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Abstract

Two-layer feedforward neural network was used to
forecast chaotic time series and disruptive instabilities
observed in the TEXT tokamak plasma discharges with
very promising results. In both cases it was verified
that a neural network with an architecture of the type
m:2m:m:1, wherem is the embedding dimension of the
attractor of the dynamical system in consideration, is a
very good initial guess for the process of finding the ideal
architecture for the neural network, which is usually hard
to achieve. A15:30:15:1(m = 15) neural network was ca-
pable, for example, to forecast the disruptive instabilities
in X-rays signals up to

�����
in advance, period of time

about fourfold larger than the one obtained previously,
when experimental magnetic signals from Mirnov coils
were used. These very good forecasting results and those
obtained by using chaotic temporal series like Lorenz sys-
tem clearly suggest that there is an interplay between the
architecture of a multilayer network and the embedding
dimensionm of the time series used. They are quite sig-
nificant and opens up to the possibility of using neural
networks for making predictions over the evolution of
nonlinear systems, such as confined plasmas, for exam-
ple.

1. Introduction

The controlled thermonuclear fusion can be a hope
for the mankind of a cheap and inexhaustible source of
energy. Toward this goal, intensive efforts have already
been made, during the last decades, in search for pro-
cesses that could maintain the plasma magnetically con-
fined while its temperature is strongly increased to allow
nuclear reactions that could give the energy desired [1].
Unfortunately, during the plasma confinement some in-
stabilities nameddisruption instabilitiesoccur and fre-
quently provoke the loss of the confinement inducing
strong eletric tensions in many parts of the tokamak and

many times damaging them. This kind of instabilities re-
sults from disturbances in the macroscopic parameters
of plasmas confined in tokamaks propagates by waves
and is usually studied by magnetohidrodynamic equa-
tions (MHD theory), that describe the plasma as a sys-
tem of great scale where microscopic aspects in the me-
dia are not relevant [2]. In fact, disruption instabilities
are still considered as real obstacles for the operation of
future fusion reactors, such as tokamaks, and despite the
several attempts at understanding the responsible mech-
anisms for the occurence of disruption instabilities, the
right way to control or avoid them has not yet been found.
In this way, because of the relevance of the problem, one
has worked with artificial neural networks, by using X-
ray experimental signals measured from confined plasma
with the objetive of trying to forecast the instance of oc-
curence of this kind of instabilities and we have obtained
very promising results. Another kind of work we have
also done with very good results was on predicting the
behavior of chaotic time series such as Lorenz system [3],
as it will be discussed next.

2. Forecasting Chaotic Time Series

In many situations in science and technology we usu-
ally face the necessity of predicting the future evolution
of a system from past measurements of it. Mathemati-
cal models of physical systems are generally investigated
by writing down the equations of motion and by trying
to integrate them, forward in time, to predict the future
state of the system. Mathematically speaking, this dy-
namics is described by the motion of a point	
 , which
represents the state of the system in a multi-dimensional
space� . However, in nonlinear systems with many de-
grees of freedom, it is just impraticable to solve all the
equations without making some sort of assumptions and
simplifications. Dissipations can reduce the number of
the effectively relevant degrees of freedom in apparently
chaotic dynamical systems. Thus the motion of the sys-
tem becomes confined to a subspace�� , of � , known
asatractor with lower dimension� [4]. Within this sce-
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nario, neuralnetworks may be consideredan important
forecastingtool to beusedin suchsituations[4].

Accordingto Takens[5], thereexistsa smoothfunc-
tion of at most ������� pastmeasurementsof a tempo-
ral seriesthat allows the correctpredictionof its future
value, and the prediction is just as good as the one it
would beobtainedif we hadbeenableto solve thecom-
pletesystemwith its all degreesof freedom[4, 5]. What
the theoremof Takensdoesnot provide is the explicit
form of thefunctionwhichwouldcontainthedesiredex-
trapolationandit is in this context that neuralnetworks
canbesuccessfullyused.By settingasthe input pattern��������

the delaycoordinatesof the temporalseries
��� �"!

