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Abstract

This paper presents a constructive neural network
model for daily streamflow forecasting. The Surface
water hydrology is basic to the design and operation of
the reservoir. A good example is the operation of a
reservoir with an uncontrolled inflow but having a
means of regulating the outflow. If information on the
nature of the inflow is determinable in advance, then
the reservoir can be operated by some decision rule to
minimize downstream flood damage. For this reasons,
several companies in the Brazlian Electrical Sector
use the linear time-series models such as PARMA
(Periodic Auto regressive Moving Average) models
developed by Box-Jenkins. This paper provides for
river flow prediction a numerical comparison between
neural networks, called non-linear sigmoidal
regresson Blocks networks (NSRBN), and PARMA
models. The NSRBN model approach is shown to
provide better representation of the daily average
water inflow forecasting, than the models based on
Box-Jenkins method, currently in use on the Brazlian
Electrical Sector.

1. Introduction

Models Streamflow forecasting are an essntial
reguirement for solving a wide range of scientific
and/or management tasks. Conceptual models [1][2]
offer one posshle foreasting method, but such tods
are often considered to be too complex for most
practical implementations. While @nceptual models
are of importance in the understanding of hydrologic
processs, there are many practical situations guch as
streamflow forecasting where the main concern is with
making accurate predictions at spedfic watershed
locations. In such gtuation, the linear time series
models suich as PARMA [3][4][5] models have been
used.

The work presented here aims to develop alternative
model s to the forecast of daily average water inflow for
the Boa Esperanca Hydrodedric power plant, part of
the Chesf (Companhia Hidrelétrica do S&o Francisco)
system. This dam is located at Parnaiba River, in the
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borderline between Maranh&o and Piaui, two Braali an
States.

We propose the use of constructive networks as an
aternative to daily average water inflow forecasting to
this dam [6][ 7][8][9]. We evaluate the results obtained
by the use of NSRBN against results from the
appli cations of the traditional Box-Jenkins models.

Sedion 2 brings an overview of the NSRBN
algorithms, foll owed by a brief presentation of PARMA
modd in the sedion 3. Sedion 4 shows an evaluation
of the obtained results. Finally, sedion 5 concludes the

paper.

2. NSBRN -NON-LINEAR SIGMOIDAL
REGRESSION BLOCKSNETWORKS

2.1. Network Architecture

The goal here are to present practical methods to
realize ompact networks using a modd with hidden
units with sigmoidal blocks activation functions [9].
The activation function is

F(¥) = (T +6,) )

where:
h is the order of the block (= number of hidden
units);

6h
function.

is bias and o, is the hyperbdic tangent

net(h)

However the analyses of the are not restricted to
hyperbdli c tangent function.

Thefirst design step isto divide f (x) up into Hocks
of equal-degreeterms, asin Figure 1. That is
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Figure 1- NSRBN (network architedure)

The block approach is to redlize al terms in
f, (x) functions at the sametime, asin Figure 2.

Figure 2- Block of degreep architedure

Theinput x isan N dimensional vedor and x; is the
i-th component of x. The inputs are weighted and fed to
a layer of h hidden units, where h is the order of the
block [10]. Let f (x) be the output of the block of

degreep. Then,

0 =3(f (e} +af(ne@)F +affne@)’

3
+...+ap(f(ne(p)))p

and a, is the weight between h-th hidden unit to output
unit and h=1,2,...p.

A non-linear sgmoidal regresson blocks networks
(NSRBN) is defined as a feadforward network based on
Eqg. 3. ANSRBN [9][1]] is a polynomial function that
can be represented as

F09 =00 (3 F,00) (4

2.2. Constructive learning method

The @nstructive algorithm for NSRBN is based on
the @nstructive learning method. The goal here is to
present a practical method to realize NSRBN using
blocks of the sigmoidal function. The mnstructive
learning algorithm proceels as foll ows. We denote p an
algorithmic step at which fy is added to the network.
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Therefore an unknown function f is successvely
approximated by

F09 =000 (3 F,00+ 1,(4) 5)

where weightsin f,.;(X) are frozen oncethe k-th degree
fu(x) is added.

2.3. Why d hidden units?

Zhang-Yu and Jia [12] give a dired prod of
approximation property of a multi-layer perceptron
with one hidden layer (MLP1) in single input-output
stuation, and find out the reationship between the
order of the best approximation polynomial and the
number N of hidden units of a MLP1 for a given
function f(x) and a finite N. Based in this prodf, we
formulated a more general and efficient NSRBN.

