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Abstract

Two-layer feedforward neural network was used to
forecast chaotic time series and disruptive instabilities
observed in the TEXT tokamak plasma discharges with
very promising results. In both cases it was verified
that a neural network with an architecture of the type
m:2m:m:1, wherem is the embedding dimension of the
attractor of the dynamical system in consideration, is a
very good initial guess for the process of finding the ideal
architecture for the neural network, which is usually hard
to achieve. A5:30:15:1(m = 15 neural network was ca-
pable, for example, to forecast the disruptive instabilities
in X-rays signals up td ms in advance, period of time
about fourfold larger than the one obtained previously,
when experimental magnetic signals from Mirnov coils

many times damaging them. This kind of instabilities re-
sults from disturbances in the macroscopic parameters
of plasmas confined in tokamaks propagates by waves
and is usually studied by magnetohidrodynamic equa-
tions (MHD theory), that describe the plasma as a sys-
tem of great scale where microscopic aspects in the me-
dia are not relevant [2]. In fact, disruption instabilities
are still considered as real obstacles for the operation of
future fusion reactors, such as tokamaks, and despite the
several attempts at understanding the responsible mech-
anisms for the occurence of disruption instabilities, the
right way to control or avoid them has not yet been found.
In this way, because of the relevance of the problem, one
has worked with artificial neural networks, by using X-
ray experimental signals measured from confined plasma
with the objetive of trying to forecast the instance of oc-

were used. These very good forecasting results and those curence of this kind of instabilities and we have obtained

obtained by using chaotic temporal series like Lorenz sys-
tem clearly suggest that there is an interplay between the
architecture of a multilayer network and the embedding
dimensiomm of the time series used. They are quite sig-
nificant and opens up to the possibility of using neural
networks for making predictions over the evolution of
nonlinear systems, such as confined plasmas, for exam-
ple.

1. Introduction

The controlled thermonuclear fusion can be a hope
for the mankind of a cheap and inexhaustible source of
energy. Toward this goal, intensive efforts have already
been made, during the last decades, in search for pro-
cesses that could maintain the plasma magnetically con-
fined while its temperature is strongly increased to allow
nuclear reactions that could give the energy desired [1].
Unfortunately, during the plasma confinement some in-
stabilities namedlisruption instabilitiesoccur and fre-
quently provoke the loss of the confinement inducing
strong eletric tensions in many parts of the tokamak and
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very promising results. Another kind of work we have
also done with very good results was on predicting the
behavior of chaotic time series such as Lorenz system [3],
as it will be discussed next.

2. Forecasting Chaotic Time Series

In many situations in science and technology we usu-
ally face the necessity of predicting the future evolution
of a system from past measurements of it. Mathemati-
cal models of physical systems are generally investigated
by writing down the equations of motion and by trying
to integrate them, forward in time, to predict the future
state of the system. Mathematically speaking, this dy-
namics is described by the motion of a poihtwhich
represents the state of the system in a multi-dimensional
spacel’. However, in nonlinear systems with many de-
grees of freedom, it is just impraticable to solve all the
equations without making some sort of assumptions and
simplifications. Dissipations can reduce the number of
the effectively relevant degrees of freedom in apparently
chaotic dynamical systems. Thus the motion of the sys-
tem becomes confined to a subspécg of I', known
asatractor with lower dimensiond [4]. Within this sce-



nario, neuralnetworks may be consideredan important
forecastingool to beusedin suchsituationg4].

Accordingto Takens[5], thereexists a smoothfunc-
tion of at most2d + 1 pastmeasurementef a tempo-
ral seriesthat allows the correctpredictionof its future
value, and the predictionis just as good as the one it
would be obtainedf we hadbeenableto solve thecom-
pletesystemwith its all degreesof freedom[4, 5]. What
the theoremof Takensdoesnot provide is the explicit
form of the functionwhich would containthe desiredex-
trapolationandit is in this context that neuralnetworks
canbe successfullyused. By settingasthe input pattern
{z!'} the delay coordinatesof the temporalseriesz(t):
Up = (z(t),z(t —7),...,2(t — (m — 1)7)), andchoos-
ing z(t + A) asthe known target, the network can be
trainedto predictthe future stateof the systematatime
A, which correspondgo a certainnumberof iterations,
or time steps.Mathematically:

{z(t),z(t=7),...,zt—(m—=1)7)} — z(t+A), (1)

wherer is thetime delay

In orderto investigatethe capability of neural net-
works in predictingthe future stateof the chaoticsys-
tems,the Lorenzsystemwasinitially used.Thetime se-
rieswasobtainedrom thenumericakolutionsyieldedby
thethreeordinarydifferentialequationg6]:

