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Abstract

In this ot paper, a na ye explored way of
getting dynamic systems discrete forward models, to
be used as internal models in control schemes, is
propased. A mixed heuristic and theoretical approach
is taken to propose and explicitly show how to use
dynamic systems ordinary differential equations (ODE)
numerical integrators in control schemes where a
discrete forward internal model is needed. Use is made
of the structure of numerical integrators algorithms to
make it possble to get a neural feedforward model to
approximate the dynamic system by only learning the
derivative function in the system ordinary differential
equations model. It is then ill ustrated how to use this
kind o discrete forward model in a pedictive @ntrol
scheme andin aninternal model control scheme where
a least control action criterion is used. Independently
of any numerical experiment, conclusions are drawn
concerning the peadliar and adrantageous aspeds of
the propaosed method

1. Introdution

In control schemes employing feedforward neural
networks, the usual approach has been that of using a
discrete nonlinear input-output NARMAX type of
model to approximate the dynamic system, to then train
the neural network to learn this modd (e.g.: Chen and
Billings (1992; Liu et a (1998). There are at least two
difficulties with this approach. The first is the
adjustment of the order of the input-output model, in
terms of the number of delayed responses and of
delayed control actions to account for. The second is
the situation of usually having to deal with too many
inputs, and thus too many parameters, in the training of
the neural network.

An opportunity yet to be explored is offered by the
existing knowledge and results to deal with the
numerical integration of ordinary differential
equations(ODE) (e.g., Stoer and Bulirsch (1980). The
computer simulation model provided by an ODE
numerical integrator is a discrete forward model of the
dynamic system which by itsdf can be used as an
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internal model in control schemes. These numerical
integrators have characteristics which are quite relevant
for a dynamical system model to be used in control,
sincethey alow: (i) parale processng, component by
component of the dynamic system dsate; (ii) the
demanded prediction local accuracy to ke adjusted by
avail able methods of automatically varying the order or
the step size of the integrator(e.g., Fehlberg (19698;
Prothero (1980); and (iii) the etimation of
accumulated gobal prediction errors to be also made
(e.g., Rios Neto and Kondapalli (1990).

If the structure of the numerical integrator model is
used, it is posshle to have a feedforward neural
network to approximate the derivative function in the
differential equations mathematical mode of the
dynamic system. With this approach, the difficulty with
too many inputs in the training of the neural network is
aleviated, since it is only necessary to learn an
algebraic and satic function, and the inputs are
ocaurrences of the state and control variables in their
envelope of variation.

In what follows, in Sedion 2, the basic idea of
taking a fealforward neural network to learn the
derivative function of a dynamic system, to then use the
structure of an ODE numerical integrator to get a
discrete forward internal modd, is proposed. In
Sedions 3 and 4, it is srown how to use this numerical
integrator based internal model in two control schemes:
a predictive one and a least control action interna
model one. In Sedion 5, conclusions about expeded
use and results are drawn.

2. Proposed Approach Basic |dea

Consider a dynamic system with state vedor xoRr"and
control vedor uoR™. Suppose that an artificial neura
network modd is avail able as an approximation to the
derivative function f(x,u) coming from physical laws
governing this dynamic system:
x=f(xu)= f(xuWw) (1)
That is, f(xuW) with the learned weights W
represents a neural network (see eg., Zurada (1992)



which as an universa approximator (Hornik et al
(1989) can model and approximate the derivative
function f(x,u).

Consider now an ordinary differential equation
(ODE) numerical integrator (e.g., Stoer and Bulirsch
(1980) to get a discrete approximation of the system of

Eq.(2):

X(t+A4t)= @
Fa(X(1),X(t = At),..., x(t = nyAt); u(t),....u(t — nyAt ); At; W)
where the right hand side discrete approximation is a
known function of f(xu,w), once a choice of the
numerical integrator is done; n,is related to the order

of the approximation; if its value is greater than zero,
one has the situation where a finite difference type of
integrator is used ( for example, an Adams-Bashforth
method); if it is zero, a single step type of integrator is
used ( for example, a Runge-Kutta method); and 4t ,
the step size, is asaumed sufficiently small to asaure u(t)
constant along the discretization interval.

The numerical integrator in EQ.(2) can be used
rearsively as an approximate discrete predictive model
of the dynamic system of Eq.(1) in internal model
control schemes, and the resulting numerical algorithm
can be processed in paralld for each component of the
state of the dynamic system. The aror in each step can
be @ntrolled by varying step size and or the order of
numerical integrator.

3. Neural Control Schemes
3.1 Predictive Control

In this <heme, the problem is to determine a
smocath and reference trgjedory tracking control, by
minimizing a predictive quadratic index of
performance , which is usually of the type (see eg.:
Hunt et a (1992); Su and McAvoy (1993):

J :[_zl[yr(tj)—yn(tj)]Try‘l(tj)[yr(tj)—yn(tj)]+
J:

n-1

ACUPRECRY Tttt ;) - uttj-)Il 2 )
J:

where t; =t+jat; y.(t;) is the reference response; n

defines the horizon over which the tracking errors and
control increments are nsidered; r,(t;)r,(t;) are

positive definite weight matrices, y,(t;) is the

approximated output of the dynamic system of Eq. (1),
which can be formally represented by:

