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Abstract

This paper presents a constructive neural network
model for daily streamflow forecasting. The Surface
water hydrology is basic to the design and operation of
the reservoir. A good example is the operation of a
reservoir with an uncontrolled inflow but having a
means of regulating the outflow. If information on the
nature of the inflow is determinable in advance, then
the reservoir can be operated by some decision rule to
minimize downstream flood damage. For this reasons,
several companies in the Brazilian Electrical Sector
use the linear time-series models such as PARMA
(Periodic Auto regressive Moving Average) models
developed by Box-Jenkins. This paper provides for
river flow prediction a numerical comparison between
neural networks, called  non-linear sigmoidal
regression Blocks networks (NSRBN), and PARMA
models. The NSRBN model approach is shown to
provide better representation of the daily average
water inflow forecasting,  than the models based on
Box-Jenkins method, currently in use on the Brazilian
Electrical Sector.

1. Introduction

Models Streamflow forecasting are an essential
requirement for solving a wide range of scientific
and/or management tasks. Conceptual models [1][2]
offer one possible forecasting method, but such tools
are often considered to be too complex for most
practical implementations. While conceptual models
are of importance in the understanding of hydrologic
processes, there are many practical situations such as
streamflow forecasting where the main concern is with
making accurate predictions at specific watershed
locations. In such situation, the linear time series
models such as PARMA [3][4][5] models have been
used.

The work presented here aims to develop alternative
models to the forecast of dail y average water inflow for
the Boa Esperança Hydroelectric power plant, part of
the Chesf (Companhia Hidrelétrica do São Francisco)
system. This dam is located at Parnaíba River, in the

borderline between Maranhão and Piauí, two Brazili an
States.

We propose the use of constructive networks as an
alternative to dail y average water inflow forecasting to
this dam [6][7][8][9]. We evaluate the results obtained
by the use of  NSRBN against results from the
applications of the traditional Box-Jenkins models.

Section 2 brings an overview of the NSRBN
algorithms, followed by a brief presentation of PARMA
model in the section 3. Section 4 shows an evaluation
of the obtained results. Finall y, section 5 concludes the
paper.

2. NSBRN -NON-LINEAR SIGMOIDAL
REGRESSION BLOCKS NETWORKS

2.1. Network Architecture

The goal here are to present practical methods to
reali ze compact networks using a model with hidden
units with sigmoidal blocks activation functions [9].
The activation function is

)()( )( hhnetxf θσ +=                                           (1)

where:
        h is the order of the block (= number of hidden
units);

       θh  is  bias and )(hnetσ is the hyperbolic tangent

function.

However the analyses of the are not restricted to
hyperbolic tangent function.

The first design step is to divide f (x) up into blocks
of equal-degree terms, as in Figure 1. That is
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Figure 1- NSRBN (network architecture)

The block approach is to reali ze all terms in
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Figure 2- Block of degree p architecture

The input x is an N dimensional vector and xi is the
i-th component of x. The inputs are weighted and fed to
a layer of h hidden units, where h is the order of the
block [10]. Let )(xf

p
be the output of the block of

degree p. Then,
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and ah is the weight between h-th hidden unit to output
unit and  h=1,2,...,p.

A non-linear sigmoidal regression blocks networks
(NSRBN) is defined as a feedforward network based on
Eq. 3. A NSRBN [9][11] is a polynomial function that
can be represented as
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2.2. Constructive learning  method

The constructive algorithm for NSRBN is based on
the constructive learning method. The goal here is to
present a practical method to reali ze NSRBN using
blocks of the sigmoidal function. The constructive
learning algorithm proceeds as follows. We denote p an
algorithmic step at which fk is added to the network.

Therefore an unknown function f is successively
approximated by
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where weights in fk-1(x) are frozen once the k-th degree
fk(x) is added.

2.3. Why d hidden units?

Zhang-Yu and Jia [12] give a direct proof of
approximation property of a multi -layer perceptron
with one hidden layer (MLP1) in single input-output
situation, and find out the relationship between the
order of the best approximation polynomial and the
number N of hidden units of  a MLP1 for a given
function f(x) and a finite N. Based in this proof, we
formulated a more general and eff icient NSRBN.

