
Proceedings of the V Brazilian Conference on Neural Networks - V Congresso Brasileiro de Redes Neurais
pp. 139–142, April 2–5, 2001 - Rio de Janeiro - RJ - Brazil

139

A Neural Network Implementation for Data Mining High Performance
Computing

Myrian C. A. Costa, Nelson F. F. Ebecken
COPPE/UFRJ, Brazil

E-mails: myrian@ntt.ufrj.br, nelson@ntt.ufrj.br

Abstract

This work discusses the implementation of a neural
network algorithm within a data mining strategy for
high performance computers. The study focuses an
application comprising all the aspects related to the
data preparation, the neural network implementation
and training. The performance evaluation of the
implementation is also addressed for two different
computer architectures. Some conclusions and
recommendations from this experience were done.

1. Introdution

In the last few years the development of methods
and algorithms for Knowledge Discovery in Databases
(KDD) has been growing very fast [1].

The KDD technology comprises several phases of
transformation any kind of data that resides in a huge
and complex database, frequently within high
performance computers into useful and handled
information

The preprocessing phase or data preparation plays a
crucial role for the success of KDD process. This phase
uses some automatic or semi-automatic data extraction
techniques of databases and performs basic operations,
like removal of noise and spurious data, treatment of
missing data fields and effective reduce of number of
variables under consideration. Almost always this phase
reaches proper data for analysis even in a presence of
poor data quality. (This technology involves the
process of finding and interpreting patterns from data
extracted of huge and complex databases). The Data
Mining phase of KDD process involves efficient and
intelligent algorithms and techniques that handle the
preprocessed data, analyzing and discovering patterns
from them. The last phase of this technology describes
the interpretation and evaluation of discovered patterns
into useful knowledge.

The overall KDD process is iterative, covers the
repeated application of specific data mining method or
algorithm. Neural Network is one of the most used data
mining method to extract patterns in an intelligent and
reliable way and has been greatly used to find models
that describe data relationship.

1.1. Neural Network

Neural networks are multilayer structures of neurons
(or basic units), as illustrated in figure 1, that maps input
data in output data, using internal representations of
hidden units. The repetitive presentation of a set of
input/output pairs of data with the adjusting of the
connection weights for minimization of the output error,
is the learning phase of the procedure, which guides the
search for a model that describes the data relationship.
At each step of the process one data is presented to the
input of the network, which computes the output and
compares with the desired output. The error obtained
with the difference of these two outputs is propagated
back through the network adjusting internal network
parameters, which are the connection weights between
units of different layers.

Figure 1 – Multilayer Neural Network

The back-propagation algorithm, proposed for

Rumelhart, Hinton and Williams [2] in 1986, uses the
generalized delta rule to minimize the output error
function. The authors show that the derivative of the
error measure with respect to each weight connection is
proportional to a weight change with negative constant
of proportionality. This correspond to performing
steepest descent on a surface weight space height at
any point in weight space is equal to the error measure.
The rule for changing weight of the connection from unit

i to unit j in different layers is represented by the ∆wji ,
and is calculated by:

() ()nwanw jiijji ∆⋅+⋅⋅=+∆ αδη1 , (1)

Hidden

Output

Input

140

where η is the constant of proportionality, the
learning rate, δj is the error at unit j, ai is i-th input of unit
j and α is the mome ntum term, that determines the effect
of past weight changes on the current direction of
movement in weight space. The error at unit j is
calculated with two equations, one for the output layer
units, equation2, and another for the hidden layers units,
equation 3.

() ()jjjjj netfat ´⋅−=δ (2)

() ()∑ ⋅⋅=
k

kjkjjj wnetf δδ ´ (3)

where tj is the desired output, a j is the calculated
output, the term f´j is the partial derivative of the
activation function and the factor Σ is determined
recursively in terms of the error signals of the units to
which it directly connects and the weights of those
connections.

The activation function requires a continuos and
non-linear function. One of the most used is the logistic
function, with the formulation:

() 









∑ +⋅−

+

=

i
jiajiw

j

e

a
θ

1

1
, (4)

where θ j is a bias similar in function to a threshold.
The partial derivative of this function is:

() ()jjjj aanetf −= 1´ . (5)

The Back-Propagation algorithm has one phase for

training and one phase for testing. During training phase
it repeats the above procedure until it reaches an
acceptable error and during testing phase it produces
the error model with the presence of data never seen
before. The data set for each phase is different that
assures proper overall error.

Some points have to be considered using the back-
propagation algorithm. The initial values of weight
connections must be small, positive and negative,
unequal and random set otherwise the network
encounters a local maximum and never learns. Gallant [3]
proposes the choice of weights in range [-2/z, 2/z], where
z is the number of inputs of a unit. The convergence to a
local minimum is not guaranteed even with
improvements of the method. Some works have been
reported with improvements in this method accelerating
the convergence [4], [5], or trying to resolve the problem
of local minima [6] [7].