T = ox+oy
= —zz4+rr—y (2)
z = xzy—bz

For this work, it hasbeenuseda two-layerfeedfor
ward network (fig. 1) andthetime serieschoserto feed
this network with werethe onesrelatedto the solutions
in z with o = 3.0 (Prandtlnumbey}, » = 26.5 (Rayleigh
numbej andb = 1.0. Startingfrom a giveninitial con-
figurationfor them inputunits {z¥, 2%, ..., z# }, the dy-
namicsof the two-layerfeedforward network is defined
asfollows:

Giventhe datatraining patternu, eachhiddenunit j
in thefirst hiddenlayerrecevesanetinput

T;’ = Z Wji.’E?, (3)

andproducegheoutput

Vlé.‘ = tanh('rg.‘) = tanh (Z W}ﬁf) , (4

whereW;; representshe connectiorweightbetweerthe
ith input unit andthe jth hiddenunit in the first layer.
Following the sameprocedurefor the otherunitsin the
next layers,thefinal outputis thengivenby:

x, w, VI w V2 w, 0
ji j 1j 1 sl s

1

Figurel: Diagramof afeedforwardneuralnetwork with
two hiddenlayersandarchitecturen:m:k:1.

where the hyperbolic tangent activation function was
chosenfor all hiddenunits, and the linear function for
thefinal outputunit.

Supervisedieedforward networks learn from exam-
ples. The weightsof the conectionsare determinedby
presentinghe network with a setof actualinput-output
values (the training set) and comparing, by meansof
someerror or costfunction E(W), the outputof the net-
work with therealvalueof thetime series.For thiswork,
thecostfunctionwaschoserto bethemeansquareerror:

1 M
E(W) =17 (0§ = OL)%, ©)
us

where M is the size of the training dataset, O* is the
outputdatayielded by the unit of the last layer and O¥
is the actualdata. The error is minimized by adjusting
the weightsaccordingto the backpropagatioalgorithm,
which correspond$o thegradientdescentecipewith the
inclusionof aninertialtermto accelerat¢hecorvergence
[4]. In particular

e = aWyt — nAWy,, @
where:
AWy = %ﬂﬁ‘); q andt identify eachconnection
0 < 9 <1 =learnrate,and
0 < a < 1 =inertialterm.

In orderto characterizahe precisionof the training
processthe average relative prediction error variation
(ARV) andthecorrelationcoeficient(p) arethereforan-
troduced7]:

Eus(og - OAg)2
> s (05 = (05))?

ARV = (8)



s (0% = (08)) (0% = (0%))

Uodé

p= 9)
where(O*) is themeanvalueof thesetof M actualout-
puts,andoo ando arethe standarddeviationsof the
actualandthe predictedoutputsrespectiely.

Thetraining of the network wascarriedout by using
onearbitrarily chosentemporalseriesout of a givendy-
namicalsystem.In orderto obtainthe bestsetof weights
{W} we monitoredthe performancef thenetby usinga
secondemporakeriesf thesamesystemwhichwasdif-
ferentfrom thefirst one.For eachtraining epod (certain
numberof passeshroughthetraining set)aresultingset
of weightsarerecordedandthe valueof E (eq. 6), ARV
(eq. 8) andp (eq. 9) arethencalculatedasan evaluation
of the neuralnetwork’s performance The bestresultsof
thetrainingprocessarethosewhich give thelowestvalue
of the E, the smallestvalueof the ARV andthe biggestp.

Initially, an extensie setof testswere carriedout by
usingmary differentarchitecturesandalsodifferentcon-
ditionsfor trainingthe netandforecasting For thetrain-
ing processthe series(1,0,0) wasused,andthe valida-
tion processwas carriedout by usingthe (0,2,0) series
with the following parametersy = 0.001, @ = 0.0 and
T = 6, over 100 training epochs.Finally, the prediciton
processvasdoneovertheserieq(1,1,1).

Basically two differentapproacheshasedon differ-
enttypesof architecturewere chosento testthe predic-
tion power of neuralnetworks. Firstly, we tried using
the samearchitecture(15:9:3:1) that had beensuccess-
fully usedto forecasplasmadisruptionsn tokamakg7].
However, the neuralnetwork did not allow goodresults
to the chaotic Lorenz serieswith this type of architec-
ture. Someother differentarchitecturesverealsotried
but the bestresultswere obtainedwhen the embedding
dimensiomm of the dynamicalsystem(in the proprotion
m:2m:m:J) wastakeninto account.Therefore asanini-
tial guesswe startedusingthearchitecture3:6:3:1, since
theembeddinglimensiorfor thistype of dynamicalsys-
temis knownto be 3 [4, 6].

