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Abstract

This paper presents a system for callibration of the
involved parameters in the classification and characteri-
zation process of fuzzy concepts that use t-norm differen-
tiable and related membership families for the definition
of characterization functions. An empirical evaluation
using a satellite image database showed the comparabi-
lity with the classical methods of classification.

1. Introduction

Since the theory of fuzzy sets was published by
Zadeh[1] it has seen innumerable and varied applications
in the many different areas of knowledge. It also reached
a complete mathematical characterization of the fuzzy in-
tersection and union through conjunctive (t-norm) and
disjunctive (t-conorm) operators, respectively. In the
fuzzy sets applications, the problem of choosing the

2. T-Norms on Membership Functions Space

In this section we present the family of membership
functions to represent fuzzy sets. This family is part of
an space where the conjunctive and disjunctive opera-
tors will act on it. Differentiability and a conjecture on
the relationship between the family of operators and the
family of membership functions was also established in
Zanusso[2] and Zanusso[3].

2.1. T-norms and t-conorms families

It seems that the first time that triangular norms and
conorms appeared were with Schweizer and Sklar[4]. He
established the basic definitions and the fundamental the-
orems. Based on these, as can be seen in Klir[5], the the-
ory of fuzzy sets reached a complete characterization of
fuzzy intersection and union by means of conjunctive (t-
norm) and disjunctive(t-conorm) operators, respectively.
Many authors present different t-norms to realize these
operations but most of them depend on maximum and

membership functions and operators has been the theme minimum.

of many research papers in the area.

The objective of this work is to present the CALI-
BRA system for satellite image. It uses the differentia-
ble t-norms and t-conorms proposed in Zanusso[2] and
Zanusso[3] for realize the conjunctions and disjunctions
of fuzzy sets. The system got this name because by mi-
nimizing the mean squared error, it systematizes the pa-
rameter’s callibration of the membership functions that

represent elementary concepts over each attribute of the

object to be characterized or classified. Its output is a cha-
racterizing expression of functions that represent fuzzy
concepts obtained by conjunctions of the elementary con-

cepts and disjunctions of these conjunctions. One expects

to functions that will represent the classes of soil utiliza-
tion well and that the system will attain a good classifica-
tion.

In the second section of the paper, a summary of the
t-norms and membership functions families is presented.
The third section describe the satellite image database.
The fourth presents a brief description of the system and
the last section the preliminary training results.
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2.2 The family of Membership functions
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Thefollowing family of membershigunctionsto re-

presenfuzzy setswasproposed
k k

=TT (5)

¥+ p
wherep > 0 e k # 0. Thesefunctionsmodelelementary
conceptdik e, tall people heavypeople etc,for attributes
heightandweight,respectiely.

Figure 1 shavs a membershigunction of a concept,
or class,G definedonly overanattribute X, where[, S]
is the interval of the variation of X. It is the conjunc-
tion(intersection)of two elementaryconceptsZx; and
Zxs asshovnin Figure2 for I = 3 andS = 13.
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Figure 1: The membershipf G over the X is given by
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Figure2: ElementaryconceptZ x; and Zx, which have
Zg asaconjunction

3. The Satellite Image Database

The satellite image databasewas taken from
the following address "UCI Repository of Ma-
chine Learning Database and Domain Theories™
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ftp:ics.uci.edu:pub/machine-ledng-databases. It was
in usein the EuropeanStatlog project, which involves
comparing the performancesof machine learning,
statistical, and neural network algorithmson data sets
from real-world areas. This databasewas generated
from LandsatMulti-Spectral Scannerimagedata. The

original datafor this databasevas generatedrom data
purchasedfrom NASA by the Australian Centre for

RemoteSensing.

The Landsatsatellitedatais one of mary sourcesof
informationavailablefor a scene.This datasatisfieshe
importantrequirement®f beingnumericalandat a sin-
gle resolution,and standardnaximume-likelihoodclassi-
fication performsvery well. Consequentlyfor this data,
it shouldbe interestingto comparethe performanceof
othermethodsagainsthe statisticalapproach.

One frame of LandsatMSS imagery consists of
four digital images of the same scenein different
spectralbands. Two of theseare in the visible re-
gion(correspondingpproximatelyto greenand red re-
gionsof the visible spectrum)andtwo arein the (near)
infra-red. Eachpixelis a8-bit binaryword, with O corres-
pondingto blackand255to white. The spatialresolution
of apixelis about80mx80m.

This databases a sub-areaof a scene consistingof
82 x 100 pixels. The binary valueswere corvertedto
their presentASCII form andthe classificationfor each
pixel wasperformedon thebasisof anactualsitevisit by
Ms. KarenHall, whenworking at the Centrefor Remote
Sensingatthe Universityof New SouthWales,Australia.

