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Abstract 
 

The nonlinearity of financial time series requires 
the application of different tests to identify it, some of 
them coming out from outside financial field. Different 
outlooks of such tests appear scattered in the 
literature. We give some general essential 
considerations on nonlinear systems and then we 
describe three tests: the rescaled range (R/S) analysis 
for the estimation of the Hurst exponent, the Brock, 
Dechert and Scheinkman (BDS) statistics, and the 
estimation of the largest Lyapunov exponent. The aim 
of the present work is to present a review of the latest 
versions of these tests and to compare them by applying 
to the S&P 500 index. 
 

1. Introduction 
 

In a recent paper, Abecasis, Lapenta and Pedreira [1] 
pointed out that one of the most challenging approaches 
in the analysis of modern time series is the area of 
financial time series. This represents the first stage in 
our research plan on the study of financial time series. 
The present work deals with our second stage on the 
subject under consideration that involves the 
identification of nonlinearity in financial time series. At 
present it is a well-established fact that they are non-
random and nonlinear. Of course, it is an average 
behavior since the series are nonstationary. Therefore 
one is led to know not only the kind of the time series 
but also its preprocessing in order to feed the series to 
the computational intelligent artifact. 

Versions of nonlinearity tests found in the literature 
are not necessarily connected with financial time series. 
As a matter of fact, not all the publications are lightly 
attainable to most practitioners, applied researchers as 
well as novices. This is due to the fact that the subject 
under consideration is not easily manageable since it 
implies knowledge of a group of disciplines that not 
everyone is required to dominate. For this reason, we 
think that the present work on the three tests: the 
rescaled range (R/S) analysis for the estimation of the 
Hurst exponent, the Brock, Dechert and Scheinkman 
(BDS) statistics, and the estimation of the largest 
Lyapunov exponent together with their software 
versions, would be a useful and  practical tool for 
solving the problem of the characterization of financial 

time series involving the identification of their 
nonlinearities. Different outlooks of these tests appear 
scattered in the literature. Peters [2,3] and Brock, Hsieh 
and LeBaron [4] present a comprehensive overview of 
nonlinear systems especially devoted to financial ones. 
Here, we only give some details to understand the three 
complementary tests for nonlinearity to be dealt with in 
the following sections. Chaos theory, originally 
introduced in the study of thermodynamical 
nonequilibrium systems, has entered in the study of 
financial markets. The theory predicts a statistical order 
in complicated systems, which appear disordered; it 
serves also to treat the interdependence of variables 
established by nonlinearity. Another feature of 
nonlinear systems is that there is a Strong Dependence 
on Initial Conditions (SDIC) that prevents making 
forecasts unless they are very short term, how short  it 
depends on the system. SDIC implies that small changes 
in the state of a system will enlarge at an exponential 
rate. Therefore, the long-term predictions of chaotic 
systems are vain, independently of the way the system 
prediction is implemented. SDIC is quantified with 
Lyapunov exponents.  Positivity of the largest 
Lyapunov exponent is one way to capture the notion of 
SDIC that is the hallmark of chaos. A system may 
possess any number of Lyapunov exponents, but to 
confirm chaos one only needs to confirm that the largest 
Lyapunov exponent is positive. Consequently, 
estimation of its value is of extreme importance. In order 
to describe nonlinear systems it has been found that the 
appropriate geometry is fractal geometry. The name 
comes from the fact that it deals with figures with a 
fractional dimension having properties to be later 
explained. The essential characteristic of a fractal curve 
is that at every place whichever the chosen scale, the 
observed part is similar to the whole. This selfsimilarity 
is characteristic of fractals. Time series in capital markets 
are fractals in time; the selfsimilarity is observed 
comparing price series in annual, monthly, and daily 
scales. The selfsimilarity reflects an internal correlation, 
which shows up as a long memory, which is infinite for 
mathematical fractals but finite for real, stochastic ones. 
The BDS test distinguishes between random systems 
from deterministic chaos and from nonlinear stochastic 
systems under the condition to remove any linear 
dependence in the data before one can use BDS to test 
nonlinearity. However, it cannot detect nonlinear 
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deterministic systems (chaos) from nonlinear stochastic 
systems.  The existence of an underlying chaos can be 
demonstrated by R/S analysis or by the determination of 
the largest Lyapunov exponent. Both reveal a 
characteristic feature of chaos: the existence of 
statistical cycles. If the cycle length does not depend on 
either sample size or the frequency of the data, one can 
be sure that the system is chaotic. 

