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Abstract  

 

This paper investigates the use of Data Envelopment 
Analysis (DEA) combined with Artificial Neural 
Networks (ANN) to produce a new hybrid optimization 
structure called Neuro-DEA. The basic idea is build an 
unconventional ANN where the optimizations modules 
used in DEA analysis are implemented in high-speed 
optimization structure called Neuro-LP. The Neuro-LP 
structure represent an ANN who implements a 
numerical solution based on gradient method. So the 
linear programming problem (LPP) is converted into an 
optimization problem without constraints by using a 
pseudo-cost function and penalty techniques. The 
Neuro-LP structure represents each Decision-making 
unit (DMU) and may be connected assembling the final 
proposed Neuro-DEA structure. 
 
 
1. Introduction 
 

Consider a decision-making units (DMU) acting as 
an enterprise, a department or an administrative unit 
whose efficiency is been investigated. The Data 
Envelopment Analysis (DEA) is a mathematical 
technique that has the objective of analyzing the DMUs 
performance.  

It allows the evaluation of the relative operational 
efficiency of DMUs, contemplating each DMU 
relatively to all the others, in the same group.  

The DEA technique compares the DMU efficiencies 
by their abilities in transforming inputs into outputs, 
measuring the reached output relation in terms of the 
provision supplied by the input [1].  In the end of the 
analysis, the DEA technique is able to assert which units 
are (relatively) efficient and which ones are (relatively) 
inefficient, [2] and [6]. 

The DEA technique involves the use of Linear 
Programming (LP) to solve a group of inter-related   
linear programming problems (LPPs), as many as the 
DMU numbers, finally objectifying, determining the 

relative efficiency of each DMU [13]. Optimization 
modules called Neuro-LP will be used in the neural 
model proposed (Neuro-DEA), inspired by the artificial 
neural network philosophy [5], [18], [20], [23] and [30].  

The DEA models can be oriented to inputs or to 
outputs and this orientation must be previously chosen 
by the analyst [25]. The orientation to inputs indicates 
that we want to reduce the inputs, keeping the outputs 
unaffected. In the other hand, the orientation to outputs 
indicates that we want to increase the outputs without 
affecting the inputs [31]. The most important models are 
the following:  

CCR – Model presented by CHARNES, COOPER 
AND RHODE [7] that builds a non parametrical 
surface, piece wise linear frontier, over the data and 
determines the investigated DMUs technical efficiency 
over this surface. It was conceived as an input oriented 
model and it works with constant return of scale (CRS), 
which means that each variation in the inputs produces a 
proportional variation in the outputs. The proposed 
model to a generic DMU, eq. (1), is the following: 
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The problem consists in determining the uj and vi 
weight values to maximize the linear combination of the 
outputs divided by the linear combination of the inputs 
[14] and [15]. The process must be repeated to each of 
the n DMUs and, by these processes, can be determined 
the relative value of each DMU efficiency. 

If u and v are the optimum solution vectors, αu and 
αv will be optimum solution vectors too, and 
consequently the problem will present infinite solutions. 

To solve this problem, CHARNES AND COOPER 
[6] introduced a linear transformation that allows 
transforming linear fractional problems into LPPs, 
creating the model, eq. (2), called Multipliers Model:
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It’s possible derive the dual model to multiplier 

(primal). So, the dual will present a smaller amount of 
constraints (s+r < n+1), because the DEA model 
requires that the number of DMUs be greater than the 
number of variables. By the reasons above, the dual 
model, called Envelope Model, easily solved, is 
preferred compared to the Multipliers model. In the 
Envelope model, eq.(3), the objective is to determine 
the values of λk, minimizing θ: 
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To output oriented formulation, we just have to 

invert the quotient, calculating the relation between the 
weighted sum of the inputs divided by the weighted sum 
of the outputs, trying to minimize the inputs. In this 
case, the Envelope model, derived from the primal 
(multipliers), can be similarly obtained similarly to the 
case of the orientation to inputs. 