2.3.1. Relationship between the order of the best
approximation polynomial and the number N of
hidden units of  a MLP1:

Suppose f(x) ∈ C0 [-a,a], and f(x)=f0(x)+fe(x), where
f0(x)  is the odd part of  f(x) and fe(x) is its even part.
Let the output of a MLP1 with N0 be P0(x), N0 is fixed,
hidden units. So, the output P0(x) can approximate f0(x)
in the degree of accuracy better than its 2(2N0 – 1)
order Best Polynomial Approximation (BAP).

Let the output of a MLP1 with 2Ne be Pe(x), Ne is
fixed,  hidden units. So, the output Pe(x) can
approximate fe(x) in the degree of accuracy better than
its 2(3Ne – 1) order best polynomial approximation
(BAP). Using a MLP1 with  N = N0 + Ne hidden units
to approximate f(x), combined approximation, we get
its output:  P(x)= P0(x)+ Pe(x)  where
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The original form of the proof [12] is more
complicated than the one presented here. Since we are
concerned with the existence of  a representation of
multi variate polynomials in terms of NSRBN, a simpler
statement is adopted.

 From the analysis above, it is clear that to
approximate an even function, we need many double
hidden units to combine some even base functions, thus
the freedoms of parameters are lost, and this case may
affect the approximation of the MLP1. So we propose a
NSRBN in which some of hidden units have even
blocks activation function and the rest have odd blocks
activation function. This kind of hybrid activation
function model may have stronger nonlinear mapping
abilit y.
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2.4 Neurobiological plausibility of  NSRBN

Are NSBRN computing structures even remotely
neurobiologicall y plausible? In neurophysiology, the
possibilit y that dendriti c  computations could include
local multipli cative nonlinearities is widely accepted
[13]. Indeed, Durbin and Rumelhart [14] observe that
there is a natural neurobiological interpretation of a
combination of product and summing units in terms of
a single neuron or a group of neurons. Mel has recently
proposed clusteron as an  abstraction for a complex
neuron that can extract higher order statistics from
input stimuli [15]. In his model, a dendriti c tree
receives weighted synaptic contacts from a set of
afferent axons.  Each synaptic contact is given by a
product of direct stimulus intensity and a weighted sum
of neighborhood activity. We note that this description
translates to an NSRBN, which can be considered as a
mathematical abstraction of the clusteron model.

3. The PARMA Model

Let us consider the original periodic series τ,vx ,

where v denotes the year, ωτ ,...,1=  and ω  is the
number of time intervals in the year. Assuming that the
distribution of the series is skewed, an appropriated
transformation can be used to transform τ,vx  to the

normal series τ,vy .

Then the periodic PARMA [5] model for τ,vy  can

be written as

ττττ σµ ,, . vv zy +=                                           (7)

where τµ  and τσ  are the periodic mean and periodic

standard deviation and τ,vz  may be represented by an

PARMA model .
The PARMA(p,q)  model with time-varying

coeff icients as
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where τφ ,j  and τθ ,i  are time varying autoregressive

and moving average coeff icients, respectively, and τε ,v

is an independent and identicall y distributed  normal
random variable.

4. Evaluation of the obtained results

Our experiment is being undertaken on the basis of
data from the Boa Esperança hydroelectric power plant,
which constitutes a natural borderline between the

Brazili an States of Maranhão and Piauí. Figure 3
shows the Parnaíba River basin with  the location of
this dam, as well as its River flow stations, which are
controlled by CHESF.

The River flow stations used here are:  Alto
Parnaíba, Ribeiro Gonçalves, Balsas,  São Félix de
Balsas e Boa Esperança. These stations present
measures of  dail y average flow since 1966.

The cross-correlation between inputs and outputs
variables, the correlation structure of the output
variable and the physical features of the problem were
taken into account on the establi shment of the structure
of the examined models and of the number of neurons
in the first layer used in the forecast of future values
[16][17][18].