2.3.1. Relationship between the order of the best
approximation polynomial and the number N of
hidden unitsof a MLP1:

Suppose f(x) O Cp [-a,a], and f(x)=fo(X)+f(X), where
fo(X) isthe odd part of f(x) and fe(x) is its even part.
Let the output of a MLP1 with Ny be Py(X), Ny is fixed,
hidden units. So, the output Py(x) can approximate fo(x)
in the degree of acauracy better than its 2(2N, — 1)
order Best Polynomial Approximation (BAP).

Let the output of a MLP1 with 2N, be Pi(x), N is
fixed, hidden units. So, the output Pg(x) can
approximate f¢(x) in the degreeof accuracy better than
its 2(3Ne — 1) order best polynomial approximation
(BAP). Using a MLP1 with N = Ng + N, hidden units
to approximate f(x), combined approximation, we get
itsoutput: P(X)= Py(X)+ P«(X) where

2(6N/7)-2

P =Y "ax (©)

The original form of the proof [12] is more
compli cated than the one presented here. Since we are
concerned with the eistence of a representation of
multi variate polynomials in terms of NSRBN, a simpler
statement is adopted.

From the analysis abowe, it is clear that to
approximate an even function, we need many double
hidden units to combine some asen base functions, thus
the freedoms of parameters are lost, and this case may
affed the approximation of the MLP1. So we propose a
NSRBN in which some of hidden units have esen
blocks activation function and the rest have odd blocks
activation function. This kind of hybrid activation
function model may have stronger nonlinear mapping
ability.



2.4 Neurobiological plausibility of NSRBN

Are NSBRN computing structures even remotely
neurohiologically plausible? In neurophysiology, the
posshility that dendritic computations could include
local multiplicative nonlinearities is widely accepted
[13]. Indeed, Durbin and Rumehart [14] observe that
there is a natural neurohbiological interpretation of a
combination of product and summing wnits in terms of
asingle neuron or a group of neurons. Mel has recently
proposed clusteron as an abstraction for a complex
neuron that can extract higher order statistics from
input stimuli [15]. In his model, a dendritic tree
recaves weighted synaptic oontacts from a set of
afferent axons. Each synaptic contact is given by a
product of dired stimulus intensity and a weighted sum
of neighborhoad activity. We note that this description
tranglates to an NSRBN, which can be @mnsidered as a
mathematical abstraction of the clusteron modd.

3. The PARMA M odel

Let us consider the original periodic series x, .,
where v denotes the year, T =1... and w is the
number of time intervalsin the year. Asauming that the
distribution of the series is «ewed, an appropriated
transformation can be used to transform x,, to the
normal series vy, ; .

Then the periodic PARMA [5] model for y,, can
be written as

Yor =H 0.2, ()
where , and 0, are the periodic mean and periodic
standard deviation and z,, may be represented by an

PARMA modd .
The PARMA(p,q)
coefficients as

modd  with time-varying

Z,. = ]igoj,r'zv,r—j - iei,r'gv,r—i tE (8)

where ¢, and 6, are time varying autoregressve
and moving average wefficients, respedively, and €, ;

is an independent and identically distributed normal
random variable.

4. Evaluation of the obtained results

Our experiment is being undertaken on the basis of
data from the Boa Esperanca hydroeledric power plant,
which congtitutes a natural borderline between the
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Brazlian States of Maranhdo and Piaui. Figure 3
shows the Parnaiba River basin with the location of
this dam, as well as its River flow stations, which are
controlled by CHESF.

The River flow stations used here are  Alto
Parnaiba, Ribeiro Gongalves, Balsas, Sao Fdix de
Balsas e Boa Esperanca. These dations present
measures of daily average flow since 1966

The aosscorreation between inputs and outputs
variables, the arrelation structure of the output
variable and the physical features of the problem were
taken into acoount on the establi shment of the structure
of the examined models and of the number of neurons
in the first layer used in the forecast of future values
[16][17][18].

The values measured from 1966 to 1990 (which
corresponds to a total of 8797values of daily flow) were
used to train of the statistical and test the NSRBN and
to the estimation of parameters the statistical models.
Values measured from 1991 to 1997 were used to
evaluate the performance of the Box-Jenkins model and
the NSRBN (which amounts to a set of 2435 aily flow
values).