BCC – Model developed by BANKER, CHARNES 
AND COOPER [3], allows variable return of scale 
(VRS) avoiding existing problems in imperfect 
competition situations, financial constraints etc. In this 
case, the VRS frontier considers increasing or 
decreasing returns in the efficient frontier. To do this 
job, it was introduced in the CRS model, a convexity 

constraint making the λ sum equal to 1. Trying to 
compare the CRS frontier to the VRS, the Figure 1, that 
represents 5 DMUs of one input and one output, shows 
the relation between these frontiers for the both cases.  
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Figure 1 - CRS and VRS Frontier 

 
The Envelope model, eq. (4), oriented to input, is 

represented by:  
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In Figure 1, it’s possible to verify that the DMUs 4 

and 5 are inefficient. In the BCC model that adopts 
VRS, each DMU is compared to the efficient DMUs 
that operate in the same scale. So, using the orientation 
to inputs, we verify that the optimum projection of the 
DMU 4 occurs in a point that is convex linear 
combination of DMUs 1 and 2.  

Using the orientation to inputs, we verify that the 
optimum projection of the same DMU 4 happens in a 
point that reflects the convex linear combination of 
DMUs 2 and 3. However, for both orientation cases, the 
linear combination values are given by the λs.  

The primal derived model (multipliers), eq. (5), is 
given by: 

 

edunrestrict   and  ij,    0   and 

,...,1   ,0

1

:subject to

  hMax 

0

0
11

1

0
1

00

τ

τ

τ

∀≥

=≤+−

=

+=

∑∑

∑

∑

==

=

=

ij

r

i
iki

s

j
jkj

r

i
iki

s

j
jj

vu

nkXvYu

Xv

Yu

 

(2) 

(3) 

(4) 

(5) 



 
 
 

 309

2. Mathematical Basics 
 

In the traditional ANN [26], [27], [28] and [29], 
after the training phase, where the values of the synaptic 
weights are determined, the ANN will be ready to be 
executed. In this phase the ANN receives signals in the 
input, which, usually, did not take part in the training 
phase, and presents the result in the output, according to 
the knowledge acquired during the training phase and 
stored in the weight matrix [11], [32] and [33].  

In the Neuro-LP case, the weights of unconventional 
ANN, are already known and represents the problem 
constraint coefficients [8], [9], [10] and [22].  The next 
step (execution phase) determines the output, which 
indicates the value of the LPP decision variables [5]. 

Considering an optimization problem without 
constraints where we wish to find the value x ∈ ℜn that 
minimizes a scalar function E(x), called Pseudo-cost, 
Energy or Objective function. According [9] and [10], 
the point x* will be the global minimum of E(x), if       
E(x*) <= E(x) for  all x ∈ ℜn and a local minimum  if   
E(x*) <= E(x) is kept for a interval ε > 0. 

If  the first and the second E(x) derivatives exist,  the 
point   x*  will  be  a  local  minimum  if   the  gradient 
∇ E(x*)=0 and the Hessian matrix ∇ 2 E(x*) > 0. The 
necessary and sufficient conditions for the existence of a 
local minimum are:  

For ∇ 2 E(x) non singular for the point x*, so E(x*) 
will be <= E(x) for all 0 <  || x - x* || < ε e ε > 0 if the 
gradient ∇ E(x*) = 0 and the Hessian matrix is 
symmetric and positive, ∇ 2 E(x*)  >  0. 

The Dynamic Gradient Method is the mostly known 
method from the ones inspired in the “Steepest Descent” 
and the “Newton Method” [4]. It’s based in the 
transformation of the optimization problem without 
constraints in a first order ordinary differential equation 
system, eq. (6), represented as follows: 

 
So, to find the value x* that takes E (x) to a 

minimum, its necessary to solve or simulate the solution 
of a differential equation system subjected to initial 
conditions. Its possible to conclude that x* can be 
determined by the, eq. (7), “solution path or trajectory 
curve” of the proposed system: 

According   [16] and  [17], given a cost function   
E(x) which must be minimized, where xj(0) = xj(0) 
represents the point where the procedure starts and; 
being ∇ E(x*) the gradient of E(x) for the kth point in 
the path, then; the idea is to determine a particular path 
p where dE(x)/dp is minimized in each point of the path. 

