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Abstract

This paper presents a system for callibration of the
involved parameters in the classification and characteri-
zation process of fuzzy concepts that use t-norm differen-
tiable and related membership families for the definition
of characterization functions. An empirical evaluation
using a satellite image database showed the comparabi-
lity with the classical methods of classification.

1. Introduction

Since the theory of fuzzy sets was published by
Zadeh[1] it has seen innumerable and varied applications
in the many different areas of knowledge. It also reached
a complete mathematical characterization of the fuzzy in-
tersection and union through conjunctive (t-norm) and
disjunctive (t-conorm) operators, respectively. In the
fuzzy sets applications, the problem of choosing the
membership functions and operators has been the theme
of many research papers in the area.

The objective of this work is to present the CALI-
BRA system for satellite image. It uses the differentia-
ble t-norms and t-conorms proposed in Zanusso[2] and
Zanusso[3] for realize the conjunctions and disjunctions
of fuzzy sets. The system got this name because by mi-
nimizing the mean squared error, it systematizes the pa-
rameter’s callibration of the membership functions that
represent elementary concepts over each attribute of the
object to be characterized or classified. Its output is a cha-
racterizing expression of functions that represent fuzzy
concepts obtained by conjunctions of the elementary con-
cepts and disjunctions of these conjunctions. One expects
to functions that will represent the classes of soil utiliza-
tion well and that the system will attain a good classifica-
tion.

In the second section of the paper, a summary of the
t-norms and membership functions families is presented.
The third section describe the satellite image database.
The fourth presents a brief description of the system and
the last section the preliminary training results.

2. T-Norms on Membership Functions Space

In this section we present the family of membership
functions to represent fuzzy sets. This family is part of
an space where the conjunctive and disjunctive opera-
tors will act on it. Differentiability and a conjecture on
the relationship between the family of operators and the
family of membership functions was also established in
Zanusso[2] and Zanusso[3].

2.1. T-norms and t-conorms families

It seems that the first time that triangular norms and
conorms appeared were with Schweizer and Sklar[4]. He
established the basic definitions and the fundamental the-
orems. Based on these, as can be seen in Klir[5], the the-
ory of fuzzy sets reached a complete characterization of
fuzzy intersection and union by means of conjunctive (t-
norm) and disjunctive(t-conorm) operators, respectively.
Many authors present different t-norms to realize these
operations but most of them depend on maximum and
minimum.

Definition 1 (T-Norms Family) By definition, if ��� �
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where 9 : ; <+= > ?�@ A @ B4C.> D A E�F$B is definedby9 : ; <+G H+B!IKJ
L @!E2H@(?MH!N < (4)

2.2. The family of Membership functions

Thefollowing family of membershipfunctionsto re-
presentfuzzysetswasproposedO+P ; Q G H�B!I H Q ?SR QH Q EMR Q (5)

whereRST&D e UMVIKD . Thesefunctionsmodelelementary
conceptslike,tall people, heavypeople, etc,for attributes
heightandweight,respectively.

Figure1 shows a membershipfunctionof a concept,
or class,G definedonly overanattributeX, where > W�A X6Y
is the interval of the variation of X. It is the conjunc-
tion(intersection)of two elementaryconceptsZ4[!\ andZ4[!] asshown in Figure2 for W^IK_ and X$I`@ _ .

Figure1: The membershipof G over the X is given byZ4a

Figure2: ElementaryconceptZ4[!\ and Z4[!] which haveZ4a asa conjunction

3. The Satellite ImageDatabase

The satellite image database was taken from
the following address ”UCI Repository of Ma-
chine Learning Database and Domain Theories”:

ftp:ics.uci.edu:pub/machine-learning-databases. It was
in usein the EuropeanStatlogproject, which involves
comparing the performancesof machine learning,
statistical,and neural network algorithmson data sets
from real-world areas. This databasewas generated
from LandsatMulti-SpectralScannerimagedata. The
original datafor this databasewas generatedfrom data
purchasedfrom NASA by the Australian Centre for
RemoteSensing.

