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Abstract

The implementation of a pattern recognition system
requires solutions to some basic problems: data
acquisition, feature extraction and pattern
classification. In this paper a novel and efficient
approaches for feature extraction for pattern
classification using neural networks is proposed. The
method search for the minimum amount of features
necessary for solving a given pattern classification
problem based on the structure of an adequately
trained MLP network. Experimentally we show that all
informative discriminating features can be obtained
from decision boundaries specified by the MLP
network.

1. Introdution

Feature extraction is regarded as dimension
reduction which finds sets of vectors best representing
observations for a large variety of applications.
Different applications require different approaches for
feature reduction. Most popular methods include the
least mean error approximation and the minimum
misclassification probability approach. Improper
feature extraction procedures may cause the loss of
information and therefore compromises the system’s
performance. In fact, how to find good features and the
smallest number of features best representing patterns
without causing the degradation on discriminant power
of a classification system had received considerable
attention from researchers in the field of pattern
recognition [1,2,3].

In general, the minimum misclassification
probability has been an ultimate criterion for system or
classifier design for pattern classification problems.
The Bayesian decision theory provides a fundamental
methodology for solving statistical classification
problems when the probability distribution of the
pattern is known. In the absence of this information,
alternatives for sub-optimum classification are many.
Frequently one assumes that the class patterns have
some specific distribution functions in order to make
the analysis easier. Others choose some easily

implemented classic discriminant functions in order to
avoid probability distribution estimation tasks.

Many recent developments in the field of neural
networks have provided another potential alternative
solutions for feature extraction and pattern
classification problems[14]. Among them, neural
networks are capable of performing many different
tasks; to our concern, it learns data statistical properties
and performs classification.

Using neural networks for feature extraction and
data projection has been widely studied [4-6]. The
relationship between the discriminant analysis and
neural networks has been studied [7,8] and the
nonlinear discriminant analysis has been adapted to
neural networks [9]. Brill  et. al. proposed a genetic
algorithm for feature selection in the context of neural
networks [10]. Recently, Lee et. al. proposed a decision
boundary feature extraction procedure for neural
networks [12]. The proposed procedure makes use of
training samples to determine a decision boundary and
some discriminant features are determined based on the
found decision boundary.  Two serious problems may
arise using this feature extraction method. The first one
is of time consuming when the size of training database
is not moderate. In this case, instead of searching for a
complete decision boundary, a small part of it, the so-
called effective boundary, is implemented for the given
classification problem as soon as a certain system
performance in terms of classification rates can be
achieved theoretically. Notice that the effective
boundary usually presents a classification performance
inferior to that provided by the real Bayesian decision
boundary.

In this work a novel and efficient feature extraction
method for pattern classification using neural networks
is proposed. The method searches  the minimum
amount of features necessary to preserve the
classification accuracy achieved by the original feature
vectors based on the structure of an adequately trained
MLP network. Theoretically we show that all
informative discriminating features can be obtained
from decision boundaries specified by the MLP network
and confirmed this result experimentally
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2. Features Extraction

Consider a two pattern classification problem where

1ω  and 2ω  represent the two classes. A feature
extraction problem can be viewed as determining the
representation of an observation vector X original in the
vector space RN  by a vector Y in a m-dimensional
subspace RM such that

( ) ( )[ ] ( ) ( )[ ] 0,,,, 2121 >−⋅− YPYPXPXP ωωωω

It is natural to expect that successful feature
extraction operation can assure the same classification
performance no matter in which vector space the test is
carried out. Another way to interpret this feature
reduction result in terms of classification is that only
redundant data were excluded. Redundant information
can be defined as data that does not contribute to the
classification. More specifically, Lee and Landgrebe
showed that a redundant feature vector, when
introduced, can not alter the classification result,
because in the feature space it is parallel to the decision
boundary [11]. On the other hand, when a vector is
informative, definitely it carries some information
which helps to define the pattern class. A feature vector
is said highly informative when it is orthogonal to the
decision boundary.
In addition, recently Lee and Landgrebe has presented
a boundary feature extraction algorithm for neural
networks [12]. Having a MLP trained by the
backpropagation algorithm, their feature extraction
method uses the network output to define decision
boundaries, that is, the decision boundaries are
geometric regions in the input feature space where the
network output h(X) is zero, i.e., { }0)(| =XhX . The
decision boundaries for a given pattern classification
problem are therefore determined by monitoring the
network response to the reference class training feature
vectors selected from different classes.