Each line of data correspondsto a 3x3 square
neighborhoof pixels completelycontainedwithin the
82x100sub-area.Eachline containsthe pixel valuesin
the four spectrabandsof eachof the 9 pixelsin the 3x3
neighborhoocanda numberindicatingthe classification
label of the centralpixel. Theaimis to predictthis clas-
sification,giventhe multi-spectralalues.

The databaseontainsthus6435patternswith 36 at-
tributes(4 spectrabandsx 9 pixelsin neighborhoodplus
the classlabel. Therearesix classeof soil utilization:
redsoil, cottoncrop, grey soil, dampgrey sail, soil with
vegetationstubbleandvery dampgrey soil. The attribu-
tesarenumericalin therange0 to 255(8 bits). Thedata
wasgivenin randomorderandcertainlines of datahave
beenremoved so it cannotbe reconstructedhe original
imagefrom this databaseln the work it wasusedonly
the four attributesfor the centralpixel. This avoids the
problemwhich arisesvhena3x3neighborhoodtraddles
aboundary In this preliminaryversionof thesystenonly
threeclassesvereconsidered.

4. CALIBRA for Fuzzy Concepts

Classifiersneuralnetworks have beendevelopedand
are composeddy logical neuronsthat realize AND/OR
operationsover the input that are membershipgrades.
In particularthe works of Brasil [6], Mitra[7], Fu [8],
Halgamuge[® Pedrycz[1) andJang[1] make useof t-
normsthatdependon maximumandminimumthatare



not differentiable. The CALIBRA systemreachedcom-
parableresultswith otherclassifiersvhenappliedon the
classificationof specieof iris flowersZanusso[1R Ta-
ble 8 shaw this result. Now, it is appliedto the satel-
lite imagedatabaseandin the subsequensectionsit is
shaved preliminaryresults. In this section,a brief des-
cription of the systemis presented.

4.1 Characterizing functions definitions

The membershipfunction that characterizea class
agreewith the definitions of conceptin the context of
cognitive sciencesvhen discussingthe conceptforma-
tion. How we canseein Uhr[13] a conceptis a mental
representationf a category of world objectsgivenby a
sequencef conjunctionsor by a disjunctionof conjunc-
tions.

In first phaseof training of the classifierit waschosen
threeclasses:A (red soil), B (cottoncrop)andC' (grey
soil). They wererepresentedyr characterizedyy functi-
onsof thefour spectralalues.For example thecharacte-
rizing functionof classA is RA. It will beobtainedusing
conjunctionsand disjunctionsof elementaryfuzzy con-
ceptsdefinedoverthisfour attributes.As the overlapping
of classesvasevident,thatis theclass4 wasmixedwith
B andC classesit is consideredd = AAU ABU AC
where AA would have the pixelsthatareonly in A; AB
would have the pixelsthat areclassifiedin A by the ex-
perts, but are mixed with B too and, in the sameway
AC would have the pixelsthatareclassifiedin A by the
experts,but aremixedwith C' too.

Then

RA = f(z1,%2,%3,24) = Ug(RAA, RAB, RAC)
(6)

where

RAA

U.(ZAAli, ZAA2i,Z AA3i, ZAA4i,
ZAAls, ZAA2s, Z AA3s, ZAA4s). (7)

beingthat ZAAzi is aninferior (i) elementaryconcept
and ZA Azs is an superior(s) elementaryconceptasso-
ciatedwith the z-th attribute(spectralalue),x = 1,2,3

and4. Theothertwo classesouldbe characterizedh a
similarway asA. Theoperatord/. andU, aredefinedin

termsof (1) and(2).

4.2 Fuzzy neural network

The calculationof thefunctionsdefinedon the previ-
oussubsectiorranbeeasilyputin afuzzy neuralnetwork
structurecalled CALIBRA system,asit is shovn in Fi-
gura3 andFigura4.

4.3 The parameters

The parameterp’s andk’s is goingto be adjustedby
thetraining. To find the characterizingunction RAA is
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Figure4: TheclassAA details

necessargight parameteip’s and eight parameter«’s.
To RAB andRAC too.

Theparameterp’sthatdefineR A wasputin amatrix
pA andtheparameter&’sin amatrix £ A.

|

Thus,to define RA is necessaryo have 48 parame-
ters,beingl6of RAA, 16 of RAB and16 of RAC . To
definethe classes4, B and(' is necessaryo have 144
parameters.

the parameters p's that define RAB...

...the parameters p's that define RAA...
pA=1| ..
...the parameters p's that de fine RAC...

the parameters k's that de fine RAB...

...the parameters k's that define RAA...
kA= ..
...the parameters k's that de fine RAC...



The CALIBRA systemhasgot this namebecauséo
minimizing the meansquaederror, a callibrationof the
parameter®f the characterizingunctionsRA, RB and
RC hasto take placefor eachcontext of application.

5. Training Results

In this sectionwe presentedhe preliminaryresultsof
training with the satelliteimagedatabase.The dataset
wasdivided70% for trainingand30% for test.