The algorithm requires long training times on a serial
machine, leading to a study of its parallel
implementation. The use of distributed memory
architectures with powerful computing nodes interacting
with each other via message passing is encouraged.

In order to find the best configuration (number of
neurons per layer) of the neural network two approaches
are usually used. The empirical approach starts
considering few neurons at hidden layer, adding more
neurons as the training gets better. In spite of the good
results this procedure becomes tedious and long. With
the use of genetic algorithm this procedure can be
improved, making several configurations as the initial
population and using the training error as the individual
configuration fitness. As the population evolves, new
generation of configurations, resulting from mutation
and crossover of antecedent individuals, were created
with better fitness than the last one. The best fitness
individuals will survive, showing the best configurations
for the network.

2. Parallel Neural Network Implementation

As mentioned before neural network model is an

inherently parallel structure with independent units
performing local calculation [8]. The main issues under
consideration in the study of parallel implementation of
conceived sequential algorithms are the partitioning
algorithm schema and the target machine. These two
topics are presented here in the next sections.

2.1. Partitioning Algorithm Schema

For the partitioning algorithm schema the study

considers the use of the data parallelism approach, as
illustrated in figure 2, that keeps a copy of the entire
neural architecture, with the internal variables and
functions, in each processing node partitioning training
data set among nodes. This approach ensures that all
values needed during the training phase, like output
calculation and partial error back propagation, are locally
available, reducing the number of messages passing
among nodes and the algorithm synchronization. In fact,
all nodes perform only one communication after each
complete presentation of a training data subset. In
distributed memory machines this approach seems to be
very efficient leading to great gain of performance.

Figure 2 – Data Parallelism

This implementation of data parallelism uses a

control node (node 0) that gets training data set,
normalizing and distributing them among nodes. All

141

nodes are started with same internal parameters but with
different subsets of training data. During training phase
of the neural net, each node passes its training data
subset producing partial errors that must be combined
with partial errors produced by other nodes, generating
an overall error. This error is used to update the
connection weights in each node, until the procedure
reaches the minimal acceptable overall error. It can be
pointed out that each node only broadcasts its partial
error to other nodes at this time. All other calculations
involve local data and can be made without
synchronization. This drastically reduces the
communications needs.

The application uses few and simple MPI standard
primitives and can be portable for several machines.

2.1. Target Machines

Two machines with different architectures were

available for this project: IBM RS/6000 SP with 12 nodes
and SGI Origin 2000 with 128 nodes.

The IBM RS/6000 SP is a high performance machine
with MIMD (Multiple Instruction Multiple Data)
architecture connected via crossbar switch allowing
direct connection between any two nodes. The IBM
Parallel Environment (PE) allows the development and
execution of parallel applications. It conforms to MPI
(Message Passing Interface) standard for
communication among parallel process running on
various nodes [9] [10]. The application had been
executed in this machine through job’s submission
strategy in exclusive mode, i.e., only one application
executes in a group of nodes at one time. All processing
nodes has homogeneous characteristics with same
processing power, amount of memory and cache.

The SGI Origin 2000 is a DSM (Distributed Shared
Memory) machine with cc-NUMA (cache-coherent Non-
Uniform Memory Access) architecture interconnecting
processing nodes through a network of hubs, the
Craylink, via crossbar switch [11]. The DSM
characteristic allows global memory addressing, but it
can not preview the access memory time due to
architecture. The cache-coherent protocol ensures the
system cache consistency during execution of a
program. The access available for the execution of the
application in this environment was shared, i.e., all
programs share all nodes during execution. It could be
emphasized here that time tests were made with
unbalanced work on nodes.

3. Application Data Set

After the application had been tested with traditional

and well-known data sets, more complex data sets were
used [12]. The case reported here had been achieved
interesting results. The data set had been extracted from
a real-world insurance data warehouse of a private
company. The target machines utilized in this study

don’t have the support for automatically get data from
data warehouse. The extraction procedure generates a
table in a text file with 80 fields as attributes and 147478
registers as lines. The attributes specify cus tomer
behavior, insurance contracts and tariff components.
Some information was classified as confidential. The
main purpose of this problem is to find the best model
that describes the attributes relationship, given a
predefined classification.

The preprocessing phase of this study generates an
transformed data set with attributes and registers that
properly represents data to train and test the neural
network. Attributes with discrete and continuous values
were evaluated for columns and registers removal, using
graphical and statistical visualizers. Some algorithms for
column reduction had been used too The resulted data
set had 64 attributes and 130143 registers. The
configuration of the neural network suitable for
modeling those data has 64 neurons on input layer, 136
neurons on hidden layer and 1 neuron on output layer
for classification had been obtained through a
combination of heuristic approach and a sequential
genetic algorithm. The parallel neural network
application reads the data set and splits it into training
set with 70% of data and a testing set with 30%. The
training set was partitioned and distributed among
processing nodes before the learning phase of the
algorithm starts. At the end of training phase the control
node tests the obtained model with the testing set.