3. Decision Boundaries

It was said that multilayer perceptrons (MLP) are
capable of performing arbitrary functions, provided that
a suitable learning algorithm and a sufficient number of
hidden neurons are available [5,6].  It can be shown
that a feedfoward MLP trained by a backpropagation
algorithm can be viewed as an approximation to a
Bayesian discriminant function, therefore minimizing
the classification error probability[14].

It can be shown that a single perceptron defines a
desired decision surface for a linearly separable
classification problem by adjusting its weight [15].
More explicitly, the weight vector w=(w1, w2, ..., wn)
and decision threshold T of a trained perceptron specify
a hyperplane in the input feature space, where w is a
normal vector to this hyperplane. In particular, when

the training algorithm is for minimization of
classification error rate, w and T jointly determine the
optimum decision hyperplane for the classification
problem.
It is a well-known fact that feedforward networks with
a single hidden layer are capable of forming either
convex decision regions or non-convex but connected
regions in the input feature space [16]. Specifically the
procedure that a MLP network performs to compose
minimum error decision boundaries is to combine
several small hypersurfaces, the subsets of the
corresponding hyperplanes determined by input-to-
node connection weight vectors. For this end, the nodes
of the second hidden and those of the output layer
impose more restrictions over regions separated by
those hypersurfaces to form the desired decision
boundary. Note that the number of hyperplanes used in
the input feature space for the construction of the
decision boundary is equal to the number of hidden
units in the first hidden layer

4. Feature Extraction Algorithm

In this section, we introduce the procedure used to
extract a subset of highly discriminant feature vectors
based on the decision boundary. A subspace spanned by
this subset of vectors offers the same classification
capability as the original one. Although we adopt the
same definitions and notations proposed by Lee  et. al.
[12], our approach is fundamentally different in two
important concepts: (a) optimum decision boundaries in
terms of minimum classification error rates; (b)
optimum decision hyperplanes determined by the
structure of Bayesian neural classifiers.

Let )(XN be the unit normal vector to the decision
boundary at a point X for a given classification
problem. The decision boundary feature matrix BΣ is
defined as

∫=Σ
S

T
B dxxpxNxN

K
)()()(

1 (1)

where )(xp  is a feature vector density function, K =

∫S
dxxp )( , and S  is the decision boundary. Using MLP

classifiers, Eq. (1) can be simplified into

∑=Σ T
iiB MM , where M is a column vector orthogonal

to the hyperplane S defined by the corresponding input-
to-node weight vector.

Next, we introduce the concept of discriminating
capability of a feature vector necessary to understand
our feature extraction algorithm for classification.

Definition 1: A feature vector is said non-
discriminant if it is parallel to every hypersurface
composing the decision boundary.
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Definition 2: A feature vector is discriminant if it is
not a non-discriminant feature vector.

Definition 3: A feature vector is said highly
discriminant if it is perpendicular to every hypersurface
composing the decision boundary.

Then the proposed feature extraction principle can
be illustrated via the following lemmas.

Lemma 1: The Bayes decision boundary can be
asymptotically approximated by the hyperplanes (or
hypersurfaces) defined by the weighting vectors of MLP
when the number of hidden neurons in the hidden layer
is large enough.

Lemma 2: The smallest number of discriminant
feature vectors necessary for achieving the minimum
classification error rate is equal to the number of non-
zero eigenvalues of the decision boundary feature
matrix ΣB.

Lemma 3: The eigenvectors of the decision
boundary feature matrix ΣB of a pattern classification
problem corresponding to nonzero eigenvalues are the
features vectors necessary to attain the same
classification performance as in the original feature
space for the pattern classification problem.

Lemma 4: The smallest number of discriminant
feature vectors for minimum error probability
classification is given by the largest number of linearly
independent wi’s.

Proposed Feature Extraction and Pattern
Classification Algorithm:

1) Train a MLP with all reference feature vectors;
2) Find an orthonormal vector Ni for each hyperplane

defined by the corresponding weighting vector;
3) Implement decision boundary feature matrix ΣB;
4) Select those eigenvectors of ΣB with significant

eigenvalues to form the basis vectors for the new
and reduced feature space;

5) Map all training feature vectors from the original
feature space to the new feature space forming
therefore a new reference database;

6) Train a MLP using the new reference database.

