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Abstract

This work presents a design procedure for neural
network based dynamics decoupers for multivariable
systems. Theoretical aspeds related to the
determination o the invese dynamics for
multivariable linear systems are nsidered. The
apgication d artificial neural networks in inverse
dynamics implementation is discused. Finadly, a
design exampleis presented.

1. Introduction

The aontrol of multivariable plants has traditionall y
been a dalengng task for the control community.
The difficulties are diredly related to the existence of
nonlinea plants, time delays, inacarate models,
measurement noise, crosscoupling interadion between
inputs and outputs, etc. [1, 2].

Traditionally, SISO control techniques have failed
in the presence of 1/0 cross coupling. Thus, the
reduction of the /O cross interadion plays an
important role in the control design for MIMO
systems. A well accepted technique is to design a
dynamic uncoupling control structure that has as its
main objedive the reduction of the aoss coupling
interadion between inputs and outputs of the MIMO
plant.

The use of dynamic deooupling structures alows
the goplicaion of SISO multi-looptuning techniquesto
solve the oontrol problem of MIMO systems. This is
achieved making the plant diagonal dominant by
reducing the aoss interadion among loops. Severa
contributions can be found in the literature based on
thisidea[9, 11]. Most of them are based on trial and
error procedures.

Artificial Neural Networks (ANN’s) have been the
focus of the dtention of the scientific community,
espedally for control applications [7]. Thisis a dired
consequence of the ANN properties and
charaderistics:

e Capahility of Nonlinear Mappings.

e Distributed Parallel Processng.

e Software or Hardware Implementation.
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e Leaning and Adaptation Capabiliti es.
e Quantitative and Qualitative Data Processng.
¢ MIMO Data Structures Processng.

Recently, ANN techniques have been combined
with fuzzy logic dgorithms delivering new neuro-fuzzy
systems[§].

Several contributions can be found in the literature
considering the use of ANN to implement dired and
inverse dynamics for SISO systems. This work
presents an extension of the SISO Yamada and Y abuta
procedure [12] for MIMO systems. It focuses on the
use of ANN in the implementation of dynamic
dewupling structures for MIMO systems with time
delays[2, 3, 4, and 5.

2. Direct Control & Dynamic Decoupling

Dired control schemes usually consist of a
controller placed in the dired path of the system as
shown in Figure 1.
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Figure 1. The Dired Controller Scheme.

In the ided case, the mntroller cancds the plant
dynamics guch that the new controller-plant system
behaves as a scdar and thus the plant output exadly
follows the input. In this case, the system output is
given by:

Y(2)=D; Gpg(2)Gpy(2) ™ 27Mr(2)

(1a)
y(2)=Dz z7r(2)
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The time delay 7' is due to the cntroller digital
implementation. Also, it should be noted that the plant
output, y(2), corresponds to the antroller input, r(2),
shifted by dii+1 samplings. This is consistent with the
fad that it is not possble to remove the cmmmon time
delays from the plant dynamics.

In pradicd applicaions, however, this type of
control technique must ded with difficult tasks such as
unstable pole-zero cancdlations, poar modeling, and
the presence of measurement noise ad output
disturbances. Because of these, direa controllers are
not implemented alone but in combination with some
other type of control. In the MIMO case, a good model
for the inverse dynamics of the plant alows the
reduction of cross coupling interadion between the
plant inputs and outputs improving the diagona
dominancein some frequency range and fadlit ating the
implementation of a seacnd controller that is designed
for performance (Figure 2).
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Figure 2. Multivariable Control.

3. Neural Network Dynamic Decoupling

This «dion presents a brief review on the
procedure to oltain the inverse dynamics of MIMO
linea systems. Without lost of generaity only 2x2
MIMO linea systemswill be mnsidered [2].

Let a2x2 linea system be defined by

v@]=[6)] [u@)] (29)
where
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the matrix transfer function [G(2)] can be factored as
[6(2]=[D.] [Gpq (2)] (3a)
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and
dii = puretime delays
gij = complementary time delays

The entries of matrix [D,] are pure time delays that
are larger or equal than smallest time delay among all
time delays from any input to any output of the plant.
Equation 3 is used to determine the common delay
matrix [D].

Since the delay matrix [D,] does not have a casal
inverse, finding the inverse dynamics of the plant
basicdly consists in computing the inverse of the
matrix [Gpg(2)]. The necessary and sufficient condition
for the eistence of such an inverse matrix is that the
matrix [Gpg(2)] must have full rank over the field of the
rational functionsin z[6][10].

In the 2x2 MIMO case, the inverse of the shifted
matrix [Gpy(2)] is given by
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The denominator, Dg(Zz'), in Equation 4a
corresponds to the determinant of [Gpy(z)] and its
degreeis given by

s =maq{(q11+ q22), (ql2+ q21)] 5)

It can be shown that
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where the rdij are time delays associated with r(2).

The implementation of ANN based inverse
dynamics requires the previous knowledge of input-
output data & well as of the network structure. This
information can be found solving the system:

G.(9 =
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From Equation 7 one has
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Vedors w; e w, are built from the mefficients of

numy;, NUME, NUML; humy; and den and dividing
everything by den,. It should be noted that using
Equation 8, two linea ANN’s can be used to oltain the
my(k) and my(K) signals, asit is srown in Figure 3.