The Amdahl’s Law coefficient for evaluation of the
parallel application performance shows that 99,3% of the
serial application could be parallelized. It is due to the
higher time spent by the training phase with respect to
the whole time consumption of the application. Table 1
presents the elapsed time spent in application execution
for limited number of iterations with different number of
nodes in each machine.

Table 1 – Time consumption (seconds)

Number of nodes ORIGIN 2000 IBM SP

4 2254,38 2407,63
6 1539,32 1318,96
16 737,97 776,36
32 340,53 
48 271,31 
64 215,32 
96 179,62 
128 138,45 

Figure 3 shows the speed-up obtained executing the

application in the ORIGIN 2000.

142

0

10

20

30

40

50

60

70

80

4 8 16 32 48 64 96 128

Application

Amdahl's Lawl

Figure 3 – ORIGIN 2000 Speed-up

Figure 4 graphically represents the number of

millions of connections updated per second for the
application running with different number of nodes

0

50

100

150

200

250

300

350

4 8 16 32 48 64 96 128

Figure 4 – ORIGIN 2000 MCUPs

4. Conclusions

The report present here shows the improvements

obtained from previous work [13] on similar data but
with better performance machines. The volume of data
existing in real world data warehouse with complex
relations can only be handled by methods implemented
in high performance computers with efficient parallel
methodology. The case used in this work has these
characteristics and could only be handled by parallel
application.

In latest year the developing of parallel data mining
methods are encouraged due to announces of machines
with higher performances. The use of a standard library
of communication primitives allows portability of the
application for several machines, bringing great
vantages for the methodology. It can be point out that
data preparation phase and data mining phase are both
fundamental for the success of KDD process and .the
use of semi-automatic and semi -automatic procedures
could improve the quality of the overall process.

The neural network has the ability of produce a very
precise classification model comparing with other
paradigms used in classification problems. Despite the
higher time computing consuming by the algorithm, the
use of new approaches and some modifications of the
procedures, like cross-validation, has to be considered
for even better classification results.

References

[1] Fayyad, U.M. et al, Advances in Knowledge

Discovery and Data Mining , MIT Press, California,
1996.

[2] Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning
Internal Representations (Chapter 8). Parallel
Distributed Pro cessing: Explorations in the
Microstructure of Cognition, vol 1: Foundations,
7ed, ed. Rumelhart, D.E., McClelland, J.L., MIT Press,
Cambridge, pp.318 -364, 1988.

[3] Gallant, S.I. Neural Network Systems and Expert
Systems, MIT Press, Cambridge, 1994.

[4] Vogl, T.P.,et al, Accelerating the convergence of the
Back-propagation Method, Biological Cybernetics ,
vo.5, n.3, pp.465-471, 1988.

[5] Van Ooyen, A., Nienhuis, B., Improving the
Convergence of the Back-Propagation Algorithm,
Neural Networks, v.7, n.1, pp.1-11, 1992.

[6] Fukuoka, Y., et al, A modified Back-Propagation
Method to Avoid False Local Minima, Neural
Networks , v.11, n.6, pp. 1059-1072, 1998.

[7] Haykin, S., Fundamentals of Artificial Neural
Networks , MIT Press, USA, 1999.

[8] Sundararajan, N., Sara tchandran, P., Parallel
Architectures for Artificial Neural Networks:
Paradigms and Implementations, IEEE Computer
Society Press, California, 1998.

[9] IBM, IBM Parallel Environment for AIX: Operation
and Use, Vol. 1, IBM, Denmark, 1996.

[10] Pacheco, P., Parallel Programming with MPI,
Morgan Kaufmann Publishers, Inc., 1997.

[11] SGI, Origin 2000 Deskside Owner’s Guide, SGI,
USA, 1998.

[12] Costa, M.C.A., Data Mining High Performance
Computing using Neural Networks, D.Sc. Thesis,
COPPE/UFRJ, 1999 (in Portuguese).

[13] Lopes, M.C.S., Costa, M.C.A. & Ebecken, N.F.F., A
comparison of methods for customer classification.
Proceedings of the International Conference on
Data Mining , ed. Ebecken, N.F.F., WIT Press, Great
Britain, pp.333-347, 1998.

[14] Costa, M.C.A. & Ebecken, N.F.F., Data Mining
High Performance Computing Using Neural
Networks, Proceedings of the High Performance
Computing 2000, ed. Brebbia, , WIT Press, USA,
2000

