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Abstract 
 

This work discusses the implementation of a neural 
network algorithm within a data mining strategy for 
high performance computers. The study focuses an 
application comprising all the aspects related to the 
data preparation, the neural network implementation 
and training. The performance evaluation of the 
implementation is also addressed for two different 
computer architectures. Some conclusions and 
recommendations from this experience were done. 
 
 
1. Introdution 
 

In the last few years the development of methods 
and algorithms for Knowledge Discovery in Databases 
(KDD) has been growing very fast [1].  

The KDD technology comprises several phases of 
transformation any kind of data that resides in a huge 
and complex database, frequently within high 
performance computers into useful and handled 
information 

The preprocessing phase or data preparation plays a 
crucial role for the success of KDD process. This phase 
uses some automatic or semi-automatic data extraction 
techniques of databases and performs basic operations, 
like removal of noise and spurious data, treatment of 
missing data fields and effective reduce of number of 
variables under consideration. Almost always this phase 
reaches proper data for analysis even in a presence of 
poor data quality. (This technology involves the 
process of finding and interpreting patterns from data 
extracted of huge and complex databases). The Data 
Mining phase of KDD process involves efficient and 
intelligent algorithms and techniques that handle the 
preprocessed data, analyzing and discovering patterns 
from them. The last phase of this technology describes 
the interpretation and evaluation of discovered patterns 
into useful knowledge. 

The overall KDD process is iterative, covers the 
repeated application of specific data mining method or 
algorithm. Neural Network is one of the most used data 
mining method to extract patterns in an intelligent and 
reliable way and has been greatly used to find models 
that describe data relationship. 

 

1.1. Neural Network  
 

Neural networks are multilayer structures of neurons 
(or basic units), as illustrated in figure 1, that maps input 
data in output data, using internal representations of 
hidden units. The repetitive presentation of a set of 
input/output pairs of data with the adjusting of the 
connection weights for minimization of the output error, 
is the learning phase of the procedure, which guides the 
search for a model that describes the data relationship. 
At each step of the process one data is presented to the 
input of the network, which computes the output and 
compares with the desired output. The error obtained 
with the difference of these two outputs is propagated 
back through the network adjusting internal network 
parameters, which are the connection weights between 
units of different layers. 

 

Figure 1 – Multilayer Neural Network  
 
The back-propagation algorithm, proposed for 

Rumelhart, Hinton and Williams [2] in 1986, uses the 
generalized delta rule to minimize the output error 
function. The authors show that the derivative of the 
error measure with respect to each weight connection is 
proportional to a weight change with negative constant 
of proportionality. This correspond to performing 
steepest descent on a surface weight space height at 
any point in weight space is equal to the error measure. 
The rule for changing weight of the connection from unit 

i to unit j in different layers is represented by the ∆wji , 
and is calculated by: 

 
( ) ( )nwanw jiijji ∆⋅+⋅⋅=+∆ αδη1 ,    (1) 
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where η is the constant of proportionality, the 
learning rate, δj is the error at unit j, ai is i-th input of unit 
j and α is the mome ntum term, that determines the effect 
of past weight changes on the current direction of 
movement in weight space. The error at unit j is 
calculated with two equations, one for the output layer 
units, equation2, and another for the hidden layers units, 
equation 3. 

 

( ) ( )jjjjj netfat ´⋅−=δ        (2) 

( ) ( )∑ ⋅⋅=
k

kjkjjj wnetf δδ ´       (3) 

where tj is the desired output, a j is the calculated 
output, the term f´j is the partial derivative of the 
activation function and the factor Σ  is determined 
recursively in terms of the error signals of the units to 
which it directly connects and the weights of those 
connections. 

The activation function requires a continuos and 
non-linear function. One of the most used is the logistic 
function, with the formulation: 
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where θ j is a bias similar in function to a threshold. 
The partial derivative of this function is: 

 

( ) ( )jjjj aanetf −= 1´ .   (5) 

 
The Back-Propagation algorithm has one phase for 

training and one phase for testing. During training phase 
it repeats the above procedure until it reaches an 
acceptable error and during testing phase it produces 
the error model with the presence of data never seen 
before. The data set for each phase is different that 
assures proper overall error. 