The numerical solution can be obtained considering the 
following: 
• If successive points xk e x k+1 are determined 

obeying the solution path: x k+1 = xk  - ηk ∇ E(x) k, 
where 0  <=  ηk  <=  ηmax is called integration step. 

• The value of ηk is determined in a way that xk+1 

always results in the improvement of the objective 
function, E(x) k+1 < E(x) k . 
The procedure ends when two consecutive points x k  

and x k+1  are  approximately the same, ηk ∇ E(x) k ≅ 0. 
As ηk ≠ 0, so ∇ E (x) k = 0. 

 
3. Neuro-LP Modeling 
 

To solve it using the ANN philosophy, its necessary 
to build a “new function” called pseudo-cost or energy 
function E (x) [35], which global minimum is the 
optimum solution of the LPP. 

To build the new function E(x), it’s incorporated a 
function or penalty term Pi [Ri(x)] to the original 
objective function [8], [22] and [36]. The penalty term 
must cause a high cost (penalty) to the new function 
each time a constraint is violated (Ri(x) < 0) and zero 
cost if the constraint is satisfied (Ri(x) > 0). 

In this way, the LPP is transformed into an 
optimization problem without constraint, where its 
desirable to find x* ∈ ℜn that minimizes the new 
function E(x). The penalty term must penalize (big p) 
for the cases of no feasible solutions and inhibit for 
viable solutions of the LPP [12], [17] and [34]. The 
optimization problem without constraint with penalty 
term can be solved similarly to the ANN training phase, 
applying the gradient method, eq. (6) and eq. (7).  

Its modeling without constraint, eq. (8), is the 
following: 

 
The practice shows that p values extremely high are 

not convenient from the computing point of view. 
According [5], [9] and [10] a great choice is to 

consider the pseudo-cost function, eq. (9), the 
following: 
 
 
 
 
 

In this case, higher values of p are not necessary for 
the correct convergence of the process. So, with 
reasonable p values, the minimum of the pseudo-cost 
function E(x, p) is equivalent to the final optimum 
solution of the original LPP, showed in eq. (10). 
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4. Neuro-DEA Architecture  
 

Considering the data existence for P DMUs, with R 
inputs and S outputs and that the ith DMU is represented 
by a column vector Xi (inputs) and a Yi (outputs). 

The relationship between all inputs and outputs is 
obtained to each DMU: u Yi / v Xi , where u and v are 
output weight vectors and input weight vectors, 
respectively. The optimum values for these weights are 
obtained solving a LPP for each DMU, [21] and [25]. 

So, for P DMUs, we will have P Neuro-LP modules. 
Each LPP of the Neuro-DEA model will represent a 
LPP in the Neuro-LP model and will be able to 
determine the relative efficiency of one DMU of P 
DMUs that compose the system. Figure 4.1 shows the 
proposed block diagram of the Neuro-DEA module. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The implementation was done using the CRS 

Envelope model, input oriented. The reason for this 
choice is due to the fact that we can reduce the number 
of constraints, because in the envelope model we have a 

constraint for each input/output. This fact does not 
happen in the multipliers model, where we have as 
many constraints as the numbers of DMUs, 
complicating the implementation, increasing 
computational work. [14]. 

Figure 4.2 shows a generic architecture, used in 
cases until 5 variables, where it’s possible identify step 
by step, the equations, eq. (10), that represent a Neuro-
LP model used to determination of efficiency of each 
DMU. This simulation was done using MatLab 
Simulink Tool [19] and [24].  
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Figure 4.2 - Neuro-Dea Architecture until 5 variables 

 
5. Neuro-DEA Model Implementation 
 

Some data for a case involving 5 DMUs with two 
inputs and one output are shown in Table 1. Figure 5.1 
represents 3D data and envelopment representation. 