The NNBDD stahility can be assessed considering
the monic polynomial built from the network weights
related with m(z). The monic polynomial roots
correspond to the system transmisson zeros. Figure 4
shows the Neural Network Based Dynamic Decoupler
(NNBDD) control scheme for a2x2 MIMO system.

Figure 5 shows the leaning mode for the network
structure. The training can be performed in on-line or
off-line mode. The ANN structures can be trained one
at atime. The system input signals u(k) are shifted and
used as supervision signals g; and g,. Thus, Equation 9
givesthetraining vedors.
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4. A 2x2 MIMO System Design Example

Determining the structures of the NNBDD and the
ANN'’s identifier (Figures 4 and 5, respedively)
requires the previous knowledge of the ANN'’s input
vedors and the supervision signals. For systems with
stable inverse, this can be reated by:

|. Defining the plant model structure.

II. Finding the time delay d. using:

d. =min[(pll+ p22),(pl2+ p21)]

[II. Determining the plant common time delays:
dll=d, - min(p21, p22)

d22=d. -min(pll pl2)
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V. Determining the complementary time delays:

gll=d11- p11

gl2=d11- pl2

g21=d22- p21

g22=d22 - p22

V. Computing the value of susing:

s= ma><[(q11+ g22),(ql2+ q2])]

VI. Computing the polynomial degrees using:

gl1l=nll+n21+ N2+ m22

g12=nl1+n21+ ml2+n22

g21=nll+m21+nl2+n22

g22=mll+n21+nl2+n22

gd = max[(@bg-s+ (qll+ g22)) + mll+ n21+ nl2+ m22),
(abq-s+(gl2+g21) + n11+ m21+ ml2+ n22)]

VI1l. Computing the time delays of the reference
rdll = s-q22

rdl2 = s-ql2
rd21 = s—-g21
rd22 = s—-qll

VIII. Finding the dimensions of the input veaors:
a=9gll+gl2+gd+2

B =921+ g22+gd+2

I X. Determining the time shift of the training veaors:
dix1=max[(-rd11+d11),(-rd12+d22)]

dix2 =max[(-rd 21+ d1l),(-rd 22+ d22)]

X. Finding the time delays of the training signals:
dill=rd11-d11+dIxi

dil2=rd12-d22+dIxi
di21=rd21-d11+dIx2
di22=rd22-d22+ dIx2

5. Experimental Results

For simulation purpose, the Wood and Berry model
[11] with Tg= 1 min was used (Equation 10).
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X ]
O D(Z)ng 109419 1—0,95352‘1Dm(Z)E (10
O s 05786 . -13015 C
(0 & 1-0912z* ° 1-0932g°F AL

The NNBDD performance was compared against a
pre-compensator designed using the Inverse Nyquist
Array (INA) technique.

The NNBDD controll er was designed foll owing the
procedure presented in the previous sdion. The
network training was performed in simulation. A white
noise signal was added to the plant input signals to
evauate the system behavior in the presence of
interferences.

The INA pre-compensator was determined
foll owing the work presented by Deshpande [1]. In this




case, the pre-compensator matrix was designed to
improve the diagonal dominance d the frequency of
0.6 rd/sresulting in amatrix [K] given by
01 0.9C
o044 1F

The dosed loop included multi loop PID type
controllers. The training block diagram is $own in
Figure 6.
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Figure 6. Training Setup.

Simulation was caried out using Matlab from
Mathworks. The network weights converged after 1000
iterations to a maximum error of 12.65 % and variance
of 0.0001374 bth measured over the last 200
iterations. It was observed that the network error
charaderistics (mean and variance) are highly
correlated with the white noise signal added to the
system. It means that, the ANN’s matched the system
dynamics, cancding the system output and resulting
the white noise & the main difference Finaly, the
ANN'’s weights defined monic polynomials with stable
roots that ensure the system stability. Table 1 shows
the simulation data.

Table 1. NNBDD Training Data.

Sampling Period: 1 min

Test Signal: PRBS
Repeding Interval: 15min
Period (16 hits): 21845 h
Amplitude: 0,25

Interference Signal: white noise
Variance: 0,000103

Mean: -0,000215

Maximum Absolute Value: 0,035 (14 %)

Training Algorithm: “Reaursive Least Square”
Forgetting Fador = 1
Weights Initial Vaues: Random[-1,1]

The oontrollers were tuned using step inputs. The
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tuning was performed separately for ead loop. It was
observed that the NNBDD controller delivered an
improved system deupling and short settling time. In
the PID-INA controller case, the controller required
additional tuning to read an acceptable performance
Figure 7 presents the simulation results.
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Figure 7. Comparison between NNBDD and INA
Muultivariable Deaoupling Control.

6. Final Commentsand Conclusions

This work presented a design procedure of the
NNBDD applied to linea 2x2 MIMO systems. The
propcsed procedure simplifies the analysis all owing to
addressimportant control aspeds sich as gability and
leaning times. The simulation results dowed the
superior performance of the NNBDD scheme over
classcd tedchniques auch as Inverse Nyquist Arrays.
The results presented here can be reaily extended to
higher order MIMO systems. Also the proposed
control technique can be eaily modified to performin
an adaptive scheme.
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Figure 3. The NNBDD Implementation for 2x2 MIMO Systems.
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