5. Experimental Studies

Two sets of experiments were carried out. Using
synthetic gaussian data, the first set of experiments
explicitly illustrate decision hypersurfaces (or
hyperplanes) in the input feature space. The second set
of experiments employs both synthetic gaussian data

and real human signature data to elucidate our
discriminant feature extraction algorithm. For sake of
simplicity, without losing generality, we assume only
uniform prior probabilities.

5.1. Example 1 (A Two-Class Problem)

On purpose, we elaborated a two-class problem with
a common mean vector. A single hidden layer
perceptrons with 10 neurons in the hidden layer is
trained by 500 samples from each class. Precisely two
classes have the following statistics, that is, mean
vectors and covariance matrices:
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Notice that two classes have a common mean vectors
and the theoretical decision boundary is a cycle. Figure
1 shows how nine decision hyperplanes are located
geometrically in the input feature space and help for the
decision boundary formation.

Figure 1. Decision hyperplanes in the input feature
space

Figure 2. Decision hyperplanes in the input feature
space
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5.2. Example 2 (A Two-Class Problem)

Two gaussian pattern classes have the following
statistics:
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which have distinct mean vectors and covariance
matrices. Figure 2 shows how 9 hyperplanes attempt to
approximate to a parabola which is the optimum
decision boundary.

5.3. Example 3 (A Linear Separable Problem)

This is a linearly separable problem where Gaussian
data are generated for the following statistics:
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Table 1 shows the eigenvalues of the decision
boundary feature matrix (ΣB) along with the proportion
of eigenvalue (Pro.Ev.) and the accumulation of
eigenvalues (Acc.Ev.). The eigenvalues are sorted in
the decreasing order. The classification accuracies
(Cl.Ac.) obtained using the corresponding eigenvectors
are also shown along the normalized classification
accuracy (N.Cl.Ac.) obtained by dividing the
classification accuracies by the classification accuracy
obtained using all features.

Table 1. Eigenvalues of BΣ and some statistics

Ev. Pro.Ev.
(%)

Acc. Ev.
(%)

Cl.Ac.
(%)

N.Cl.Ac.
(%)

1 356.75 99,94 99.94 97.56 99,94
2 0.1992 0,06 100 97.62 100

5.4. Example 4 (A Multi-Modal Problem)

This is a two class muiti-modal problem with the
following class statistics:
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Table 2 shows the eigenvalues of the decision
boundary feature matrix (ΣB) along with Pro.Ev.,
Acc.Ev., Cl.Ac., and N.Cl.Ac.

Table 2. Eigenvalues of ΣB and some statistics

Ev. Pro Ev.
(%)

Acc. Ev.
(%)

Cl.Ac.
(%)

N.Cl.Ac.
(%)

1 200.465 56.81 56.81 98.86 99,32
2 152.401 43.19 100 99.53 100

5.5. Example 5 (A Multi-Dimensional)

This is a two-class problem with the following
statistics:
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Table 3 shows the eigenvalues of the decision
boundary feature matrix (ΣB) along with Pro.Ev.,
Acc.Ev., Cl.Ac., and N.Cl.Ac.

Table 3. Eigenvalues of ΣB and some statistics

Ev. ProEv.
(%)

Acc. Ev.
(%)

Cl.Ac.
(%)

N.Cl.Ac.
(%)

1 200.8037 99.37 99.37 99.15 99,96
2 1.1008 0.43 99.80 99.19 99.99
3 0.5121 0.20 100 99.20 100

5.6. Example 6 (A Multi-Class and Multi-
Dimensional Problem)

This is a three class problem with the following
statistics:
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Table 4 shows the eigenvalues of the decision
boundary feature matrix (ΣB) along with Pro.Ev.,
Acc.Ev., Cl.Ac., and N.Cl.Ac.

Table 4. Eigenvalues of ΣB and some statistics

Ev. Pro Ev.
(%)

Acc. Ev.
(%)

Cl.Ac.
(%)

N.Cl.Ac.
(%)

1 602.159 69.08 69.08 60.60 71.02
2 251.493 28.5 97.93 84.95 99.56
3 18.0485 2.07 100 85.32 100
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5.7. Example 7 (Handwritten Signature
Recognition)

The database used in this experiments was
originally derived from 550 human handwritten
signatures contributed equally from 5 people, and a set
of 32 feature values are extracted from each signature
[17]. The 550 signature data are divided equally, half
for neural classifier training and half for classifier
testing. Since there are 5 classes, the implemented
MLP classifier has 5 outputs each representing a class.