Some points have to be considered using the back-
propagation algorithm. The initial values of weight 
connections must be small, positive and negative, 
unequal and random set otherwise the network 
encounters a local maximum and never learns. Gallant [3] 
proposes the choice of weights in range [-2/z, 2/z], where 
z is the number of inputs of a unit. The convergence to a 
local minimum is not guaranteed even with 
improvements of the method. Some works have been 
reported with improvements in this method accelerating 
the convergence [4], [5], or trying to resolve the problem 
of local minima [6] [7]. 

The algorithm requires long training times on a serial 
machine, leading to a study of its parallel 
implementation. The use of distributed memory 
architectures with powerful computing nodes interacting 
with each other via message passing is encouraged.  

In order to find the best configuration (number of 
neurons per layer) of the neural network two approaches 
are usually used. The empirical approach starts 
considering few neurons at hidden layer, adding more 
neurons as the training gets better. In spite of the good 
results this procedure becomes tedious and long. With 
the use of genetic algorithm this procedure can be 
improved, making several configurations as the initial 
population and using the training error as the individual 
configuration fitness. As the population evolves, new 
generation of configurations, resulting from mutation 
and crossover of antecedent individuals, were created 
with better fitness than the last one. The best fitness 
individuals will survive, showing the best configurations 
for the network. 

 
2. Parallel Neural Network Implementation 

 
As mentioned before neural network model is an 

inherently parallel structure with independent units 
performing local calculation [8]. The main issues under 
consideration in the study of parallel implementation of 
conceived sequential algorithms are the partitioning 
algorithm schema and the target machine. These two 
topics are presented here in the next sections. 

 
2.1. Partitioning Algorithm Schema 

 
For the partitioning algorithm schema the study 

considers the use of the data parallelism approach, as 
illustrated in figure 2, that keeps a copy of the entire 
neural architecture, with the internal variables and 
functions, in each processing  node partitioning training 
data set among nodes. This approach ensures that all 
values needed during the training phase, like output 
calculation and partial error back propagation, are locally 
available, reducing the number of messages passing 
among nodes and the algorithm synchronization. In fact, 
all nodes perform only one communication after each 
complete presentation of a training data subset. In 
distributed memory machines this approach seems to be 
very efficient leading to great gain of performance. 

 

 
Figure 2 – Data Parallelism 

 
This implementation of data parallelism uses a 

control node (node 0) that gets training data set, 
normalizing and distributing them among nodes. All 
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nodes are started with same internal parameters but with 
different subsets of training data. During training phase 
of the neural net, each node passes its training data 
subset producing partial errors that must be combined 
with partial errors produced by other nodes, generating 
an overall error. This error is used to update the 
connection weights in each node, until the procedure 
reaches the minimal acceptable overall error. It can be 
pointed out that each node only broadcasts its partial 
error to other nodes at this time. All other calculations 
involve local data and can be made without 
synchronization. This drastically reduces the 
communications needs.  

The application uses few and simple MPI standard 
primitives and can be portable for several machines.  

 
2.1. Target Machines 

 
Two machines with different architectures were 

available for this project: IBM RS/6000 SP with 12 nodes 
and SGI Origin 2000 with 128 nodes. 

The IBM RS/6000 SP is a high performance machine 
with MIMD (Multiple Instruction Multiple Data) 
architecture connected via crossbar switch allowing 
direct connection between any two nodes. The IBM 
Parallel Environment (PE) allows the development and 
execution of parallel applications. It conforms to MPI 
(Message Passing Interface) standard for 
communication among parallel process running on 
various nodes  [9] [10]. The application had been 
executed in this machine through job’s submission 
strategy in exclusive mode, i.e., only one application 
executes in a group of nodes at one time. All processing 
nodes has homogeneous characteristics with same 
processing power, amount of memory and cache. 