The Landsatsatellitedatais oneof many sourcesof
informationavailablefor a scene.This datasatisfiesthe
importantrequirementsof beingnumericalandat a sin-
gle resolution,andstandardmaximum-likelihoodclassi-
ficationperformsvery well. Consequently, for this data,
it shouldbe interestingto comparethe performanceof
othermethodsagainstthestatisticalapproach.

One frame of Landsat MSS imagery consistsof
four digital images of the same scene in different
spectral bands. Two of these are in the visible re-
gion(correspondingapproximatelyto greenand red re-
gionsof the visible spectrum)andtwo arein the (near)
infra-red.Eachpixel is a8-bit binaryword,with 0 corres-
pondingto blackand255to white. Thespatialresolution
of a pixel is about80mx80m.

This databaseis a sub-areaof a scene,consistingof
82 x 100 pixels. The binary valueswere convertedto
their presentASCII form andthe classificationfor each
pixel wasperformedon thebasisof anactualsitevisit by
Ms. KarenHall, whenworking at theCentrefor Remote
Sensingat theUniversityof New SouthWales,Australia.

Each line of data correspondsto a 3x3 square
neighborhoodof pixelscompletelycontainedwithin the
82x100sub-area.Eachline containsthe pixel valuesin
thefour spectralbandsof eachof the9 pixelsin the3x3
neighborhoodanda numberindicatingtheclassification
labelof thecentralpixel. Theaim is to predictthis clas-
sification,giventhemulti-spectralvalues.

Thedatabasecontainsthus6435patternswith 36 at-
tributes(4 spectralbandsx 9 pixelsin neighborhood)plus
the classlabel. Therearesix classesof soil utilization:
redsoil, cottoncrop,grey soil, dampgrey soil, soil with
vegetationstubbleandvery dampgrey soil. Theattribu-
tesarenumerical,in therange0 to 255(8 bits). Thedata
wasgivenin randomorderandcertainlinesof datahave
beenremoved so it cannotbe reconstructedthe original
imagefrom this database.In the work it wasusedonly
the four attributesfor the centralpixel. This avoids the
problemwhichariseswhena3x3neighborhoodstraddles
aboundary. In thispreliminaryversionof thesystemonly
threeclasseswereconsidered.

4. CALIBRA for FuzzyConcepts

Classifiersneuralnetworkshave beendevelopedand
are composedby logical neuronsthat realizeAND/OR
operationsover the input that are membershipgrades.
In particular the works of Brasil [6], Mitra[7], Fu [8],
Halgamuge[9], Pedrycz[10] andJang[11] make useof t-
normsthatdependson maximumandminimumthatare
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not differentiable.The CALIBRA systemreachedcom-
parableresultswith otherclassifierswhenappliedon the
classificationof speciesof iris flowersZanusso[12]. Ta-
ble 8 show this result. Now, it is appliedto the satel-
lite imagedatabaseand in the subsequentsectionsit is
showed preliminaryresults. In this section,a brief des-
criptionof thesystemis presented.

4.1. Characterizing functions definitions

The membershipfunction that characterizea class
agreewith the definitionsof conceptin the context of
cognitive scienceswhen discussingthe conceptforma-
tion. How we canseein Uhr[13] a conceptis a mental
representationof a category of world objectsgivenby a
sequenceof conjunctionsor by a disjunctionof conjunc-
tions.

In first phaseof trainingof theclassifierit waschosen
threeclasses:b (red soil), c (cottoncrop) and d (grey
soil). They wererepresented,or characterized,by functi-
onsof thefour spectralvalues.Forexample,thecharacte-
rizing functionof classb is e�b . It will beobtainedusing
conjunctionsanddisjunctionsof elementaryfuzzy con-
ceptsdefinedoverthis four attributes.As theoverlapping
of classeswasevident,thatis theclassb wasmixedwithc and d classes,it is consideredbgfhb8b&iMb8c`iMb8d
where b8b would have thepixelsthatareonly in b ; b8c
would have thepixels thatareclassifiedin b by the ex-
perts,but are mixed with c too and, in the samewayb8d would have thepixels thatareclassifiedin b by the
experts,but aremixedwith d too.