Table 1 shovs somegrey level of six testpixels on
thefour bands We have drawn threepixelsof eachclass.
Table2 shavsthemeansquarecerrorfor six epochs We
canseethat the errorto go down. Table 3 and Table 4
shaw theinferior andsuperiomparameterg’sandk’sthat
definethe elementaryconceptghatdefinethe classA.

Tablel: Grey level of sometestpixels

BANDS
1 2 3 4 | CLASS
72 | 115 | 120 | 102 A
53| 79 | 96 | 78 A
47 | 34 | 114 | 126 B
52| 43 | 92 | 92 B
86 | 104 | 108 | 85 C
87 | 103 | 105 | 86 C

Table2: Errorby epoch

EPOCH| ERROR
1 0.802935
0.488295
0.391975
0.32159
0.282739
0.279347

U BWN

Table3: ThepA's parameters

inf. | 40 | 52.2 74 45
sup.| 54 | 26.7 74 103
inf. | 39.9| 81.3 | 91.7 | 934
sup. | 81.7| 130.4| 131.7| 65.4
inf. | 83.4| 139 | 69.96| 31.1
sup.| 77.5| 138.8 | 147.6| 102.4

Table5 shows the membershigradesof the six test
pixelsof Tablel for theclasses4, B andC' givenby the
characterizingunctionsRA, RB and RC respectiely.
For example thefirst pixel of Tablel, representedy the
vector (72,115,120, 102) hasmembershigradeto class
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Table4: ThekA's parameters

inf. | 599 | 183 | 499 | 16
sup.| -5.9 | -18.2| -5 -16
inf. | 142 | 189 | 153 | 34.6
sup.| -30.4 | -21.7| -9.8 | -0.06
inf. | 21.1 | 276 | 7.2 7.1
sup.| -44.2| -27.8| -32.4| -45

A equalto 0.256271, to classB equalto —0.9999 andto
classC equalto —0.847963.

Table5: MembershigGrades

RA RB RC
0.256271 | - 0.999909| - 0.847963
0.813607 | - 0.941517| - 0.875795

-0.999081| 0.992846 | - 0.989206
0.744403 | 0.935964 | - 0.932550
-0.921334| -0.999491| 0.222398
-0.913810| - 0.999399| 0.220758

Table6 shavstheordinary(crisp) membershipf the
samepixels. It wasconsideredhatif the pixel hadposi-
tive membershipt would be givenordinarymembership
equalto one; the pixel that had negatve membership
would be givenordinarymembershigqualto zero. This
criterionis still in study

Table6: OrdinaryMembership

OA | OB | OC

i allelleollelle)

O OOk
OOl OO

Confusion matrix

Oneof thecriteriato evaluatethe performancef the
classificatiormethodsds to usethe comparisorof there-
ferencedatawith classificationresultsto derive classi-
fication accuracies. For classifiedimage (or a map), a
confusionmatrix (alsocalledanerrormatrix or a contin-
geng matrix) canbe made. The Table 7 shavs the this
matrix. The majordiagonalof the confusionmatrix indi-
catesgheagreemenbetweerthetwo datasets.

The confusionmatrix allows variousaccurag indi-
cesto be derived. The Kappacoeficient K was given
in Cohen[14. It hasbeenrecommendeds a suitable



Table7: ConfusionMatrix

CLASSIFIER
REFERENCE A B C
A 97.3913 0 2.17391
B 9.95261| 80.5687 0
C 1.2285 0 97.2973

Table8: ClassificatiomAccurag for Several Classifiers

Methodof Classification| iris satimage
K-NearestNeighbor | 92.00% | 87.79%
NeuralNetwork 95.33% | 83.98%
C4.5DecisionTree 92.67% | 83.50%
QuadraticBayes 95.33% | 85.78%
LinearBayes 97.33% | 83.31%
CALIBRA 95.55% | 91.75%

accuray measurén thematicclassificatiorfor represen-
ting the confusionmatrix asa whole. It takesall the ele-
mentsin the confusionmatrix into considerationrather
than just the diagonalelements which occurswith the
calculationof overall classificatioraccurag.

TheKappacoeficientis definedby

Do — De
k 1—p. (8)

wherepy andp, indicatetheproportionof unitswhich
agree,and the proportion of units for expectedchance
agreementrespectiely.

The Table 8 shavs the comparisonof resultswith
othersclassifiers.Theresultsof the otherclassifiersvas
publishedoy Woods[13.

6. Conclusions

The resultsseemdo indicatethat the characterizing
functionsgiven in equationg(6) and (7) representach
classwell. Onthe otherhandthe CALIBRA hasshown
will a goodperformanceof classification. The differen-
tiability of t-normsandt-conormscan facilitate a more
rigorousmathematicatreatmenof the system.Oneway
to develop this systemwould be to createa moduspo-
nenrule andotherlogical mechanismgor the inference
building thenanhybrid expert.
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