 Section 2 is devoted to the rescaled analysis and the 
estimation of the Hurst exponent. Section 3 deals with 
the BDS test that identifies all types of nonlinearities. 
Finally, Section 4 describes the calculation of the largest 
Lyapunov exponent that serves to identify chaos. The 
three tests are applied to monthly averaged values of the 
S&P 500 index from February 1974 up to February 1999. 
 

2.   R/S analysis and the Hurst exponent 
 
Hurst [Peters 3, p.62] found the following relation for 

a series of n hydrological observations 

                    ( ) H
n cnSR =/ ,                         (2.1) 

where nR  is the range of values for index n, S is the 

local standard deviation, c is a constant, and H is at 
present called the Hurst exponent. The R/S value of eq. 
(2.1) is referred to as the rescaled range because it has 
zero mean and is expressed in terms of the local standard 
deviation. According to statistics H must be equal to 
0.50 if the series is a random one (not necessarily of 
Gaussian structure). Many financial time series have a 
Hurst exponent greater than 0.50. This means that the 
series has a long-range memory according to which each 
data remembers the previous one; what happens today 
influences the future. When 0.50 < H ≤ 1.00 the series is 
persistent; if it is up (down) in some period it is most 
probable that it continues up (down) in the next period. 
The opposite behavior appears when 0 ≤ H < 0.50; 
these series are antipersistent and show strong 
oscillations. In some occasions these series are called 
mean reverting but this name is inappropriate because 
in mean reversion the mean remains constant, something 
that cannot be assured for antipersistent series. Hurst 
exponent gives the probability that if a change was 
positive the following would also be positive. As every 
point is not equally probable, the fractal dimension of 
the probability distribution is not two (as in a random 
system) but rather a number different from two; less than 
two for persistent systems and greater than two for 
antipersistent series. Mandelbrot [Peters 3, p.66] has 
shown that the fractal dimension of a time series is equal 
to the inverse of H. A significant result of the rescaled 
analysis is that it shows the existence of a statistical 
cycle characteristic of each time series, determined by 
the fact that for some n the eq. (2.1) ceases to hold. The 
existence of these cycles indicates that the initial 
conditions are forgotten. 

In the following paragraphs, we present an 
algorithm to estimate the Hurst exponent.  Consider a 

time series of N raw data ai converted into a series of 
logarithmic data bi.   Take AR (1) residuals of these data 
to remove linearities, since there are autoregressive 
processes that can cause short -term correlations. The 
process is expressed as  

                         ( )tttt bby µρ +−= −1 ,                      (2.2)    

where yt is the transformed data at time t, ρ ≤ 1 is a 
constant, and µt is a number of an Independently and 
Identically Distribution (IID). Divide the whole set in J 
continuous and nonoverlapping subsets of length n, 
such that J • n = N. The values of n include the 
beginning and ending points of the time series; and N/n 
is an integer value. Each element in each subset Jj with j 
= 1,2, ...J, is labeled  yk,j  with k = 1,2,..., n . Calculate the 
mean for each Jj, 
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Calculate the standard deviation for each Jj, 

                 ( ) .
1

1

1

2
,∑

=

−
−

=
n

k
jjkj yy

n
S               (2.4) 

Rescale the data by subtracting the sample mean for 
each Jj, 
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Calculate the adjusted range for each Jj, 
             ).xmin()xmax(R j,kj,kj −=                    (2.6) 

Normalize this range dividing it by its standard deviation 
                     .S/R)S/R( jjj =                                (2.7) 

Average the last values in order to obtain the rescaled 
range for length n, 
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Increase the length n a higher value. Repeat calculations 
from eqs. (2.3) to (2.8) inclusive, until n = N/2. 
Approximate the Hurst exponent H by plotting the log 
(n) (abscissas) versus log(R/S) n (ordinates), and 
performing an ordinary least squares regression on the 
first variable as the independent one and the second 
variable as the dependent one. From eq. (2.1), the slope 
of the equation – the estimation of the Hurst exponent H 
- is  

            ( ) )nlog(HS/Rlog n ≅ ,                             (2.9) 
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FIGURE 1: R/S analysis for S&P 500 logarithmic data 
monthly averaged from February 1974 - February 1999. 