The values measured from 1966 to 1990 (which
corresponds to a total of 8797 values of dail y flow) were
used to train of the statistical and test the NSRBN and
to the estimation of parameters the statistical models.
Values measured from 1991 to 1997 were used to
evaluate the performance of the Box-Jenkins model and
the NSRBN (which amounts to a set of 2435 daily flow
values).

Figure 3 – Parnaíba River Basin

In the evaluation of the performance of the NSRBN
and of the PARMA(p(i),q(i)) model (Multi variate
ARMA models) we used the absolute average error
(AAE) (Equation 9), the absolute average percentual
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error (AAPE) (Equation 10) and the forecast standard
error (FSE) (Equation 11).
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where : Zp –  forecast value ;  Zo –  measured value and
N – number of values.

Among the tested multi variate models, we highlight
the one which provided better results. This model uses
as inputs for the forecast of dail y average water inflow
from the Boa Esperança dam: the last four values from
the station of Alto Parnaíba (ATP), Balsas(BLS), São
Félix de Balsas(SFB) e Ribeiro Gonçalves(RBG) and
three values from the variable itself, the  Boa Esperança
station.

This model can be represented by the following
mathematical equation:

4
5
43

5
32

5
21

5
1

4
4
43

4
32

4
2

1
4
14

3
43

3
3

2
3
21

3
14

2
4

3
2
32

2
21

2
1

3
1
32

1
21

1
1

−−−−

−−−

−−−

−−−

−−−

−−−

+++

+++

+++

+++

++++

++=

SFBSFBSFBSFB

BLSBLSBLS

BLSRBGRGB

RGBRGBATP

ATPATPATP

UBEUBEUBEUBE

QQQQ

QQQ

QQQ

QQQ

QQQ

QQQQ

φφφφ

φφφ

φφφ

φφφ

φφφ

φφφ

   (12)

In this expression, Q represents the dail y flow in
each station, followed by the already introduced
abbreviations . For instance, QUBE represents the flow to
be forecast on a given day in Boa Esperança station;
QUBE-1 is the flow in this station on the previous day;
QUBE-2 is the flow 2 days before, and so on.

The inputs of the window used for the NSRBN are
identical to the one used in the statistical model.

Table 1 shows a comparative study of the better
results obtained with Box-Jenkins models and the
results obtained with NSRBN.

Table 1 –  Comparison between NSRBN
 and Box-Jenkins

forecasts Models AAPE
(%)

AAE

(m3/s)

FSE
 (m3/s)

NSRBN 6,3 24 431 day

ahead PARMA(p,q)
9,3 42 82

NSRBN
7,8 35 762 day

ahead PARMA(p,q) 11,4 52 89

NSRBN
10,4 47 833 day

ahead PARMA(p,q) 13,5 59 99

The results obtained by the use of the two methods
show a clear superiority of the NSRBN in relation to
the Box-Jenkins

The Figures 4,5 and 6 shows, for example, the
tracking behavior of the predicted values by the
NSRBN and the predicted values by the Box-Jenkins
models of the Parnaíba River flow in Boa esperança
dam for the period from 15/01/92 to 24/02/92 (figure
4), 09/03/97 to 18/04/97 (figure5) and from 31/10/92 to
31/08/93 (figure6).
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Figure 4 – NSRBN  vs Box-Jenkins, 1992 –1 day ahead
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Figure 5 – NSRBN vs Box-Jenkins, 1997 –1 day ahead
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Figure 6 – NSRBN vs Box-Jenkins, 92/93 –1 day ahead

5. Conclusions

The NSRBN is a powerful  modelli ng and
prediction of complex linear or non-linear multi -
input/multi -output systems.

The results obtained in the evaluation of the
performance of NSRBN were better than the results
obtained with statistical models with respect to the
three types of errors. NSRBN provides good results
because the well -known problems of an optimal
(subjective) choice of the neural network architecture
are solved in the NSRBN algorithms by means of an
adaptive synthesis (objective choice) of the architecture
to provide a parsimonious model for the particular
desired function. The statistical models in general, do
not generate those good results.

The NSRBN models described in this work are in
use in Chesf for the forecasting river flow from one day
to seven days ahead.
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