:	
�#%$ � �&�'�"!�()�&� �+*-,.!/(102010�("�&�'�*3� � * � !4,.!"!
, andchoos-

ing
��� � �65 !

as the known target, the network can be
trainedto predictthefuturestateof thesystemat a time5 , which correspondsto a certainnumberof iterations,
or timesteps.Mathematically:�2��� �"!�()�&�'�7*�,.!�(2080909("�&�'�7*:� � * � !;,.!��<*>=?�&�'� �@5 !�(

(1)

where
,

is thetimedelay.
In order to investigatethe capability of neuralnet-

works in predictingthe future stateof the chaoticsys-
tems,theLorenzsystemwasinitially used.Thetime se-
rieswasobtainedfrom thenumericalsolutionsyieldedby
thethreeordinarydifferentialequations[6]:A� $ B � � B>CAC $ *D��E �GF �H* C (2)AE $ � C *JI�E

For this work, it hasbeenuseda two-layer feedfor-
wardnetwork (fig. 1) andthetime serieschosento feed
this network with werethe onesrelatedto the solutions
in

�
with B:$LK 0 M

(Prandtl number), F $ ��N 0 O
(Rayleigh

number) and
I $ � 0 M

. Startingfrom a given initial con-
figurationfor the

�
input units

�2���P�()���Q>(2080908()� �R �
, thedy-

namicsof the two-layerfeedforwardnetwork is defined
asfollows:

Given thedatatrainingpatternS , eachhiddenunit T
in thefirst hiddenlayerreceivesanetinputU �V $XW �XY V � � �� (

(3)

andproducestheoutputZ � �V $\[^]�_.` � U �V ! $a[^]b_7`dc W �XY V � ����fe (
(4)

where Y V � representstheconnectionweightbetweentheg �"h
input unit andthe T �"h

hiddenunit in the first layer.
Following the sameprocedurefor the otherunits in the
next layers,thefinal outputis thengivenby:ij �k $ W7l Y k lnmo p [^]b_7`\qr W V Y l V [s]�_7`dc W �tY V � ����fevuw<x yz (

(5)

Figure1: Diagramof a feedforwardneuralnetwork with
two hiddenlayersandarchitecturen:m:k:1.

where the hyperbolic tangent activation function was
chosenfor all hiddenunits, and the linear function for
thefinal outputunit.

Supervisedfeedforward networks learn from exam-
ples. The weightsof the conectionsaredeterminedby
presentingthe network with a setof actualinput-output
values (the training set) and comparing,by meansof
someerror or costfunction { � Y !

, theoutputof thenet-
work with therealvalueof thetimeseries.For thiswork,
thecostfunctionwaschosento bethemeansquareerror:{ � Y ! $ �| }W � k � j �k * ij �k ! Q (

(6)

where
|

is the sizeof the training dataset,
ij �k is the

outputdatayieldedby the unit of the last layer and
j �k

is the actualdata. The error is minimizedby adjusting
theweightsaccordingto thebackpropagationalgorithm,
whichcorrespondsto thegradientdescentrecipewith the
inclusionof aninertial termto acceleratetheconvergence
[4]. In particular,Y�~��;��;� $%� Y6� l8��;� *d�7� Y �;� ( (7)

where:� Y �;� $��2������������������ ; � and
�

identify eachconnectionM��3��� ��� learnrate,andM�� � � ��� inertial term.
In order to characterizethe precisionof the training

process,the average relative prediction error variation
(ARV) andthecorrelationcoefficient( � ) arethereforein-
troduced[7]:  ¢¡ Z $ £ � k � j �k * ij �k ! Q£ � k � j �k *¥¤ j �k�¦ ! Q (8)
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� $�£ � k � j �k *\¤ j �k ¦ !/� ij �k *\¤ ij �k ¦ !B.§¨B�©§ (9)

where
¤ j �k ¦ is themeanvalueof thesetof

|
actualout-

puts,and B § and B ©§ are the standarddeviationsof the
actualandthepredictedoutputsrespectively.