Estimated H = 0.690. 
 

3. The BDS test 
 
 Some previous considerations in the theory of 

nonlinear systems are necessary to understand the BDS 
test. A convenient and very useful form to visualize a 
system (linear or not) is to consider its phase space, 
which has as many dimensions as variables determine 
the system.  A point in the phase space represents a 
possible state of the system, hence the alternative name 
state space. The region of space where solutions tend to 
lie receives the name of attractor. The orbits in phase 
space of a chaotic system have a diverging part followed 
by a folding in a non-periodic manner so that the system 
remains in a limited region called strange attractor. The 
problem of dimensionality of the space phase is not of 
interest for the present purpose. It suffices to know that 
the reconstructed phase space of financial time series 
have usually few dimensions (low dimensional chaos). 

The economists Brock, Dechert, and Scheinkman [5] 
developed a test now called BDS test, that is a powerful 
tool to distinguish a random from a non-random system - 
see also Brock, Dechert, Scheinkman and LeBaron [6] 
and Brock and Potter [7]-. Essentially, it finds a nonlinear 
dependence but cannot distinguish between a nonlinear 
stochastic system and a deterministic chaotic one. 
Another test is necessary in this case (see Section 4).  

The BDS test essentially consists in using the time 
delay method to build an m-dimensional space from the 
original time series of length N. Then, a correlation 
function Cm, N  (ε) is calculated 

 ( ) [ ])T(T/)x,x(IC mm
m
s

m
tstN,m 12 −= ∑ ≺ εε ,           (3.1) 

where 
                   1+−= mNTm ,                                      (3.2) 

and )x,x(I m
s

m
tε  is an indicator function that equals 1 if 

|| xx m
s

m
t − || < ε, and equals 0 otherwise; || || is the sup 

norm which means that it is equal to the largest absolute 
values of the m components of the involved vector. This 
function measures the fraction of pairs of points 

)x,x( m
s

m
t that are within a distance ε of each other. 

Under the null hypothesis that the series is an IID, the 
following relation holds, with 100% probability, for fixed 
m and ε, 

∞→→  N)(C)(C m
N,m as  1,y probabilitwith   εε ,     (3.3) 

where 
                    ( ) ( )εε N,CC 1≈  .                                     (3.4) 

This is the typical scaling feature of random process: the 
correlation function fills the space whatever the 
dimension is placed in. In the book by Brock, Hsieh and 
LeBaron [4] - which we will abbreviate BHL- the authors 
showed that 

                     ( ) ( )m
N,m CC εε −                                   (3.5)              

is normally distributed with zero mean and variance σ2
m 

(ε) defined in eq. (2.1.3) of BHL.  The BDS statistics that 
follows (called BDS/SAD in the recipe of this section) 

[ ] )(/)(C)(CT)(W N,m
m

N,N,m
/

mN,m εσεεε 1
21 −= ,  (3.6) 

has therefore a limiting standard normal distribution 
under the null hypothesis that the system is IID. 

There is one important point: the BDS test finds 
linear as well as nonlinear dependence in the data. 
Therefore, it is necessary to remove any linear 
dependence before one can use BDS to test 
nonlinearity. One of the simplest ways is to consider a 
first order autoregressive model AR (1), as we have done 
in section 2. The actual performance of the test requires 
that some points be taken into account. Consider, for 
instance, the value of ε relative to series standard 
deviations; if it is too large there will be too many points 
whereas if it is too small there will be not enough points 
to capture the statistical structure. Peters [2] suggests, 
following some examples, to take ε equal to half the 
standard deviation of the data set. In addition, an 
embedding dimension m must be chosen so that the 
points in the reconstructed phase space are neither too 
sparse nor too crowded. BHL recommended a choice of 
m between 2 and 5 for small data sets (200 to 500 
observations), and up to 10 for large data sets (at least, 
2000 observations). Unfortunately, as stated above, the 
test cannot distinguish between chaotic and stochastic 
behavior. To become a really powerful tool it must be 
used in conjunction with other tests described in the 
present paper. BHL performed Monte Carlo calculations. 
So, in Appendix C of their book they present quantiles 
of BDS statistics for normal random variables for 100, 
250 and 500 observations for ε = 0.5 δ and ε = δ, and m = 
2, 3, 4, 5, and 10. The last column labeled N (0,1) 
indicates the deviations from normal distributions 
quantiles for zero mean and unit variance. 