Stations A
- ALTO PARNAIBA
- BALSAS
- RIBEIRC GONGALVES
- SAO FELIX DE BALSAS

Atlantic
Ocean

- FAZENDA BANDEIRA
- BENEDITO LEITE

- CRISTINO CASTRO

- BARRA DO LANCE

- FLORIANO

- SAO FRANCISCO DO PIAUI
- FRANCISCO AIRES

- FAZENDA VENEZA

- TERESINA

- PRATA DO PIAUT

- UNIAQ

- LUZILANDIA

- TINGUIS
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Figure 3 —Parnaiba River Basin

In the evaluation of the performance of the NSRBN
and of the PARMA(p(i),q(i)) mode (Multivariate
ARMA modedls) we used the absolute average eror
(AAE) (Equetion 9), the absolute average percentual



error (AAPE) (Equation 10) and the forecst standard
error (FSE) (Equation 11).

1 N
AAE = N 03[ Zp-2o]] C)
i=1
AAPE(%):% X §[| Zp - Zo|/ Zo} (1100 (10)
i=1
1 N
I:SE:[N 0y (Zp-Zo)4*® (12)
i=1

where : Z, — foreast value; Z, — measured value and
N — number of values.

Among the tested multi variate models, we highlight
the one which provided better results. This model uses
as inputs for the forecast of daily average water inflow
from the Boa Esperanga dam: the last four values from
the station of Alto Parnaiba (ATP), Balsas(BLS), Sdo
Félix de Balsas(SFB) e Ribeiro Gongalves(RBG) and
threevalues from the variableitself, the Boa Esperanca
station.

This model can be represented by the following
mathematical equation:

Quee = AQuee—1 + B Use—2 + BQuee -2

+ @ Qurp—1 *+ BQutp—y + P Qarp-3 +
@3Qurp-4 + % Qrop-1 + B Qrop-2 +

@ Qrop-3 + PiQrec-4 + %' QaLs1 +

@ Qpis—2 + ¥ Quis-3 + ¥4Qps-a *

@ Qg1 + BQp-2 + BQss-3 + % Qsre-4

(12

In this expresdon, Q represents the daily flow in
each dtation, followed by the aready introduced
abbreviations . For instance, Quge represents the flow to
be forecast on a given day in Boa Esperanca station;
Quee1 is the flow in this dation on the previous day;
Quee2 istheflow 2 days before, and so on.

The inputs of the window used for the NSRBN are
identical to the one used in the statistical model.

Table 1 shows a comparative study of the better
results obtained with Box-Jenkins models and the
results obtained with NSRBN.
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Table1 — Comparison between NSRBN

and Box-Jenkins
forecasts Models AAPE | AAE | FSE
(%) | (m¥g) | (M9
1 day NSRBN 6,3 24 | 43
ahead | PARMA(p,q) 9.3 42 82
oy | NSREBN | 78 | 35 | 76
aheed | pARMA(PO) | 114 | 52 | 89
3y | VoRBN 104 | 47 | 83
ahead | PARMA(p.A) | 135 | 59 | 99

The results obtained by the use of the two methods
show a clear superiority of the NSRBN in reation to
the Box-Jenkins

The Figures 4,5 and 6 shows, for example, the
tracking behavior of the predicted values by the
NSRBN and the predicted values by the Box-Jenkins
modes of the Parnaiba River flow in Boa esperanca
dam for the period from 1501/92 to 24/02/92 (figure
4), 0903/97 to 18/04/97 (figureb) and from 31/10/92 to
31/08/93 (figureb).
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5. Conclusions

The NSRBN is a powerful moddling and
prediction of complex linear or non-linear muilti-
input/multi -output systems.

The results obtained in the evaluation of the
performance of NSRBN were better than the results
obtained with statistical models with resped to the
three types of errors. NSRBN provides good results
because the well-known problems of an optimal
(subjedive) choice of the neural network architedure
are solved in the NSRBN algorithms by means of an
adaptive synthesis (objedive coice) of the architedure
to provide a parsmonious mode for the particular
desired function. The statistical models in general, do
not generate those goad results.

The NSRBN models described in this work are in
usein Chesf for the forecasting river flow from one day
to seven days ahead.
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