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Abstract

A fuzzy neural network (FNN) architecture for gener-
ating fuzzy rule database from sparse knowledge about
the system dynamic is proposed and its performance in
solving the truck backer-upper nonlinear control prob-
lem is analyzed. Since the FNN maps fuzzy input to fuzzy
outputs vectors deriving a knowledge kernel for a given
specific problem, considering the actual experience of ex-
perts in the domain, it may becomes an important tool
for handling fuzzy mapping in many practical applica-
tions. Further improvements to allow fast convergence
of the FNN learning phase, controlling the learning and
momentum parameters through an adaptive fuzzy logic
controller (FLC), is described. Simulations results are
included to confirm that this approach may be of great
practical interest since the actual results are very encour-
aging.

1. Introduction

Fuzzy systems have been applied in control problems
for a long time, mainly for complex systems whose an-
alytic formula is unknown and cannot be easily identi-
fied. Practical situations show that only a limited number
of input-output pairs of vectors together with knowledge
about the system dynamic are knowna priori [1] [2]. Of-
ten, in these cases, practical control strategies have been
directly implemented only relying on skilled system oper-
ators. The main task here is to design a neuro-fuzzy con-
troller able to approximate the operator actions in some
optimal manner and make it available as a screening tool
for helping them in the control center.

Several attempts for solving nonlinear problems
based on either neural networks [3] or fuzzy approaches
[4] have been reported presenting very encouraging re-
sults. Nevertheless, it seems that neuro-fuzzy approaches
whose inherit the generalization ability from standard
neural networks and the robustness in handling input-
output mapping of linguistic variables from fuzzy sys-
tems are natural candidates [5]. Recently, new classes
of adaptive neural fuzzy networks for fuzzy modeling
and control of dynamic systems have been presented.
They have presented superior performance from the de-
sign point of view and accuracy compared to alterna-

tive approaches reported in the literature when applied
to well-known benchmark problems [6] [7].

Since linguistic modeling of complex irregular sys-
tems constitutes the heart of many control and decision
making systems, an approach to determine linguistic-
fuzzy rules is timely needed. In fact, generally speak-
ing, the operator’s experience should be expressed as
“IF-THEN” fuzzy knowledge rules that can be used
in fuzzy-associative-memory (FAM) look-up-table ap-
proaches [8]. However, FAM banks are difficult to
achieve for both main reasons: firstly, acquiring and ex-
pressing operator experiences as fuzzy knowledge rules
it is not a simple task to achieve; secondly, often the final
bank is sparse preventing practical use. Indeed, experts
usually are able to express their knowledge about the sys-
tem behavior mainly concerning to extreme points of the
state variable ranges but out of stressing operation, they
finding difficult to provide reliable information how the
system performs.

In this paper, a fuzzy neural network (FNN) architec-
ture for generating fuzzy rule based from sparse expert
knowledge about the system dynamic is proposed and its
performance in solving the truck backer-upper nonlinear
control problem is analyzed. Even in situation where the
FNN approaches are implemented with small constant
learning parameters there is no guarantee they properly
converge [9]. They have been adapted using heuristics
to improve fast convergence or a desired level of perfor-
mance [10]. In this paper, a fuzzy logic controller (FLC)
for adapting the FNN learning and momentum parame-
ters during the learning phase is also proposed.

The rest of the paper is organized as follows. In Sec-
tion 2, theh level set (α-cuts) definition is brief reviewed
and the neuro-fuzzy network architecture is described.
Section 3 presents the FNN learning algorithm. Section
4 describes the fuzzy logic controller (FLC) for adapting
both the FNN learning and momentum parameters during
the learning phase. Section 5 illustrates some experimen-
tal results of the FNN using the truck backer-upper prob-
lem and compare its performance with related approaches
[8]. Finally, concluding remarks are given in Section 6.

2. The Neuro-Fuzzy Proposal

A multi-layer feedforward neural network that can
handle fuzzy information may be designed according to
Ishibuchi et al [11] proposal considering the following
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procedures:
a) fuzzy numbers are propagated through the neural

network;
b) a single unit is used for dealing with a fuzzy num-

ber;
c) the extension principle [12] defines the input-

output relation for each unit and the actual fuzzy output
calculations are performed using interval arithmetic for
all h level sets (α-cuts);

d) the standard BP (Back Propagation) learning algo-
rithm [13] must be extended to accomplish with fuzzy
weights and biases needs. Inputs and outputs are also
fuzzy vectors.

