5: Topologyof BPNN used.

465



4.2 SelfOrganizing Maps
We further implementedthe associative memoryus-

ing a network basedon the self-organizingmap intro-
ducedby Kohonen[8]. The networkembedsa compe-
tition paradigmfor dataclusteringby imposingneigh-
borhoodconstrainton the outputunits, suchthat a cer-
tain topologicalpropertyin the input datais reflectedin
theoutput’sunit weights.TheEuclideandistanceis con-
sideredas the measureof similarity (dissimilarity) and
the winning neuronis the one with the largestactiva-
tion (the lowestdistance).Theupdatingproceduretakes
into accounttheneighborhoodfunction,in orderto self-
organizethe network aroundthe winner. Inter-neuron
connectionsassurelateralplasticityto preservethetopol-
ogy of themap(we have chosena rectangulartopology).
TheKohonennetworkmovestheneuronstowardsthein-
put probabilitydistribution. In a first stage(off-line) the
net is trainedwith a few objectsby presentingeachab-
stractedfeatureandselectingthewinnerneuron.This is
madeto roughlyapproximatetheinputprobabilitydistri-
butionof thefeaturevectors.Thenthewinner’sneighbor-
hoodis adaptedin orderto move eachneuron(weighted
with a Gaussianfunction)towardstheinput vector. Dur-
ing theon-linestage,thequantizationerrormeasuredon
eachinput vectorcontrolsthegrowing process.Related
worksongrowing Kohonen’smaphavebeenproposedin
[11, 8]. Theallocationprocessof new recognitioncodes
(codebooks) is controlledby athresholdvaluethatis em-
pirically found.Thealgorithmcanbesummarizedasfol-
lows:

1. Initialize randomlyall thecodebookvectors
 )npo

for� :qJ Q \F\l\ QGr
and s :qJ Q \l\l\ Q m (MxN is the sizeof

themap);

2. Givenaninputvector
8

find thewinner
�

asfollows:
t 82O  g t :  u�'& n Z�t 8vO  n t�_

3. if thedistanceis lessthana certainthreshold

w thenadaptthecodebookthewinner
 g

 g 6 	 OxJ.9I:  g 6 	 9yH{z|6 	 9,M 8y6 	 9yO  g 6 	 9 R
where

z
is thelearningrateparameter.w otherwisefind thesecondbestneuron

 f and
allocatea new neuron

 "}�~D� :=8
.

Every time a new neuronis allocated,in reality we allo-
cateanew row or columnbasedonthepositionof thetwo
closestneuronswith the input vector

8
. Thecodebooks

of the othernew neuronsallocatedare initialized based
on theinterpolationvectorfoundasfollows:

 }�~�� :L<  g H�6UJ�O�<�9  f
.5. Experimentsand Results

In theexperimentaltests,bothapproacheshave been
applied to the monitoring task with acceptableresults.
Basically, many instancesandtypesof objectsareplaced
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Figure6: Activationsfor objectsin BPNN.

on a table,for thestereohead,or in theroomrepresent-
ing Roger’s work-space. By using the attentionalbe-
havior, our robotic agentsareableto focusattentionon
selectedregions/objects,thus the categorizationbehav-
ior canlearntheir characteristicsinsertinga representa-
tion for eachonein the systemmemoryand incremen-
tally construct/updateattentionalmaps.In thesimulation
platform, if anobjectis not identifiedonly by visual in-
formation,an arm movementcanbe doneto try an im-
provementin theinformationset(saymeasuringtheob-
jectweight).
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Figure7: Trainingperformance.

Figure6 showsconfidencefor theBPNN (simultane-
ousactivationsin its last layer),for theobjecttypesseen
in Figure2. For eachinstance,theupperline is thehigh-
estactivation(objecton idealor learnedpose).Thenext
line is the lowestactivation yet allowing identification.
Objectposesweredegradedwhenviewedfrom

�������#�
’s

eyes.Wecouldverify thatrotationsupto30degreeswere
well supportedby thesystem.We notesomepartialac-
tivationdenotingsomeambiguitybetweensmall-circles
andbig-circles,but still undera threshold,thusallowing
to discriminatethem.

Severalexperimentsweredoneto testtheassociative
memory(BPNN) performance.Figure7 shows a graph
with trainingtime in secondsillustratingperformanceas
thenumberof objectsincreases.Actually, this resultwas
obtainedusinginputvectorscomposedof 112featuresin
the stereoheadplatform. The graphshows SThenean
apparentlysoft exponentialfunction, a characteristicof
the BP model. In practice,this issuedoesnot compro-
mise the systemperformanceasa modelof short-term,
working memoryof ten objects(lessthan3 sec)seems
quiteacceptable.Also, in apracticalsituation,thesystem
would save thesynapticweightsandnetworkconfigura-
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Figure8: Initial andfinal (SOM) 1D mapsfor raw scat-
tereddata(dueto spacereasons,bottommapis shown in
2D).

tion (alsotheattentionalcues)for futureuse.After acer-
tain time, the probability of finding a new objectwould
beverysmall,not interferingin systemperformance.