The implemented neural Baysian classifier has
classification accuracy of 93.48% on the average. Table
5 lists the eigenvalues of the decision boundary feature
matrix BΣ  along with Pro.Ev., Acc.Ev., Cl.Ac., and
N.Cl.Ac. Interesting enough is the fact that a few
number of the most discrimianant features (for
instance, 5 to 10 features) are capable of achieving 98%
of the maximum performance given by the Baysian
classifier. This result suggests that many features out of
32 are discriminantly redundant. However, it should be
noticed that many features (for instance, feature 11 to
feature 21), although are relatively less discrimiant
with respect to the high discriminant features, they are
definitely essential to help to achieve the utmost
performance.

Table 5. Eigenvalues of ΣB and some statistics

Ev. Pro.Ev.
(%)

Acc.Ev
(%)

Cl.Ac.
(%)

N.Cl.Ac.
(%)

1 328.745 34.9327 34.9327 27.27 29.12
2 259.926 27.6199 62.5526 59.09 63.11
3 147.271 15.6492 78.2018 76.36 81.55
4 96.8837 10.2949 88.4967 86.54 92.42
5 76.3852 8.1167 96.6134 90.00 96.12
6 24.5991 2.6139 99.2273 90.36 96.50
7 3.4758 0.3693 99.5966 90.36 96.50
8 1.9930 0.2118 99.8084 90.90 97.08
9 0.5434 0.0577 99.8662 90.72 96.89

10 0.3159 0.0336 99.8997 91.45 97.67
11 0.1723 0.0183 99.9181 91.81 98.06
12 0.1171 0.0124 99.9305 92.18 98.45
13 0.0844 0.0090 99.9395 92.18 98.45
14 0.0735 0.0078 99.9473 92.36 98.46
15 0.0694 0.0074 99.9547 92.72 99.03
16 0.0606 0.0064 99.9611 92.54 98.84
17 0.0531 0.0056 99.9667 92.72 99.03
18 0.0485 0.0052 99.9719 92.72 99.03
19 0.0391 0.0042 99.9761 92.90 99.23
20 0.0334 0.0036 99.9796 92.90 99.23
21 0.0317 0.0034 99.9830 93.09 99.42
22 0.0279 0.0030 99.9859 93.09 99.42
23 0.0250 0.0027 99.9886 93.27 99.62
24 0.0220 0.0023 99.9909 93.27 99.62

25 0.0177 0.0019 99.9928 92.90 99.23
26 0.0164 0.0017 99.9946 93.27 99.62
27 0.0135 0.0014 99.9960 93.45 99.81
28 0.0115 0.0012 99.9972 93.27 99.62
29 0.0100 0.0011 99.9983 93.45 99.81
30 0.0066 0.0007 99.9990 93.63 100
31 0.0060 0.0006 99.9996 93.27 99.62
32 0.0036 0.0004 100 93.63 100

6. Conclusions

In this paper, we presented an alternative approach
for feature extraction and pattern classification based
on optimum decision boundaries. The optimum
decision boundary, in the sense of  minimizing the
classification error probability, can be approximated by
connected hypersurfaces in the input feature space,
which are subset of hyperplanes defined by the
structure and parameters of Bayes neural classifiers.
Such an approximation is tight when the number of
hidden neurons is sufficiently large. The use of neural
classifiers allows us to solve some complex
classification problems with arbitrary decision
boundaries without assuming underlying probability
distribution functions of the sample data, and still
achieving the best classification performance.

Discriminability of feature vectors can be easily
evaluated by analyzing geometric positions of the
hyperplanes. For this end, a decision boundary feature
matrix was defined and implemented using the normal
vectors to the hyperplanes. It was stated that the
number of discriminant feature vectors is equal to the
number of eigenvectors of non-zero eigenvalues of the
decision boundary feature matrix.

Experiments show that the proposed feature
extraction and pattern classification method is
extremely fast and efficient with respect to the method
proposed in [12].
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