2.1. Triangular fuzzy numbers andh level sets

Symmetric triangular fuzzy numbers may be used for
representing fuzzy weights, biases, inputs and outputs
variables. Let X =(xL, xC , xU ) denotes a triangular
fuzzy number as shown in Fig.1. The membership func-
tion of X may be defined as

µX(x) =


0, for x ≤ xL or x > xU

x− xL

xC− xL , for xL < x ≤ xC

xU− x
xU− xC , for xC < x ≤ xU

(1)

xL xUxC

1.0

0.0

µX

h

[X]L
h

[X]U
h

Figure 1: Representation of the fuzzy number X

The level sets of fuzzy numbers may be defined as

[X]h = {x : µX(x) ≥ h, x ∈ R} (2)

whereµX(x) is the membership function ofX and R is
the set of all real numbers. Eachh-level set defines a
closed interval on the support ofX, denoted by[X]h =[
[X]Lh , [X]Uh

]
and it can be calculated as

[X]Lh = xL · (1− h/2) + xU · h/2 (3)

[X]Uh = xL · h/2 + xU · (1− h/2) (4)

2.2. Architecture

A three-layer feedforward neural network withnI in-
put units,nH hidden units andnO output units may be
fuzzified according to the following equations, for each
h-level set:

Input units:
[Opi]h = [Xpi]h (5)

Hidden units:

[Opj ]h = f([Netpj ])h (6)

[Netpj ]h =
ni∑

i=1

[Wji]h [Opi]h + [Θj ]h (7)

Output units:

[Opk]h = f([Netpk])h (8)

[Netpk]h =
ni∑

i=1

[Wkj ]h [Opj ]h + [Θk]h (9)

whereWji andWkj are the fuzzy weights between the
input-hidden layers and hidden-output layers, respec-
tively. f(.) is the activation functionf(x) = 1/(1+e−x).
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Figure 2: The Fuzzy Neural Network Architecture

3. FNN Learning Algorithm

LetTp = (Tp1, Tp2, . . . , Tpn0) be then0-dimensional
fuzzy target vector corresponding to the fuzzy input vec-
tor Xp. A cost function for h-level sets of the fuzzy out-
put Opk from thekth output units and the corresponding
fuzzy targetTpk may be calculated as follows:

epkh = eL
pkh + eU

pkh (10)

where

eL
pkh = h

([Tpk]Lh − [Opk]Lh )2

2
(11)

eU
pkh = h

([Tpk]Uh − [Opk]Uh )2

2
(12)

The cost function for the h-level sets of the fuzzy out-
put vectorOp and the fuzzy target vectorTp are defined
as

eph =
n0∑

k=1

epkh (13)

The input-output pair(Xp,Tp) has the cost function:

ep =
∑

h

eph (14)
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A backpropagation learning algorithm may be de-
rived using the cost functioneph without distorting the
fuzzy weight shapes if their h-level sets are independently
updated[11].

The triangular fuzzy weightsWkj , Wji and triangular
fuzzy biasesΘk, Θj may be denoted by:

Wkj = (wL
kj , w

C
kj , w

U
kj), Wji = (wL

ji, w
C
ji, w

U
ji) (15)

Θk = (θL
k , θC

k , θU
k ), Θj = (θL

j , θC
j , θU

j ) (16)

The fuzzy weightWkj = (wL
kj , w

C
kj , w

U
kj) between

thejth hidden unit and thekth output unit can be updated
by using the cost functioneph as follows:

∆wL
kj(t) = − η

∂eph

∂wL
kj

+ α ∆wL
kj(t− 1) (17)

∆wU
kj(t) = − η

∂eph

∂wU
kj

+ α ∆wU
kj(t− 1) (18)

whereη andα are learning and momentum parameters,
respectively, andt represents the number of epochs.