With this type of architecturewe were then able to
successfullypredictthe future stateof the systemfor a
wide rangeof differenttime steps. For up to time step
15 (A = 0.3), for example, the result of the forecast-
ing processs practically perfectwhen comparedo the
realdata,asshownn in figure 2-a. For time stepsup to 25
(A = 0.5) the matchof the neuralnetwork outputwith
theactualdatacanalsobe consideredo beverygood,as
shavnin figure2-b. Althoughthefitting is notsoperfect,
in this case the chaoticpatternof the Lorenzserieswas
still very well predictedby the neuralnetwork, andour
resultscan be consideredmuch betterthanthe onesre-
portedelsavhere.Koga, for instancepbtainedgoodpre-
dictionsonly up to 3 time steps,when neuralnetworks
wereusedwith atype of architecturedifferentfrom ours
[8]. Ontheotherhand,Diambra andPlastinowereable

ITheset(zg,y0,20) representsheinitial conditionschoserto solve
the systemgiven by equation2.
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Figure 2: Predictionof the Lorenz seriesusing the ar

chitecture3:6:3:1 (dottedline) ascomparedvith thereal
data(solid line) for (a) 15 time steps,(b) 25 time steps
and(c) 45time steps.As it canbe obsened,the predic-
tionis praticallyperfectfor 15time stepswhichindicates
the network hassuccessfullyearnedthe dynamicof the
system.

to obtaingoodpredictionsfor upto 10 time stepsby us-
ing anothemethodof time seriespredictiong9].

As it could be obsened from our simulations,if the
predictionsarecarriedout for time stepsgreaterthan25,
the outputdatafrom the netstartsdeviating from thereal
data,but thepatternof theLorenzserieds still reasonably
well predictedby the net,asexemplifiedin figure 2-c for
45 time steps(A = 0.9).

By increasingthe time predictionstepseven further,
nogoodresultsareobtained However, by slightly chang-
ing thearchitecturauised,.e, by increasinghemnumber
of neuralunitsin theinputandhiddenlayerswewereable
to improve theseresultsalittle. Figure3-b, for instance,
shaws theforecastingresultsobtainedfrom the architec-
ture 4:8:4:1 for 45 time steps. The matchbetweenthe
two setsof datacanbe consideredslightly betterin this
casethanthe resultsobtainedwith the previousarchitec-
ture3:6:3:1 (fig. 3-a). In short,from theseresultswe can
concludethatneuralnetworks canbe effectivelly usedto
predictwith succesghe chaoticbehaior of Lorenz se-
ries.

As an easyway to evaluatethe prediction perfor
manceof theneuralnetwork we plottedthe ARV andp pa-
rametersagainsthenumberof time predictionsteps.The
resultsobtainedareshowvn in figures4-aand4-b, respec-
tively, for the architecture3:6:3:1. Fromthesefiguresit
is obsened thatthe degradationof the predictionpower
of the neuralnetworkstendsto exponentiallyincreaseas
thenumberof time stepsncreasesasoneshouldexpect.
It is importantto notice,however, thatthe predictionre-
sultscanbeconsidereaxcellentupto 15 time steps.For
biggervaluesthanthat,thefitting betweertheactualdata
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Figure3: Predictionof the Lorenzseriesusing(a) thear

chitecture3:6:3:1 (ARV = 0.07, p = 0.96) ascompared
with (b) thearchitecture:8:4:1 (ARV = 0.05, p = 0.98).

In both figures, the solid line representshe x compo-
nentof Lorenzsystemandthe dottedline the predictions
of the neuralnetwork for 45 time steps.As it canbe ob-

sened,thepredictiondn (b) areslightly betterthanthose
obtainedn (a).

andtheresultspredictedby the netarenot soperfect,but
the neuralnetworksstill predictreasonablyvell thegen-
eralchaoticpatternof the Lorenzseries.

As it canbe obsenedin figure5 the bestforecasting
resultsareobtainedwvhenthe m:2m:m:1typeof architec-
tureis used.