Thetrainingof thenetwork wascarriedout by using
onearbitrarily chosentemporalseriesout of a givendy-
namicalsystem.In orderto obtainthebestsetof weights� Y �

wemonitoredtheperformanceof thenetby usinga
secondtemporalseriesof thesamesystemwhichwasdif-
ferentfrom thefirst one.For eachtrainingepoch (certain
numberof passesthroughthetrainingset)a resultingset
of weightsarerecordedandthevalueof E (eq. 6), ARV
(eq. 8) and � (eq. 9) arethencalculatedasanevaluation
of theneuralnetwork’s performance.Thebestresultsof
thetrainingprocessarethosewhichgivethelowestvalue
of theE, thesmallestvalueof theARV andthebiggest� .

Initially, anextensive setof testswerecarriedout by
usingmany differentarchitecturesandalsodifferentcon-
ditionsfor trainingthenetandforecasting.For thetrain-
ing process,theseries(1,0,0)1 wasused,andthevalida-
tion processwascarriedout by using the (0,2,0) series
with thefollowing parameters:

� $ M.0 M�M � , �\$ M.0 M
and, $ N , over � MbM

trainingepochs.Finally, theprediciton
processwasdoneover theseries(1,1,1).

Basically, two differentapproaches,basedon differ-
ent typesof architecture,werechosento testthepredic-
tion power of neuralnetworks. Firstly, we tried using
the samearchitecture(15:9:3:1) that hadbeensuccess-
fully usedto forecastplasmadisruptionsin tokamaks[7].
However, the neuralnetwork did not allow goodresults
to the chaoticLorenz serieswith this type of architec-
ture. Someotherdifferentarchitectureswerealso tried
but the bestresultswereobtainedwhen the embedding
dimensiomm of thedynamicalsystem(in theproprotion
m:2m:m:1) wastakeninto account.Therefore,asanini-
tial guess,westartedusingthearchitecture3:6:3:1, since
theembeddingdimensionfor this typeof dynamicalsys-
temis known to be K [4, 6].

With this type of architecturewe were then able to
successfullypredict the future stateof the systemfor a
wide rangeof different time steps. For up to time step� O

( 5 $ M70 K ), for example, the result of the forecast-
ing processis practicallyperfectwhencomparedto the
realdata,asshown in figure2-a. For time stepsup to � O
( 5 $ M70ªO

) the matchof the neuralnetwork outputwith
theactualdatacanalsobeconsideredto beverygood,as
shown in figure2-b. Althoughthefitting is notsoperfect,
in this case,thechaoticpatternof theLorenzserieswas
still very well predictedby the neuralnetwork, andour
resultscanbe consideredmuchbetterthan the onesre-
portedelsewhere.Koga, for instance,obtainedgoodpre-
dictionsonly up to K time steps,whenneuralnetworks
wereusedwith a typeof architecturedifferentfrom ours
[8]. On theotherhand,Diambra andPlastinowereable

1Theset( «�¬ , /¬ , ®^¬ ) representstheinitial conditionschosento solve
thesystemgivenby equation2.

0.0 5.0 10.0¯ 15.0° 20.0¯ 25.0° 30.0¯ 35.0°−12.0

−6.0

0.0

6.0

12.0

x(
t)±

sinal filtrado²
resultado da rede

0.0 5.0 10.0¯ 15.0° 20.0¯ 25.0° 30.0¯ 35.0°−12.0

−6.0

0.0

6.0

12.0

x(
t)±

sinal filtrado
resultado da rede

0.0 5.0 10.0¯ 15.0° 20.0¯ 25.0° 30.0¯ 35.0°
t
³−12.0

−6.0

0.0

6.0

12.0

x(
t)±

sinal filtrado²
resultado da rede

(a)
´
(b)
´
(c)
´

Figure 2: Predictionof the Lorenz seriesusing the ar-
chitecture3:6:3:1 (dottedline) ascomparedwith thereal
data(solid line) for (a) 15 time steps,(b) 25 time steps
and(c) 45 time steps.As it canbeobserved,thepredic-
tion is praticallyperfectfor 15timesteps,whichindicates
thenetwork hassuccessfullylearnedthedynamicof the
system.

to obtaingoodpredictionsfor up to � M time steps,by us-
ing anothermethodof timeseriespredictions[9].