The rest of this section is devoted to the description 
of a software -the most appropriate in our opinion- that 
implements the BDS test, written by W. Davis Dechert 
[8]; also see  Dechert [9]. 
Select an Input File. Before the use of the BDS to test 
for nonlinearity, any linear dependencies in the data to 
be analyzed should be removed. 
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Descriptive Statistics. A typical screen looks like the 
following: 
Input File: SP500.TXT            N = 300 

Data Description 
Initial Observation:              1                              
Number of Observations: 300 
Minimum = 2.926E+0001  
Maximum = 6.544E+0002    
Spread  = 6.251E+0002 
Average       = 1.610E+0002 
Std Dev  = 1.361E+0002  
SD / Spread = 2.176E-0001 

 
Regression on t  

Coefficient of t = 1.3664E+0000 
T statistic = 2.0419E-0002                                                                               
R squared = 7.5891E-0001 

 
Choose Epsilon. The value of epsilon chosen will be 
multiplied by the spread of the data set. To select the 
value of ε, choose a fraction of the spread of the data 
shown in the above dialog box. For example, to pick a ε 
value that will correspond to half the standard deviation, 
choose one half of the value of SD/spread that is 
reported in that dialog box. 
Choose the Embedding Dimension m.  
Calculate Cm & BDS Statistics. The screen output 
consists of C, K, C1 and Cm which are the integer 
number of observations in each category specified by N, 
m, and ε.  The BDS statistics, its standard deviation and 
the ratio of the two are also displayed.  A screen looks 
similar to this: 
Input File: SP500.TXT  N = 300  
Epsilon  = 1.088E-0001  m = 4  
C =  34780 
K = 4844566 
C1 = 17240        
Cm = 15281 
αm = 4.7631E-0001 
BDS = 5.6149E+0000 
SD = 3.5095E-0002      
BDS/SD = 1.5999E+0002 
Look at the Results. To look at the results after they 
were stored on a file, retrieve the utility program 
LIST.COM by typing LIST filename.ext at the DOS 
prompt. The following is a sample of the information that 
is written to the file.  

 
 

FILENAME:   SP500.TXT 
Initial Obs :    1   Num Obs : N = 300  SD/Spread =  2.1765E-
0001 

Epsilon m C1 Cm BDS SD BDS/SD 

0.1088 5 17240 14899 5.726E+00 2.034E-02 2.814E+02 

0.1088 4 17240 15281 5.614E+00 3.509E-02 1.599E+02 

0.1088 3 17240 15719 5.151E+00 5.303E-02 9.712E+01 

0.1088 2 17240 16304 3.773E+00 6.017E-02 6.269E+01 

 
 

4. Lyapunov exponents from a time series 
 

As stated before, one of the important characteristics 
of chaotic systems is a sensitive dependence on initial 
conditions. The susceptibility of a system to this 
dependence can be measured with certain numbers ë 
called Lyapunov exponents. There is one λi for each 
dimension i of the phase space and are defined by the 
expression 

        ( ),)(p/)t(plog)t/(lim ii
t

i 01 2
∞→

=λ              (4.1)                                                                       

where pi is the coordinate of a point in dimension i. 
Consider an attractor in three dimensions that has 

one exponent zero and two negative ones: two 
dimensions converge one on the other and one in which 
there is no change in the relative position of points. In 
the most interesting case for this work, strange 
attractors in three dimensions have one zero exponent, 
one negative and one positive. The positive Lyapunov 
exponent measures the dependency on initial conditions 
that is the trend of small changes in the initial conditions 
to strongly alter forecasting. The negative exponent 
makes points tending to diverge be maintained within 
the region of the attractor. The existence of a positive 
Lyapunov exponent for a system demonstrates that it is 
nonlinear, a test independent of the determination of the 
Hurst exponent in the R/S analysis. Wolf, Swift, Swinney 
and Vastano [10] have developed an algorithm to 
calculated the largest Lyapunov exponent λ1 starting 
from experimental data. Its formal expression – according 
to Wolf [11]- is   

