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Abstract
This work presents a design procedure for neural

network based dynamics decouplers for multivariable
systems. Theoretical aspects related to the
determination of the inverse dynamics for
multivariable linear systems are considered. The
application of artificial neural networks in inverse
dynamics implementation is discussed. Finally, a
design example is presented.

1. Introduction
The control of multivariable plants has traditionally

been a challenging task for the control community.
The diff iculties are directly related to the existence of
nonlinear plants, time delays, inaccurate models,
measurement noise, cross-coupling interaction between
inputs and outputs, etc. [1, 2].

Traditionally, SISO control techniques have failed
in the presence of I/O cross coupling. Thus, the
reduction of the I/O cross interaction plays an
important role in the control design for MIMO
systems. A well accepted technique is to design a
dynamic uncoupling control structure that has as its
main objective the reduction of the cross coupling
interaction between inputs and outputs of the MIMO
plant.

The use of dynamic decoupling structures allows
the application of SISO multi -loop tuning techniques to
solve the control problem of MIMO systems. This is
achieved making the plant diagonal dominant by
reducing the cross interaction among loops. Several
contributions can be found in the literature based on
this idea [9, 11]. Most of them are based on trial and
error procedures.

Artificial Neural Networks (ANN’s) have been the
focus of the attention of the scientific community,
especially for control applications [7]. This is a direct
consequence of the ANN properties and
characteristics:

• Capabilit y of Nonlinear Mappings.
• Distributed Parallel Processing.
• Software or Hardware Implementation.

• Learning and Adaptation Capabiliti es.
• Quantitative and Qualitative Data Processing.
• MIMO Data Structures Processing.
Recently, ANN techniques have been combined

with fuzzy logic algorithms delivering new neuro-fuzzy
systems [8].

Several contributions can be found in the literature
considering the use of ANN to implement direct and
inverse dynamics for SISO systems. This work
presents an extension of the SISO Yamada and Yabuta
procedure [12] for MIMO systems. It focuses on the
use of ANN in the implementation of dynamic
decoupling structures for MIMO systems with time
delays [2, 3, 4, and 5].

2. Direct Control & Dynamic Decoupling
Direct control schemes usually consist of a

controller placed in the direct path of the system as
shown in Figure 1.
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Figure 1. The Direct Controller Scheme.

In the ideal case, the controller cancels the plant
dynamics such that the new controller-plant system
behaves as a scalar and thus the plant output exactly
follows the input. In this case, the system output is
given by:
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The time delay z-1 is due to the controller digital
implementation. Also, it should be noted that the plant
output, y(z), corresponds to the controller input, r(z),
shifted by dii+1 samplings. This is consistent with the
fact that it is not possible to remove the common time
delays from the plant dynamics.

In practical applications, however, this type of
control technique must deal with diff icult tasks such as
unstable pole-zero cancellations, poor modeling, and
the presence of measurement noise and output
disturbances. Because of these, direct controllers are
not implemented alone but in combination with some
other type of control. In the MIMO case, a good model
for the inverse dynamics of the plant allows the
reduction of cross coupling interaction between the
plant inputs and outputs improving the diagonal
dominance in some frequency range and facilit ating the
implementation of a second controller that is designed
for performance (Figure 2).
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Figure 2. Multivariable Control.

3. Neural Network Dynamic Decoupling
This section presents a brief review on the

procedure to obtain the inverse dynamics of MIMO
linear systems. Without lost of generality only 2x2
MIMO linear systems will be considered [2].

Let a 2x2 linear system be defined by
[ ] [ ] [ ])()()( zuzGzy =                      (2a)
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the matrix transfer function [G(z)] can be factored as
[ ] [ ] [ ])()(G zGDz Ddz=                  (3a)

where

[ ]











= −

−

22

11

0

0
D

d

d

z
z

z
                   (3b)

[ ]





















=

−

−

−

−

−

−

−

−

)(

)(

)(

)(
)(

)(

)(

)(

)(G

122

122
22

121

121
21

112

112
12

111

111
11

Dd

zH

zG
z

zD

zC
z

zF

zE
z

zB

zA
z

z

n

m
q

n

m
q

n

m
q

n

m
q

   (3c)

and
dii     =  pure time delays
qij     =  complementary time delays

The entries of matrix [Dz] are pure time delays that
are larger or equal than smallest time delay among all
time delays from any input to any output of the plant.
Equation 3 is used to determine the common delay
matrix [Dz].

Since the delay matrix [Dz] does not have a causal
inverse, finding the inverse dynamics of the plant
basically consists in computing the inverse of the
matrix [GDd(z)]. The necessary and suff icient condition
for the existence of such an inverse matrix is that the
matrix [GDd(z)] must have full rank over the field of the
rational functions in z [6][10].