Figure 5.2 shows the final specification for the LPPs 
referring to each DMU. Figure 5.3 shows a CRS 
diagram that is referring to the problem, where its 
possible to verify that DMUs 1, 3 and 4 are not efficient 
and so, can have all of their inputs reduced of a certain 
percentage, without reducing the output. DMUs 2 and 5 
are efficient.  

Finally, in Table 2 there is a comparison for the 
obtained results, using two commercial and consecrated 
softwares (LINDO AND FRONTIER), with the results 
of the model proposed in this paper and calculating the 
error percentage.  
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Table 1 - DMUs Data 

 Out Input 
1 

Input 
2 

Input 1/Out Input 2/Out 

DMU 1 2 6 8 3 4 
DMU 2 4 4 8 1 2 
DMU 3 3 6 6 2 2 
DMU 4 1 4 3 4 3 
DMU 5 4 12 4 3 1 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 - Results Comparison 
 

 Lindo Frontier Neuro 
DEA 

% 
Error 

DMU 1 0.453 0.454 0.452 0.44 
DMU 2 1.000 1.000 1.000 0.00 
DMU 3 0.832 0.833 0.831 0.24 
DMU 4 0.500 0.500 0.500 0.00 
DMU 5 1.000 1.000 1.000 0.00 

 
6. Conclusions 
 

This paper presented a new optimization algorithm 
base in a structure called Neuro-LP. This structure is an 
unconventional Neural Network model dedicated to 
execute high-speed optimization efficiency calculation. 

This feature is very useful in real time applications 
and it was our main motivation. With these basic 
modules we are capable of building a Neuro-DEA 
architecture, a hybrid DEA-ANN optimization structure 
and algorithm. 

In the Neuro-LP, the solution method for the 
ordinary differential equation system is similar to the 
technique used in ANN training, because both of them 
use the decreasing gradient method. The convergence of 
the algorithm showed is very fast in all data sets 
investigated. 

The presented case was selected among hundreds of 
accomplished tests showing that the presented proposal 
is consistent. The values obtained with our prototype 
were validated comparing themselves with results 
obtained by renowned softwares as LINDO, to 
separately solve the LPPs referring to the DMUs and the 
FRONTIER to directly solve the DEA. In this case, the 
observed error did not surpass 0.5%. 

The integration of ANN with other numerical 
methods to solve LPPs or DEA is a very promising 
research area to develop high-speed convergence 
solution. 

Finally, it’s important to highlight that the proposed 
modules can be integrated in a chip and connected to a 
free slot in a computer. 

Figure 5.1 - 3D Data and Envelopment Representation 

Min  t2 
Subject to: 
           2l1+4l2+3l3+l4+4l5>=4 
    4t2-6l1-4l2-6l3-4l4-12l5 >=0 
      8t2-8l1-8l2-6l3-3l4-4l5 >=0 
     I1, I2, I3, I4, I5 >=0 

Min  t3 
Subject to: 
             l1+4l2+3l3+l4+4l5>=3 
    6t3-6l1-4l2-6l3-4l4-12l5 >=0 
      6t3-8l1-8l2-6l3-3l4-4l5 >=0 
     I1, I2, I3, I4, I5 >=0 

Min  t4 
Subject to:                                  
           2l1+4l2+3l3+l4+4l5>=1 
    4t4-6l1-4l2-6l3-4l4-12l5 >=0 
      3t4-8l1-8l2-6l3-3l4-4l5 >=0 
     I1, I2, I3, I4, I5 >=0 
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            2l1+4l2+3l3+l4+4l5>=4 
  12t5-6l1-4l2-6l3-4l4-12l5 >=0 
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      I1, I2, I3, I4, I5 >=0 
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EEFFFFIICC    11  ==  Min  t1 

Figure 5.2 - LPPs Specification to each DMU 
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