         ( )∑
=

+′=
m

j
jj ,)t(L/)t(Llog)t/(

1
121 1λ  (4.2)                                                                  

where L (tj ) is the distance between two starting points, 
L´(tj+1) is the distance between them at a later time, and j 
is the sample number. This equation is equivalent to eq. 
(4.1) when one deals with an infinite amount of noisy-
free data. However, the practical conditions are quite 
different. Fortunately (see below), the rules of thumb 
given by Wolf allow dealing with experimental data. The 
method requires a lot of numerical experimentation, 
mainly in case of failure, in order to be sure that the 
result is not due to a bad selection of parameters or to 
insufficient data. It must be pointed out that the method 
yields a largest average Lyapunov exponent, since the 
starting time series includes all possible phases of the 
market, including random walk and chaos. It is important 
to note that the inverse of the largest Lyapunov 
exponent gives the length of the statistical cycle that 
appeared in R/S analysis. The reader is referred to 
Section 5 of Wolf and Bessoir [12] that contains the 
most modern thoughts on the Lyapunov exponents. 
Wolf et al. [10] have developed a method that allows the 
estimation of non-negative Lyapunov exponents from an 
experimental time series. The Home Page of Alan Wolf 
[13] offers newer and more efficient FORTRAN and C 
codes of the program. This document is the first official 
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program documentation for the so-called BASGEN 
(dataBASeGENerator) and FET (Fixed Evolution Time) 
programs. Both make use of the method of phase space 
reconstruction also known as time delay 
reconstruction. The method builds a ndim-dimensional 
orbit out of a time series once the user selects two 
parameters: the embedding dimension ndim and the time 
delay tau. The following paragraphs present an excerpt 
of the programs detailed by Wolf [13].  

BASGEN reads the original time series from the 
ASCII file data - with one value per line-, creates a 
database file, and a new time series. The values for the 
input parameters are: ASCII data file = 1: For the first 
run. Number of data points (≤ 32000): corresponding to 
a fractal dimension d = 4, approximately. Time delay 
[tau] (samples): roughly one third of the number of 
points in the mean period of the motion. Embedding 
dimension [ndim] (≤8): A good value to start with is 
four. Grid resolution [ires] (maxbox = 6000): Typical 
values for ires are in the range of 6 to 12. The output 
values from BASGEN are the number of boxes allocated, 
created, and non-empty. 

FET estimates the dominant (largest positive) 
Lyapunov exponent in a time series. FET creates a 
multidimensional phase space orbit from a one-
dimensional time series by phase space reconstruction. 
Using the database created by BASGEN, FET locates a 
pair of points that are very close to each other in the 
reconstructed phase space orbit. FET follows each of 
the points as they travel a short distance along the 
phase space orbit. One can compare the initial 
separation (ordinary Euclidean distance) of these points 
to their separation at the end of interval. The logarithm 
(base 2) of the ratio of final to initial separation of these 
points is a local estimate of orbital divergence. If the two 
points are still close together at the end of this interval, 
one evolves them a bit farther along the orbit, then 
computes the next local value of orbital divergence. On 
the other hand, if they are much farther apart, one keeps 
one of the points, and uses the database to find an 
appropriate replacement for the other point. One obtains 
the long-time average rate of divergence of nearby orbits 
by averaging the local rates of orbital divergence and 
dividing by the total travel time along the orbit. The 
values for its input parameters are: Time-step (seconds 
or iterations): It is the time between samples in the time 
series. The entrance one implies that the Lyapunov 
exponent has the units of bits per seconds. Evolution 
time [evolve] (number of samples): It should be kept 
small enough so that orbital divergence is monitored at 
least a few times per orbit, and sensitive dependence 
does not pull the points too far apart. Minimum 
separation at replacement [dismin]: Try zero to two 
percent range of time series values. Maximum 
separation at replacement [dismax] : Try 10% to 15% of 
range of time series values. Maximum orientation error 
[thmax]: Try 30 degrees. The output value of FET is the 
Lyapunov exponent. 