The derivatives in equations (17) and (18) are calcu-
lated as follows:

∂eph

∂wL
kj

=
∂eph

∂[Wkj ]Lh

∂[Wkj ]Lh
∂wL

kj

+
∂eph

∂[Wkj ]Uh

∂[Wkj ]Uh
∂wL

kj

(19)

∂eph

∂wU
kj

=
∂eph

∂[Wkj ]Lh

∂[Wkj ]Lh
∂wU

kj

+
∂eph

∂[Wkj ]Uh

∂[Wkj ]Uh
∂wU

kj

(20)

Therefore, due to (3) and (4), the equations (19) and
(20) are rewritten as:

∂eph

∂wL
kj

=
∂eph

∂[Wkj ]Lh

(
1− h

2

)
+

∂eph

∂[Wkj ]Uh

h

2
(21)

∂eph

∂wU
kj

=
∂eph

∂[Wkj ]Lh

h

2
+

∂eph

∂[Wkj ]Uh

(
1− h

2

)
(22)

These equations show how the error signals are back
propagated through neural network. Similarly, the fuzzy
weight Wkj = (wL

kj , w
C
kj , w

U
kj) is updated according to

the following rules:

wL
kj(t + 1) = wL

kj(t) + ∆wL
kj(t) (23)

wU
kj(t + 1) = wU

kj(t) + ∆wU
kj(t) (24)

wC
kj(t + 1) =

wL
kj(t + 1) + wU

kj(t + 1)
2

(25)

After adjustingWkj through equations(23)-(25), the
range limits have to be checked. In case where the lower
limit becomes larger than the upper limit, the following
heuristics should be used:

wL
kj(t + 1) = min{wL

kj(t + 1), wU
kj(t + 1)} (26)

wU
kj(t + 1) = max{wL

kj(t + 1), wU
kj(t + 1)} (27)

The fuzzy weightWji and the fuzzy biasesΘk,Θj

are updated in the same way as the fuzzy weightWkj .

4. Convergence control

In spite of the learning and momentum parameters
play an important role to improve the convergence of the
learning phase, in practical situation they have been ob-
tained by trial-error attempts, left as small constant values
or updated by using heuristics [10]. In these cases, there
is no guarantee the learning process will converge[9].

In this section, to provide a desired level of per-
formance, a fuzzy logic controller (FLC) for adapting
the FNN learning and momentum parameters during the
learning phase is proposed. The input signals used in the
fuzzy controller are both the errore(t − 1) and change-
of-error,ce(t− 1), that can be given as (Fig.3):

e(t) =
m∑

p=1

ep (28)

ce(t) = e(t)− e(t− 1) (29)

wheret is the number of epochs,m is the total number
of input-output pairs(Xp,Tp) andep is the cost function
defined by (14).

The output of the fuzzy controller is the learning pa-
rameterη. The momentum parameterα is defined as fol-
lows:

α = 1− η (30)

The equation (30) above shows that at the beginning
of the learning process whenη is large,α is small. This
guides the net fast towards a minimum point. however,
nearby a minimum, it is desirable havingη small andα
large.

OP
FUZZY

CONVERGENCE
CONTROLLER

FUZZY
NEURAL

NETWORK

e, ce

(XP , TP)

η, α

Figure 3: Convergence control system

The membership functions and the FAM table used in
the fuzzy convergence controller are shown in Fig. 4 and
Table 1, respectively. Each position in this table defines
one rule, for example:

“IF e is mediumandce is zeroTHEN η is medium”

which corresponds to the central cell in Table 1.

5. Simulations and results

5.1. Backing up a truck problem

The performance of the proposed FNN approach is
analyzed in solving the backing up a trucker problem,
originally proposed by Nguyen & Widrow [14]. This
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Table 1: Fuzzy convergence controller rules

ce
NB NS ZE PS PB

S MS MS S S S
MS M M MS S S

e M ML ML M MS S
ML L ML ML M MS
L L L ML ML M

e
(S: small, MS: medium small, M: medium, ML: medium large, L: large)

ce
(NB: negative big, NS:negative small, ZE: zero, PS:positive small, PB:positive

big)

η
(S: small, MS: medium small, M: medium, ML: medium large, L: large)

Figure 4: Membership functions for the fuzzy conver-
gence controller

problem consists in successfully driving a truck to the fi-
nal position(50, 100) on the plan[0, 100]×[0, 100], mod-
eled by the following equations:

xk+1 = xk + r cos(φk+1) (31)

yk+1 = yk + r sin(φk+1) (32)

φk+1 = φk + θk (33)

where(x, y) gives the truck position;φ is the angle be-
tween the car and the horizontal reference,θ is the con-
trol angle andr = vt (v = 1.0 m/s is the truck speed
and t = 1.0s the sampling time). As in Kosko [8], the
input variables are the angleφ and the positionx. The
output variable is the angleθ. Fig. 6 shows the fuzzy sets
defined to these variables, similarly to Kosko’s .