As it could be observed from our simulations,if the
predictionsarecarriedout for time stepsgreaterthan25,
theoutputdatafrom thenetstartsdeviating from thereal
data,but thepatternof theLorenzseriesisstill reasonably
well predictedby thenet,asexemplifiedin figure2-c for� O

timesteps( 5 $ M70 µ
).

By increasingthe time predictionstepseven further,
nogoodresultsareobtained.However, byslightly chang-
ing thearchitectureused,i.e,by increasingthemnumber
of neuralunitsin theinputandhiddenlayerswewereable
to improve theseresultsa little. Figure3-b, for instance,
shows theforecastingresultsobtainedfrom thearchitec-
ture 4:8:4:1 for

� O
time steps. The matchbetweenthe

two setsof datacanbe consideredslightly betterin this
casethantheresultsobtainedwith thepreviousarchitec-
ture3:6:3:1 (fig. 3-a). In short,from theseresultswecan
concludethatneuralnetworkscanbeeffectivelly usedto
predictwith successthe chaoticbehavior of Lorenzse-
ries.

As an easyway to evaluate the prediction perfor-
manceof theneuralnetworkweplottedtheARVand� pa-
rametersagainstthenumberof timepredictionsteps.The
resultsobtainedareshown in figures4-aand4-b,respec-
tively, for thearchitecture3:6:3:1. Fromthesefiguresit
is observed that the degradationof the predictionpower
of theneuralnetworkstendsto exponentiallyincreaseas
thenumberof timestepsincreases,asoneshouldexpect.
It is importantto notice,however, that thepredictionre-
sultscanbeconsideredexcellentup to � O

timesteps.For
biggervaluesthanthat,thefitting betweentheactualdata
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Figure3: Predictionof theLorenzseriesusing(a) thear-
chitecture3:6:3:1 (ARV =

M70 M»º
, � $ M70 µ N ) ascompared

with (b) thearchitecture4:8:4:1 (ARV =
M70 M�O

, � $ M.0 µ�¼
).

In both figures, the solid line representsthe
�

compo-
nentof Lorenzsystemandthedottedline thepredictions
of theneuralnetwork for 45 time steps.As it canbeob-
served,thepredictionsin (b) areslightly betterthanthose
obtainedin (a).

andtheresultspredictedby thenetarenotsoperfect,but
theneuralnetworksstill predictreasonablywell thegen-
eralchaoticpatternof theLorenzseries.

As it canbeobservedin figure5 thebestforecasting
resultsareobtainedwhenthem:2m:m:1typeof architec-
tureis used.

3 ForecastingDisruption Instabilities

During thetokamakplasmadischarges,severaldiag-
nosticsareput in operationto measuretheplasmaparam-
etersand monitor the plasmaconditions. In particular,
thesoftX-ray detectionsystemhasbecomeanimportant
tool to investigatethecentralpartof theplasmacolumn,
sincetheemissionof low energy X-raysis closelyrelated
to theelectrontemperature,importantparameterof con-
finedplasmas,impurities,plasmadensityanddisruptions
instabilities[7]. In figure 6 we canseesomeof the ba-
sic signalsof one disruptive plasmadischarge, suchas
PlasmaCurrent(fig. 6-a),Loop Voltage(fig. 6b),oneof
theSoftX-ray signalusedin this task(fig. 6-c),Magnetic
Coils (fig. 6-d) andEletronicdensity(fig. 6-e). Thedis-
ruptioninstabilitiescauseasignificantdropin theaverage
electrondensity(figure6-e)andelectrontemperature,by
soft X-ray emissionsignal (figure 6-c). The procedure
usedto forecastdisruption instabilitieswas almost the
sameastheLorenzserieswith few diferences.Thevalue
of immersiondimension,for instance,wasm=15 when
weusedsoftX-ray signalsobtainedfrom TEXT tokamak
(Austin, Texas-USA).Then, the feed-forward architec-
ture to make predictionsfor this kind of dischargeswas
15:30:15:1. It is importantto noticeherethatneuralnet-
work wastrainedwith signalsobtainedfrom certaincon-
ditions(temperature,density, impurity concetration,etc.)
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Figure7: Soft X-ray from a disruptive discharge which
wasusedfor forecasting.As it canbeobservedtheminor
disruptionsoccursat
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andis perfectlypredicted