Then

e�bKfKj6k l�m n l+o n l�p n l q r!fKs4t k e�b8b)n e�b8cun e�b8d�r
(6)

where

e�b8bvfws4x k y8b8b)z { n y(b8b8| { n y8b8b8} { n y(b8b(~ { ny8b8b)z � n y(b8b8| � n y8b8b8} � n y(b8b(~ � r � (7)

being that y8b8b(l { is an inferior (i) elementaryconcept
and y(b8b(l+� is an superior(s) elementaryconceptasso-
ciatedwith the l -th attribute(spectralvalue), l$f�z n | n }
and ~ . Theothertwo classescouldbecharacterizedin a
similarwayasA. Theoperatorss4x and s4t aredefinedin
termsof (1) and(2).

4.2. Fuzzy neural network

Thecalculationof thefunctionsdefinedon theprevi-
oussubsectioncanbeeasilyputin afuzzyneuralnetwork
structurecalledCALIBRA system,asit is shown in Fi-
gura3 andFigura4.

4.3. The parameters

Theparametersp’s andk’s is goingto beadjustedby
the training. To find thecharacterizingfunction e�b8b is

Figure3: CALIBRA System

Figure4: TheclassAA details

necessaryeight parameterp’s andeight parametersk’s.
To e�b8c and e�b8d too.

Theparametersp’sthatdefinee�b wasput in amatrix� b andtheparametersk’s in amatrix � b .

� bKf��� � � � � ��� ��� � � � � � � � � ��� �4� � � �+� � j�{ ���4e�b8b)� � �� � � � ��� ��� � � � � � � � � ��� �4� � � �+� � j�{ ���4e�b8c�� � �� � � � ��� ��� � � � � � � � � ��� �6� � � ��� � j�{ ���4e�b8d�� � �
��

� bKf �� � � � � ��� ��� � � � � � � � �!� � �4� � � �+� � j�{ ���4e�b8b)� � �� � � � ��� ��� � � � � � � � �!� � �4� � � �+� � j�{ ���4e�b8c�� � �� � � � ��� ��� � � � � � � � �!� � �4� � � �+� � j�{ ���4e�b8d�� � �
��

Thus,to define e�b is necessaryto have 48 parame-
ters,being16 of e�b8b , 16 of e�b8c and16 of e�b8d . To
definethe classesb , c and d is necessaryto have 144
parameters.
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The CALIBRA systemhasgot this namebecauseto
minimizing themeansquarederror, a callibrationof the
parametersof the characterizingfunctionsRA, RB and
RC hasto take placefor eachcontext of application.

5. Training Results

In thissectionwepresentedthepreliminaryresultsof
training with the satelliteimagedatabase.The dataset
wasdivided � � � for trainingand � � � for test.

Table 1 shows somegrey level of six test pixels on
thefour bands.Wehavedrawn threepixelsof eachclass.
Table2 shows themeansquarederrorfor six epochs.We
canseethat the error to go down. Table3 andTable4
show theinferior andsuperiorparametersp’sandk’s that
definetheelementaryconceptsthatdefinetheclassA.

Table1: Grey level of sometestpixels

BANDS
1 2 3 4 CLASS
72 115 120 102 A
53 79 96 78 A
47 34 114 126 B
52 43 92 92 B
86 104 108 85 C
87 103 105 86 C

Table2: Errorby epoch

EPOCH ERROR
1 0.802935
2 0.488295
3 0.391975
4 0.32159
5 0.282739
6 0.279347

Table3: ThepA’sparameters

inf. 40 52.2 74 45
sup. 54 26.7 74 103
inf. 39.9 81.3 91.7 93.4
sup. 81.7 130.4 131.7 65.4
inf. 83.4 139 69.96 31.1
sup. 77.5 138.8 147.6 102.4

Table5 shows the membershipgradesof the six test
pixelsof Table1 for theclasses� , � and � givenby the
characterizingfunctions ��� , ��� and ��� respectively.
For example,thefirst pixel of Table1, representedby the
vector � � � � � � � � � � � � � � �   hasmembershipgradeto class