φθ

(x, y)

(100, 100)

(0,0)

Figure 5: Backing up a trucker problem

x
(LE: left, LC: left center, CE:center, RC: right center, RI: right)

φ
(RB: right below, RU: right upper, RV: right vertical, VE: vertical, LV: left

vertical, LU: left upper, LB: left below)

θ
(NB: negative big, NM: negative medium, NS:negative small, ZE: zero, PS:

positive small, PM: positive medium, PB:positive big)

Figure 6: Membership functions for fuzzy variables in
the backing up a truck problem

5.2. Results

In all simulations, the net structure is composed by
nI = 2 input units,nH = 6 hidden units andnO = 1
output unit. Theh level set is defined as{0.2, 0.4, 0.6,
0.8, 1.0}. Fuzzy weights and biases are initialized in
the closed interval[−1, 1] and the condition for halting
the training is the number of training epochs (1000 itera-
tions).

In order to verify the generalization ability of the
FNN, three sets of known rules (scenarios) were consid-
ered as shown in Table 2. The superscriptsa, b or c in-
dicate the scenario at which a specific rule belongs to.
Hence, scenario(a) has nine known rules,(b) has six and
(c) five. The goal is training the FNN in order to generate
a complete table (FAM bank) for each scenario.

After all FAM banks have been obtained for the
scenariosa, b and c they were used for solving the
truck backer-upper problem and the final result compared
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with those obtained by Kosko[8]. In Table 3, the final
states of the variables(x, y, φ) for two initial positions
(20, 20, 30◦) and(30, 10, 220◦) are shown. Fig. 7 shows
the results for all scenarios.

Table 2: Sets of known rules for testing the FNN

x
LE LC CE RC RI

RB PSa PMa,c PBa,b

RU
RV

φ VE NMa,c ZEa,b,c PMa,b,c

LV
LU
LB NBa,b NMa,b,c NSa,b,c

Table 3: FNN performance results

FINAL STATES
SETS (20, 20, 30◦) (30, 10, 220◦)

x y φ x y φ
Kosko 50.00 99.21 90.00 50.00 99.66 89.94

a 45.34 99.87 90.17 45.49 99.46 90.32

b 54.77 99.34 89.36 54.63 99.02 88.96

c 49.09 99.60 88.75 49.02 99.82 88.65

The obtained results indicate scenarioc presents a
performance similar to Kosko’s. This similarity degree
may be better analyzed using the concept of linguistic
trajectory. Hence, consider that the state variablesx1 e
x2 could haven1 andn2 linguistic values, respectively.
In this situation,(n1 × n2) corresponds to the maximum
number of rules in the fuzzy knowledge database. By def-
inition, the crisp point(x1, x2) in the state space belongs
to the subspace associated with rulej, if:

∀j 6= k ∀(x1, x2) : µRj
(x1, x2) ≥ µRk

(x1, x2) (34)

where,µRj (x1, x2) andµRk
(x1, x2) are fuzzy relation

degrees associated to thej-th andk-th rules, respectively.
The state variables trajectories can be mapped in the

fuzzy rules subspaces and the rules sequence been fired
is called “linguistic trajectory”. Fig. 8 shows an example
of the linguistic trajectories obtained from scenarioc and
the Kosko’s FAM bank, both starting from the same ini-
tial position(30, 10, 220◦). Notice that the FNN was able
to determine a bank that conducts the truck for the “dock-
ing zone” (final state), spending less energy than Kosko’s
bank.

6. Conclusion

A fuzzy neural network (FNN) architecture for gen-
erating fuzzy rule database from sparse expert knowl-
edge and handling fuzzy information (fuzzy input and

(a) - Trajectories with initial position(20, 20, 30◦)

(b) - Trajectories with initial position(30, 10, 220◦)

Figure 7: Trajectories for scenariosa, b andc (Table2)

ooooo Kosko +++++ FNN bank

Figure 8: Linguistic trajectories in the plane of the state
variablesφ× x
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output vectors) was proposed. In order to improve its
convergence during the learning phase, a fuzzy conver-
gence controller for automatic adaptation of the learning
and momentum parameters was described. The FNN per-
formance was analyzed in solving the truck backer-upper
nonlinear control problem and the results compared to
Kosko’s [8]. Simulation results and comparison of anal-
ysis show that the proposed FNN presents good trajecto-
ries, driving the truck to the desired final state, consum-
ing less energy than Kosko’s. A self-organizing FNN is
under investigation for solving practical real-time MIMO
problems taking into account sparse information acquired
from multiple experts. Further improvements will be
soon reported.
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