 
Table 1: Present input and output values to estimate the 

largest Lyapunov exponent 
 

PROGRAM ITEM VALUE 
 ASCII data file  1 
 Number of data points  300 

Input  values to Time delay [tau] (samples)  6 
BASGEN Embedding dimension [ndim] 4 

 Grid resolution [ires]  7 
 # boxes allocated      6000 

Output values # boxes created   74 
from BASGEN # boxes non-empty   41 

 Time-step (seconds or 
iterations)  

0.9 

 Evolution time [evolve] 
(number of samples)  

   6 

Input values to 
FET 

Minimum separation at 
replacement [dismin] 

      0.0001 

 Maximum separation for 
replacement [dismax] 

    31.26 

 Maximum orientation error 
[thmax] 

   30. 

 
The present results are summarized in Table I 

corresponding to the S&P 500 data from February 1974 
to February 1999. The Lyapunov exponent converged to 
an averaged value of 0.0328 bits/month. That is, one 
loses all predictive power after 1/0.0328 or 30 months. 
Since the estimated exponent is near zero the system is 
exhibiting some orbital stability or periodicity. 
 

5. Conditional mean and conditional variance 
 

Until recently, for the purpose of detecting 
nonlinearity in financial time series very few works have 
considered the problem of constructing joint tests that 
would help considering the nonlinear dynamics that are 
present both in the conditional mean and in the 
conditional variance of financial series. Gilles Dufrenot 
and Laurent Mathieu [14] applied a test to a series of 
high frequency exchange rates and proposed a class of 
models that allows the presence of non-linearity in both 
the conditional mean and conditional variance. The 
authors proposed a combination of exponential 
autoregressive models (EXPAR) and autoregressive 
conditional heteroskedasticity models (ARCH). 

 

6. Concluding remarks 
 

The aim of this work is to present a review of the 
ability as well as the compatibility of three tests for 
identifying nonlinearity in financial time series. They are: 
Hurst exponent, BDS statistics, and Lyapunov exponent. 
With this purpose we used a single data set constituted 
by 300 monthly averaged values of the S&P 500 index 
from February 1974 to February 1999. We chose this 
commonly used set to concentrate the attention of the 
users almost exclusively on the tests and their 
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corresponding softwares. For the R/S analysis we 
smoothed the raw data by taking their logarithms. No 
such smoothing is necessary for the BDS test or for the 
calculation of the largest Lyapunov exponent, since the 
phase space reconstruction and the subsequent 
selection of points provides a statistical smoothing. 

In summarizing sections 2-4 we list the present 
results: H = 0.690, BDS statistics = 159.99, and Lyapunov 
exponent = 0.0328. Since the Hurst exponent is greater 
than 0.50, the S&P 500 index exhibits the Hurst 
phenomena of persistence. The value of the BDS 
statistics implies that the null hypothesis of the 
randomness of the system can be rejected with 99% of 
confidence. The largest Lyapunov exponent is greater 
than zero and therefore, sensitivity dependence on initial 
conditions exists and there is a strange attractor for the 
system. 

Not all the three tests are strictly comparable. In a 
sense, Hurst and Lyapunov exponents measure the 
amount of nonlinearity in a time series. Moreover, the 
latter measures the rate of decay of forecast accuracy; in 
the present case it is approximately equal to 30 months.  
In our study both are compatible between them and 
between other results such as those by Peters [2, 3]. 
Therefore, one faces a deterministic chaotic system. BDS 
test measures essentially the degree of confidence in the 
presence of nonlinearity. But we wish to stress that it 
cannot distinguish between nonlinear deterministic and 
nonlinear stochastic systems. The values obtained here 
are higher than those tabulated by BHL in Appendixes 
C.2 and C.3 even for embedding dimensions higher than 
10. Moreover, note that the embedding dimension in 
both BDS test and the estimation of the Lyapunov 
exponent are equal (m = 4). This value appears to be 
very reasonable because the fractal dimension of the 
system is 1/H = 1.45. This is only a tentative value since 
to really estimate it within a precise context it would be 
necessary a great number of data. We indicate it to have 
an idea of the value of the embedding dimension. 

The paper of Dufrenot and Mathieu [14] opens a 
research plan with possible extensions to other 
nonlinear models and applications to other financial time 
series.  

We think that the present work is of concern to the 
understanding of the important issue on nonlinearities 
identification in financial time series hoping that it will 
serve as a vademecum to practitioners, applied 
researchers as well as non-specialists. 
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