Table4: ThekA’sparameters

inf. 5.99 18.3 4.99 16
sup. -5.9 -18.2 -5 -16
inf. 14.2 18.9 15.3 34.6
sup. -30.4 -21.7 -9.8 -0.06
inf. 21.1 27.6 7.2 7.1
sup. -44.2 -27.8 -32.4 -45

� equalto � ¡ � � ¢ � � � , to class� equalto £(� ¡ ¤ ¤ ¤ ¤ andto
class� equalto £(� ¡ ¥ ¦ � ¤ ¢ � .

Table5: MembershipGrades

RA RB RC
0.256271 - 0.999909 - 0.847963
0.813607 - 0.941517 - 0.875795

- 0.999081 0.992846 - 0.989206
0.744403 0.935964 - 0.932550

- 0.921334 - 0.999491 0.222398
- 0.913810 - 0.999399 0.220758

Table6 showstheordinary(crisp)membershipof the
samepixels. It wasconsideredthat if thepixel hadposi-
tive membershipit would begivenordinarymembership
equal to one; the pixel that had negative membership
would begivenordinarymembershipequalto zero.This
criterionis still in study.

Table6: OrdinaryMembership

OA OB OC
1 0 0
1 0 0
0 1 0
1 1 0
0 0 1
0 0 1

Confusionmatrix

Oneof thecriteriato evaluatetheperformanceof the
classificationmethodsis to usethecomparisonof there-
ferencedatawith classificationresultsto derive classi-
fication accuracies.For classifiedimage(or a map), a
confusionmatrix (alsocalledanerrormatrix or a contin-
gency matrix) canbe made.The Table7 shows the this
matrix. Themajordiagonalof theconfusionmatrix indi-
catestheagreementbetweenthetwo datasets.

The confusionmatrix allows variousaccuracy indi-
cesto be derived. The Kappacoefficient § was given
in Cohen[14]. It hasbeenrecommendedas a suitable
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Table7: ConfusionMatrix

CLASSIFIER
REFERENCE A B C

A 97.3913 0 2.17391
B 9.95261 80.5687 0
C 1.2285 0 97.2973

Table8: ClassificationAccuracy for SeveralClassifiers

Methodof Classification iris satimage
K-NearestNeighbor ¨ © ª « « ¬ ­ ® ª ® ¨ ¬

NeuralNetwork ¨ ¯ ª ° ° ¬ ­ ° ª ¨ ­ ¬
C4.5DecisionTree ¨ © ª ± ® ¬ ­ ° ª ¯ « ¬

QuadraticBayes ¨ ¯ ª ° ° ¬ ­ ¯ ª ® ­ ¬
LinearBayes ¨ ® ª ° ° ¬ ­ ° ª ° ² ¬
CALIBRA ¨ ¯ ª ¯ ¯ ¬ ¨ ² ª ® ¯ ¬

accuracy measurein thematicclassificationfor represen-
ting theconfusionmatrix asa whole. It takesall theele-
mentsin the confusionmatrix into consideration,rather
than just the diagonalelements,which occurswith the
calculationof overall classificationaccuracy.

TheKappacoefficient is definedby³�´`µ ¶8·Sµ�¸² ·�µ�¸ (8)

whereµ ¶ andµ�¸ indicatetheproportionof unitswhich
agree,and the proportionof units for expectedchance
agreement,respectively.

The Table 8 shows the comparisonof resultswith
othersclassifiers.Theresultsof theotherclassifierswas
publishedby Woods[15].

6. Conclusions

The resultsseemsto indicatethat the characterizing
functionsgiven in equations(6) and (7) representeach
classwell. On the otherhandtheCALIBRA hasshown
will a goodperformanceof classification.The differen-
tiability of t-normsand t-conormscan facilitatea more
rigorousmathematicaltreatmentof thesystem.Oneway
to develop this systemwould be to createa moduspo-
nenrule andotherlogical mechanismsfor the inference
building thenanhybridexpert.
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