Ya(tj) = 90Xt ) =
9 Fr(X(tj=g )reeX(tj—gmng )i UCEj ), U(—gon ) AL W)) = (4)
In(X(tjg ) X(tj_gong DiUCE g M(Ej 3o )i W)
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where the discrete approximation given by the
numerical integrator (Eq.(2)) was used , with the ODE
derivative function approximated by a trained
feadforward neural network with estimated weights w.
The posshility of adjusting the level of approximation
of the numerical integrator and of the neural network
guarantees the necessary prediction accuracy of y,(t;)

along the predictive horizon.
T —,
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Figure 2: Predictive Control Scheme

The solution of the nonlinear programming problem
of Eq.(3), by any chosen method will i nvolve the need
of calculating an approximation of the gradient of the
output of the dynamic system, to get a linearized
approximation in each search step:

yn(tj ) = yn(tj )+

()

j-1
k_zko[ HNn(ty ) au(t Naey pl ult ) —u(ty )]

where the over bar is to indicate the nominal last step
values, around which the e&pansion was done;

ko =max[0,(j-1-2n,)] since y,(t;) isalso afunction of
U(tj_p )bt 41) through xn(tj_y),.. Xq(tjp, ) s @nd the
partial derivatives are @lculated using the chain rule to
acoount for the cmposed function situation explicit in
Eq.(4), including the backpropagation rule (see eg.,
Chandran (1994) in the feadforward neural network



that approximates the derivative function of the
dynamic system.

3.2 Least Action Internal M ode

In the Internal Modd Neural Control (IMNC)
scheme ( Hunt and Sbarbaro (1991), besides the
internal forward model of the plant, it is needed to have
a neural network for the inverse of the plant, as the
contraller. In what follows, a spedalized mode is
adopted for the identification of the inverse of the plant
dynamics.

In a usual IMNC method, the cntroller neural
network is trained by, for example, minimizing the
functional:

L
J:1lzzl(ys(j)—yc(j,wc))TRgl(j)(ys—yc(j,wc)) (6)
J:

where, y.(j)j=12,.L isatraining sample of values of
the desired spedalized response vy (j.w.) IS the

controlled response, at time j, and the result of the
control action u(j-1,w,), at timej-1, on the plant.

In a more daborated approach, instead of the
functional of EQ.(6) one that weights previous
knowledge of the weights w, and that constraints least

control actions can be mnsidered, as foll ows:
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Figure 1: Spedalized Controller Training
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J=1/2[(w _V_VC)TEW_l(Wc W)+

L
> (¥s(1) = VeI ) RACD(Ys(D) = el Twe )+ (7)

j=1
(u(j = Lwe )" RI(UCj — 1w ))]

where B,*, R’ and R;* are appropriate weight

matrices.
To calculate the gradient of y.(j,w,) with resped to

the ontroller neural network weights w,, one has to

consider the @ntroller neural network in series with
the plant forward model y,(t;). The dain ruleis used

to first calculate the approximate gradient of the
controlled response with resped to u(j-1,w,), to then

use the backpropagation rule to calculate the gradient
of this control with resped to the wntroller neura
network weights.

Notice that the training minimizing the functional of
Eq.(7) isin batch and intended to be done off line. For
sequential, on line training, only one prediction pattern
ys(j), isconsidered at a given timet, and thus L=1 is

taken in EQ.(7).
4 Numerical Integrator Totally Based Schemes

Notice that instead of using a neural network to
provide a discrete forward model for the dynamics, one
could dredly use f(x,u) in the numerical integrator
algorithm to get the discrete forward mode
approximating the mathematical model of the dynamic
system (Eq.(1)).

In the @se of the predictive @ntrol scheme, this
numerical integrator model can be diredly used to
calculate the partial derivativesin Eq.(5). In the @se of
the internal model control scheme, the numerica
integrator is taken as an approximate plant forward
model, in series with the ntroller neural network,
allowing the use of the dain rule to calculate the
gradient of the controll ed response.

5. Conclusions

A new approach to get dynamic systems discrete
forward models, to be used in control schemeswhere an
internal model is neaded, was proposed. The posshility
of using ODE numerical integrators, as such interna
models, was made explicit.

It was own that the structure of these numerical
integrators can be eploited to get neural discrete
forward models where the neural network has only to
learn and approximate the algebraic and datic
derivative function in the dynamic system ODE.

Independently of any numerical experiment, the
following conclusions can be drawn, concerning the
expeded use and results:



() it is a smpler task to train a feadlforward
neural network to learn the algebraic , static
function of the dynamic sysem ODE
derivatives (where the inputs are samples of
state and control variables), than to train it to
learn a NARMAX type of discrete mode (
where the inputs are samples of ddayed
responses and controls (e.g., Carrara et al

(1999));
(i) the neural network certainly will be simpler, in
terms of the necessary number of layers and
number of neurons, since it does not have to
learn the dynamic law , but only the derivative
function;
(iii) the use of the ODE numerical integrator, as a
discrete time approximate model , does not
destroy the parallel processng characteristic ,
since the numerical integrator algorithm will
only involve alculations and evaluations of
linear combinations of the trained neura
network;
(iv) the eisting knowledge about step size and
order adjustment in numerical integration can
be used to control expeded prediction
acauracy;
(V) when the dynamic time responses are not too
small, and a reasonably goad ODE
mathematicalk moded is available, the
numerical integrator can diredly be used as a
discrete internal model;

even in the dtuation where an ODE
mathematical model is not available, as long
as dynamic system input output pairs are
available to be used as training information,
the structure of the numerical integrator with a
feadforward network in place of the derivative
function can be trained to get a discrete
internal model in control schemes;

(vi)

(vii) finaly, it isimportant to consider that the use
of a neural network in the dynamic system
discrete model  will naturally alow the
implementation of adaptive mntrol schemes,
due to the learning capacity of the neural

network.
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