To test the SOM confidence,we initially conducted
someexperimentsusingraw scatteredandnotwell com-
porteddata,obtainedfrom

���������
’s retinas. We useda

1Dmapin ordertogrow thenetwork.Ontheoveralleval-
uation,the SOM hasattendedour expectationsin these
initial experiments,with onlyafew problems.Topof Fig-
ure8 shows the initial phasein which themapis trained
with few data. Bottom of Figure8 shows the final map
with 18 neuronsafter the presentationof the abstracted
featuresfor unknown objects. Due to spacereasonsthe
resulting1D mapis shown in 2D. Becauseof usinga 1D
mapandof the badquality of the data(class“f ” hasa
very sparsedistribution), aswe canseein the Figure8,
a thresholdwasnot a goodcompromiseto allocatenew
neurons.As a result,class“f ” wasbrokeninto several
subclasses.

t1 t1
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C3 c2 c1

s2 s3 s1 s1 t1 C1 s2

t2 c2 C3 t3 C1

c2 c2 c2 C3 t1

c3 c2 t2 c3 C3 t3 t3

Figure9: Growing processfor the2D map.

Besidestheseinitial experiments,weconductedother
experimentsusingwell comporteddata.In this case,the
SOMworkedwell. With atimeperformancesignificantly
betterthan the BPNN and with almostsameprecision.

Top of Figure9shows thea first stagein which themap
is organizedandtrainedwith a few data. Note theclear
orderingmechanismof theclassifiedobjects.Thereafter,
thenetworkgrowsevery timethatanew patterndoesnot
satisfy the thresholdin the Euclideanspace. We usea
2D mapto grow the SOM network. Bottom of Figure9
shows the final map(36 neurons)after the presentation
of unknown abstractedfeatures.The time spentto learn
or classifyeachnew patternpresentedis constantandcan
be neglected. Sincethe neuronsareordered,just a few
iterationsfor updatinganexisting codebookis neededto
refineit (some1 or 2 miliseconds).
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Someevaluationof the algorithmsappliedto a same
environment (with the samelight definitions, and the
sameobjects)areshown in figure 10, for the simulator�������#�

. By using the SOM approach,the systemhas
performeda few morepositiveidentifications(of already
knownobjects),andafew lessnew-objectdetectionsthan
the BPNN approach. Figure 11 shows anotherevalu-
ation for the numberof map updatesrealizedby using
bothapproaches.Slightly differentresults,with bothap-
proachesalternatingpositionin thegraphs,wereobtained
from otherexperimentsin whichthesystemrunsuntil no
more new representationsweredetected. Thesediffer-
encesweredueto thethresholdchosento decidewhether
a representationis a new one. As a practicaldemon-
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stration,Figure12shows someselectedpicturesof a se-
quencein which Rogercategorizeall regions/objectsin
its environment.

Figure12: Rogerconstructingattentionalmaps.

6. Discussion,Conclusionand Futur eWork
By analyzingtheaboveresults,wecouldseethatboth

methodsworkedwell in our approachfor categorization
in thereal-timemonitoringtask.At thispoint,wecannot
generalizethattheSOM approachis betterfor this func-
tion thantheBPNN approach,but for sureit hasa much
betterprocessingtime. Other taskswith other typesof
application(for example,includdingtop-down attention)
have to betested.Theback-propagationnetworkdemon-
strateto be useful in casesof shortmemoryrepresenta-
tions when no more than 10 objectsareused. Beyond
that,somemainproblemsarethetimespentfor retraining
thenetworkwhennew categoriesarefound. TheBPNN
topologyusedin this work demonstratebeusefulon cat-
egorizationof differentpatternrepresentationsleadingto
thesameobjectinstance(differentviews). In this case,it
approximatesthe function asa surjectionof

� }�� r
.

The SOM can accomplishreal-time performanceeven
augmentingthe numberof features(for example,using
original featureswithout any samplingfor data reduc-
tion). SOM areusefulbecausethey have a relatively low
trainingtimeagainsttheresolutionof themap.But,some
times,a setof featuresnot well definedmaycauseprob-
lems,makingourself-growing mechanismbreakthefea-
ture spacewith introductionof onemoreneuron,aswe
have seenabove for class“f ”.

In this work we tried to give a full setof featuresand
let our classifyingtoolsuseit for categorization.An im-
provementcould be doneby usingsomelearningstrat-
egy for featurediscriminability. In this way, thebestset

of features(small)wouldbeusedby thesystem,improv-
ing performance.We remarkthat othertop-down atten-
tional tasks(for example,searchfor anobject)canalso
beformulatedusingthesamemodel.We have testedand
succesfullyusedthe tools in our basicreal-timerobotic
application,thusallowing it to be appliedin othergen-
eral, on-line tasks. Finally, anotherpossibility of future
work is to testbothapproachesusingamoving fovearep-
resentation(currently, our foveais definedin the image
center). Note that this would save time by avoiding the
executionof physicalmovements,but, a problemis that
it maydegradecategorizationprecision,dueto moreim-
agedistortions.
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