by 15:30:15:1feedforwardneuralnetwork.

of plasmaconfinement. Therefore,all the experimen-
tal signalsfor training,validationor forecastingprocess
mustbelongto this sampleof data. If the confinement
conditionsof plasmaarechanged,the network mustbe
trainedagainwith anothersetof data.

Initially, extensive attemptswerecarriedout to find
the bestarchitecturefor working with soft X-rays from
TEXT, sincethethenumberof immersiondimension,m,
of plasmasconfinedby tokamaksis not surely known.
After severaltestswehavefoundthebestarchitecturefor
our purpose:15:30:15:1. For the training process,we
have usedthreesoft X-ray signals,all of them similar
to thesignalobservedin figure6-c, with theparameters:�Ï$ M.0 µ

,
� $ M.0 M�M � (equation7) and500trainingepochs.

The validation was carriedout with anothersignal and
for thepredictionprocess,a fifth signalwaschosen.The
patternsof training,validationandforecastingtaskswere
obtainedrandomlywith

, $ÐK M
andthe time prediction

was
���@�

. In figures7 and8 very goodpredictionresults
areshown for 15:30:15:1neuralnetwork. As it canbe
observed,theresultobtainedagreesalmostperfectlywith
theexperimentalsignal.

4. Conclusions

It hasbeenshown in thiswork thatneuralnetwork can
besuccessfullyusedto predictthefuturestateof nonlin-
ear systemsas the onesdescribedby the Lorenz equa-
tions. For all thesecases,it hasbeenverified that the
architecturem:2m:m:1 is an initial good guessto con-
struct the neuralnetwork architecturefor predictingthe
future stateof chaotictemporalseries. The reasonable
goodresultsobtainedhereclearly suggestsan interplay
betweenthearchitectureof amultilayernetwork with the
embeddingdimensionm of the time seriesthat is under
investigation. This conclusioncanbe very useful if we
considerthat,whendealingwith neuralnetworks,a large
numberof training datasetsandinteractionsaregener-
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Figure8: Shot133677expandedin time,whereit is pos-
sible to observe thevery goodforecastingresultsfrom a
15:30:15:1feedforwardneuralnetwork.

ally requiredto find theright architectureand,therefore,
reliableandfasterconvergenceprocessfor theneuralnet-
works are mostly welcome. The prediction approach
usedhereinhasshown to haveconsiderableadvantagesin
termsof qualityof theresultsandflexibility overthemore
conventionalmethodsreportedin otherpublishedarticles
[8, 9]. Thus, the resultsobtainedhereare encouraging
andneuralnetworkscanbeconsideredanimportanttool
for makingpredictionsin time of nonlinearsystems,like
disruptionsinstabilitiesin confinedplasmas.Thiskind of
instabilitiesis oneof themajorobstaclesto futurefusion
reactorsandif oneknows approximatelythe momentof
its occurenceit is possibleto changethe conditionsof
tokamakcontrolor to startup safetymechanismsof the
machinesuchastheinjectionof neutralparticles(or pel-
lets),andtheaplicationof externalmagneticfield, etc.,to
avoid theseinstabilitiesor, at least,attenuatetheir harm-
ful effects.
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