The SGI Origin 2000 is a DSM (Distributed Shared 
Memory) machine with cc-NUMA (cache-coherent Non-
Uniform Memory Access) architecture interconnecting 
processing nodes through a network of hubs, the 
Craylink, via crossbar switch [11]. The DSM 
characteristic allows global memory addressing, but it 
can not preview the access memory time due to 
architecture. The cache-coherent protocol ensures the 
system cache consistency during execution of a 
program. The access available for the execution of the 
application in this environment was shared, i.e., all 
programs share all nodes during execution. It could be 
emphasized here that time tests were made with 
unbalanced work on nodes. 

 
3. Application Data Set 

 
After the application had been tested with traditional 

and well-known data sets, more complex data sets were 
used [12]. The case reported here had been achieved 
interesting results. The data set had been extracted from 
a real-world insurance data warehouse of a private 
company. The target machines utilized in this study 

don’t have the support for automatically get data from 
data warehouse. The extraction procedure generates a 
table in a text file with 80 fields as attributes and 147478 
registers as lines. The attributes specify cus tomer 
behavior, insurance contracts and tariff components. 
Some information was classified as confidential. The 
main purpose of this problem is to find the best model 
that describes the attributes relationship, given a 
predefined classification. 

The preprocessing phase of this study generates an 
transformed data set with attributes and registers that 
properly represents data to train and test the neural 
network. Attributes with discrete and continuous values 
were evaluated for columns and registers removal,  using 
graphical and statistical visualizers. Some algorithms for 
column reduction had been used too The resulted data 
set had 64 attributes and 130143 registers. The 
configuration of the neural network suitable for 
modeling those data has 64 neurons on input layer, 136 
neurons on hidden layer and 1 neuron on output layer 
for classification had been obtained through a 
combination of heuristic approach and a sequential 
genetic algorithm. The parallel neural network 
application reads the data set and splits it into training 
set with 70% of data and a testing set with 30%. The 
training set was partitioned and distributed among 
processing nodes before the learning phase of the 
algorithm starts. At the end of training phase the control 
node tests the obtained model with the testing set.  

The Amdahl’s Law coefficient for evaluation of the 
parallel application performance shows that 99,3% of the 
serial application could be parallelized. It is due to the 
higher time spent by the training phase with respect to 
the whole time consumption of the application. Table 1 
presents the elapsed time spent in application execution 
for limited number of iterations with different number of 
nodes in each machine. 
 

Table 1 – Time consumption (seconds) 
 
Number of nodes ORIGIN 2000 IBM SP 

4 2254,38 2407,63 
6 1539,32 1318,96 
16 737,97 776,36 
32 340,53  
48 271,31  
64 215,32  
96 179,62  
128 138,45  

 
Figure 3 shows the speed-up obtained executing the 

application in the ORIGIN 2000.  
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Figure 3 – ORIGIN 2000 Speed-up 

 
Figure 4 graphically represents the number of 

millions of connections updated per second for the 
application running with different number of nodes  
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Figure 4 – ORIGIN 2000 MCUPs  

 
4. Conclusions  

 
The report present here shows the improvements 

obtained from previous work [13] on similar data but 
with better performance machines. The volume of data 
existing in real world data warehouse with complex 
relations can only be handled by methods implemented 
in high performance computers with efficient parallel 
methodology. The case used in this work has these 
characteristics and could only be handled by parallel 
application. 

In latest year the developing of parallel data mining 
methods are encouraged due to announces of machines 
with higher performances. The use of a standard library 
of communication primitives allows portability of the 
application for several machines, bringing great 
vantages for the methodology. It can be point out that 
data preparation phase and data mining phase are both 
fundamental for the success of KDD process and .the 
use of semi-automatic and semi -automatic procedures 
could improve the quality of the overall process. 

The neural network has the ability of produce a very 
precise classification model comparing with other 
paradigms used in classification problems. Despite the 
higher time computing consuming by the algorithm, the 
use of new approaches and some modifications of the 
procedures, like cross-validation, has to be considered 
for even better classification results. 
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