In the 2x2 MIMO case, the inverse of the shifted
matrix [GDd(z)] is given by
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The denominator, Dc(z
-1), in Equation 4a

corresponds to the determinant of [GDd(z)] and its
degree is given by

[ ])2112(),2211(max   qqqqs ++=             (5)
It can be shown that
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where the rdij  are time delays associated with r(z).

The implementation of ANN based inverse
dynamics requires the previous knowledge of input-
output data as well as of the network structure. This
information can be found solving the system:

[ ] [ ] [ ])()()( zrzGzm c=                     (7a)
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From Equation 7 one has
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Vectors w1 e w2 are built from the coeff icients of
num11, num12, num21, num22 and den and dividing
everything by den0. It should be noted that using
Equation 8, two linear ANN’s can be used to obtain the
m1(k) and m2(k) signals, as it is shown in Figure 3.

The NNBDD stabilit y can be assessed considering
the monic polynomial built from the network weights
related with m(z). The monic polynomial roots
correspond to the system transmission zeros. Figure 4
shows the Neural Network Based Dynamic Decoupler
(NNBDD) control scheme for a 2x2 MIMO system.

Figure 5 shows the learning mode for the network
structure. The training can be performed in on-line or
off- line mode. The ANN structures can be trained one
at a time. The system input signals u(k) are shifted and
used as supervision signals g1 and g2. Thus, Equation 9
gives the training vectors.
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4. A 2x2 MIMO System Design Example
Determining the structures of the NNBDD and the

ANN’s identifier (Figures 4 and 5, respectively)
requires the previous knowledge of the ANN’s input
vectors and the supervision signals. For systems with
stable inverse, this can be reached by:

I. Defining the plant model structure.
II . Finding the time delay dc using:
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III . Determining the plant common time delays:
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X. Finding the time delays of the training signals:
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5. Experimental Results
For simulation purpose, the Wood and Berry model

[11] with Ts = 1 min was used (Equation 10).
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The NNBDD performance was compared against a
pre-compensator designed using the Inverse Nyquist
Array (INA) technique.

The NNBDD controller was designed following the
procedure presented in the previous section. The
network training was performed in simulation. A white
noise signal was added to the plant input signals to
evaluate the system behavior in the presence of
interferences.

The INA pre-compensator was determined
following the work presented by Deshpande [1]. In this
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case, the pre-compensator matrix was designed to
improve the diagonal dominance at the frequency of
0.6 rd/s resulting in a matrix [K] given by









−

=
144.0

9.01
K                      (11)

The closed loop included multi l oop PID type
controllers. The training block diagram is shown in
Figure 6.
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Figure  6. Training Setup.
Simulation was carried out using Matlab from

Mathworks. The network weights converged after 1000
iterations to a maximum error of 12.65 % and variance
of 0.0001374 both measured over the last 200
iterations. It was observed that the network error
characteristics (mean and variance) are highly
correlated with the white noise signal added to the
system. It means that, the ANN’s matched the system
dynamics, canceling the system output and resulting
the white noise as the main difference. Finally, the
ANN’s weights defined monic polynomials with stable
roots that ensure the system stabilit y. Table 1 shows
the simulation data.

Table 1. NNBDD Training Data.

Sampling Period: 1 min

Test Signal: PRBS
Repeating Interval: 15 min
Period (16 bits): 21845 h
Amplitude: 0,25

Interference Signal: white noise
Variance: 0,000103
Mean: -0,000215
Maximum Absolute Value: 0,035 (14 %)

Training Algorithm: “Recursive Least Square”
Forgetting Factor = 1
Weights Initial Values: Random [-1,1]

The controllers were tuned using step inputs. The

tuning was performed separately for each loop. It was
observed that the NNBDD controller delivered an
improved system decoupling and short settling time. In
the PID-INA controller case, the controller required
additional tuning to reach an acceptable performance.
Figure 7 presents the simulation results.
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Figure 7. Comparison between NNBDD and INA
Multivariable Decoupling Control.

6. Final Comments and Conclusions
This work presented a design procedure of the

NNBDD applied to linear 2x2 MIMO systems. The
proposed procedure simpli fies the analysis allowing to
address important control aspects such as stabilit y and
learning times. The simulation results showed the
superior performance of the NNBDD scheme over
classical techniques such as Inverse Nyquist Arrays.
The results presented here can be readily extended to
higher order MIMO systems. Also the proposed
control technique can be easily modified to perform in
an adaptive scheme.
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