3 ForecastingDisruption Instabilities

During the tokamakplasmadischages,several diag-
nosticsareputin operatiorto measurehe plasmaparam-
etersand monitor the plasmaconditions. In particular
the soft X-ray detectionsystemhasbecomeanimportant
tool to investigatethe centralpart of the plasmacolumn,
sincetheemissiorof low enegy X-raysis closelyrelated
to the electrontemperatureimportantparametenof con-
finedplasmasimpurities,plasmadensityanddisruptions
instabilities[7]. In figure 6 we canseesomeof the ba-
sic signalsof one disruptive plasmadischage, suchas
PlasmaCurrent(fig. 6-a),Loop Voltage(fig. 6b), oneof
the Soft X-ray signalusedin thistask(fig. 6-c), Magnetic
Coils (fig. 6-d) andEletronicdensity(fig. 6-e). Thedis-
ruptioninstabilitiescauseasignificantdropin theaverage
electrondensity(figure 6-e)andelectrontemperaturehy
soft X-ray emissionsignal (figure 6-c). The procedure
usedto forecastdisruption instabilities was almostthe
sameastheLorenzserieswith few diferencesThevalue
of immersiondimension,for instance was m=15 when
we usedsoft X-ray signalsobtainedrom TEXT tokamak
(Austin, Texas-USA). Then, the feed-forward architec-
ture to make predictionsfor this kind of dischageswas
15:30:15:1 It is importantto noticeherethatneuralnet-
work wastrainedwith signalsobtainedfrom certaincon-
ditions (temperaturedensity impurity concetrationetc.)
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Figure 4: Plots shaving (a) the predicting error ARV

and(b) correlationcoeficient for the Lorenzsystem.As

noted,the performanceof the network tendsto degrade
exponentiallyasthetime stepincreasesandthe resultis

very goodupto 15 time stepsprediction.
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Figure7: Soft X-ray from a disruptive dischage which
wasusedfor forecasting As it canbeobsenedtheminor
disruptionsoccursatt ~ 52ms andis perfectlypredicted
by 15:30:15:1feedforwardneuralnetwork.

of plasmaconfinement. Therefore,all the experimen-
tal signalsfor training, validationor forecastingprocess
must belongto this sampleof data. If the confinement
conditionsof plasmaare changedthe network mustbe

trainedagainwith anothersetof data.

Initially, extensive attemptswere carriedout to find
the bestarchitecturefor working with soft X-rays from
TEXT, sincethethe numberof immersiondimensionm,
of plasmasconfinedby tokamaksis not surely known.
After severaltestswe have foundthebestarchitecturdor
our purpose: 15:30:15:1 For the training processwe
have usedthree soft X-ray signals,all of them similar
to the signalobsenredin figure 6-c, with the parameters:
a = 0.9,7 = 0.001 (equation/) and500trainingepochs.
The validation was carried out with anothersignal and
for the predictionprocessafifth signalwaschosen.The
patternsof training, validationandforecastingaskswere
obtainedrandomlywith 7 = 30 andthetime prediction
was4mes. In figures7 and8 very goodpredictionresults
areshawn for 15:30:15:1 neuralnetwork. As it canbe
obsenred,theresultobtainedagreeslmostperfectlywith
the experimentakignal.

4. Conclusions

It hasbeenshavn in thiswork thatneuralnetwork can
be successfullyusedto predictthe future stateof nonlin-
ear systemsas the onesdescribedby the Lorenz equa-
tions. For all thesecases,t hasbeenverified that the
architecturem:2m:m:1is an initial good guessto con-
structthe neuralnetwork architecturefor predictingthe
future stateof chaotictemporalseries. The reasonable
goodresultsobtainedhereclearly suggestsan interplay
betweerthearchitectureof a multilayernetwork with the
embeddingdimensionm of the time seriesthatis under
investigation. This conclusioncanbe very usefulif we
considetthat,whendealingwith neuralnetworks,alarge
numberof training datasetsandinteractionsare gener
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Figure8: Shot133677expandedn time, whereit is pos-
sibleto obsenre the very goodforecastingresultsfrom a
15:30:15:1feedforwardneuralnetwork.

ally requiredto find theright architectureand,therefore,
reliableandfastercorvergenceprocesdgor theneuralnet-
works are mostly welcome. The prediction approach
usedhereinhasshavn to have considerabladwantagesn
termsof quality of theresultsandflexibility overthemore
corventionalmethodgeportedn otherpublishedarticles
[8, 9]. Thus,the resultsobtainedhereare encouraging
andneuralnetworks canbe consideredanimportanttool
for makingpredictionsin time of nonlinearsystemsl|ike
disruptionsnstabilitiesin confinedplasmasThiskind of
instabilitiesis oneof the major obstacledo future fusion
reactorsandif oneknows approximateljthe momentof
its occurencsit is possibleto changethe conditionsof
tokamakcontrol or to startup safetymechanism®f the
machinesuchastheinjectionof neutralparticles(or pel-
lets),andtheaplicationof externalmagnetidield, etc.,to
avoid theseinstabilitiesor, atleast,attenuateheir harm-
ful effects.
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