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Abstract

In this short paper, a not yet explored way of
getting  dynamic systems discrete forward models, to
be used as internal models in control schemes, is
proposed. A mixed heuristic and theoretical approach
is taken to propose and explicitl y show how to use
dynamic systems ordinary differential equations (ODE)
numerical integrators in control schemes where a
discrete forward internal model is needed. Use is made
of the structure of numerical integrators algorithms to
make it possible to get a neural feedforward model to
approximate the dynamic system by only learning the
derivative function in the system ordinary differential
equations model. It is then ill ustrated how to use this
kind of discrete forward model in a predictive control
scheme and in an internal model control scheme where
a least control action criterion is used. Independently
of any numerical experiment, conclusions are drawn
concerning the peculiar and advantageous aspects of
the proposed method.

1. Introdution

In control schemes employing feedforward neural
networks, the usual approach has been that of using a
discrete nonlinear input-output NARMAX type of
model to approximate the dynamic system, to then train
the neural network to learn this model (e.g.: Chen and
Billi ngs (1992); Liu et al (1998)). There are at least two
diff iculties with this approach. The first is the
adjustment of the order of the input-output model, in
terms of the number of delayed responses and of
delayed control actions to account for. The second is
the situation of usually having to deal with too many
inputs, and thus too many parameters, in the training of
the neural network.

An opportunity yet to be explored is offered by the
existing knowledge and results to deal with the
numerical integration of ordinary differential
equations(ODE) (e.g., Stoer and Buli rsch (1980)). The
computer simulation model provided by an ODE
numerical integrator is a discrete forward model of the
dynamic system which by itself can be used as an

internal model in control schemes. These numerical
integrators have characteristics which are quite relevant
for a dynamical system model to be used in control,
since they allow: (i) parallel processing, component by
component of the dynamic system state; (ii ) the
demanded prediction local accuracy to be adjusted by
available methods of automaticall y varying the order or
the step size of the integrator(e.g., Fehlberg (1968);
Prothero (1980)); and (iii ) the estimation of
accumulated global prediction errors to be also made
(e.g., Rios Neto and Kondapalli (1990)).

If the structure of the numerical integrator model is
used, it is possible to have a feedforward neural
network to approximate the derivative function in the
differential equations mathematical model of the
dynamic system. With this approach, the diff iculty with
too many inputs in the training of the neural network is
alleviated, since it is only necessary to learn an
algebraic and static function, and the inputs are
occurrences of the state and control variables in their
envelope of variation.

In what follows, in Section 2, the basic idea of
taking a feedforward neural network to learn the
derivative function of a dynamic system, to then use the
structure of an ODE numerical integrator to get a
discrete forward internal model, is proposed. In
Sections 3 and 4, it is shown how to use this numerical
integrator based internal model in two control schemes:
a predictive one and a least control action internal
model one. In Section 5, conclusions about expected
use and results are drawn.

2. Proposed Approach Basic Idea

Consider a dynamic system with state vector nRx ∈ and

control vector mRu∈ . Suppose that an artificial neural
network model is available as an approximation to the
derivative function )u,x(f  coming from physical laws
governing this dynamic system:
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That is, )ŵ,u,x(f̂  with the learned weights ŵ

represents a neural network (see e.g., Zurada (1992))
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which as an universal approximator (Hornik et al
(1989)) can model and approximate the derivative
function )u,x(f .

Consider now an ordinary differential equation
(ODE) numerical integrator (e.g., Stoer and Buli rsch
(1980)) to get a discrete approximation of the system of
Eq.(1):
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where the right hand side discrete approximation is a
known function of )ŵ,u,x(f̂ , once a choice of the
numerical integrator is done; on is related to the order

of the approximation; if its value is greater than zero,
one has the situation where a finite difference type of
integrator is used ( for example, an Adams-Bashforth
method); if it is zero, a single step type of integrator is
used ( for example, a Runge-Kutta method); and t∆ ,
the step size, is assumed suff iciently small to assure u(t)
constant along the discretization interval.

The numerical integrator in Eq.(2) can be used
recursively as an approximate discrete predictive model
of the dynamic system of Eq.(1) in internal model
control schemes, and the resulting numerical algorithm
can be processed in parallel for each component of the
state of the dynamic system. The error in each step can
be controlled by varying step size and or the order of
numerical integrator.

3. Neural Control Schemes

3.1 Predictive Control

In this scheme, the problem is to determine a
smooth and reference trajectory tracking control, by
minimizing a predictive quadratic index of
performance , which is usually of the type (see, e.g.:
Hunt et al (1992); Su and McAvoy (1993)):
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where tjtt j ∆+= ; )t(y jr  is the reference response; n

defines the horizon over which the tracking errors and
control increments are considered; )t(r),t(r jujy  are

positi ve definite weight matrices; )t(y jn  is the

approximated output of the dynamic system of Eq. (1),
which can be formally represented by:
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))ŵ;t);t(u),...,t(u);t(x),...,t(x(f(g

~))t(x(g~)t(y

on1j1jon1j1jn

on1j1jon1j1jn

jjn

−−−−−−

−−−−−− =

==

∆ (4)

where the discrete approximation given by the
numerical integrator (Eq.(2)) was used , with the ODE
derivative function approximated by a trained
feedforward neural network with estimated weights ŵ .
The possibilit y of adjusting the level of approximation
of the numerical integrator and of the neural network
guarantees the necessary prediction accuracy of )t(y jn

along the predictive horizon.

              Figure 2: Predictive  Control Scheme

The solution of the nonlinear programming problem
of Eq.(3), by any chosen method will i nvolve the need
of calculating an approximation of the gradient of the
output of the dynamic system, to get a linearized
approximation in each search step:
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where the over bar is to indicate the nominal last step
values, around which the expansion was done;

)]n21j(,0max[k o0 −−=  since )t(y jn  is also a function of

)t(u),...,t(u 1onj2j +−−  through )t(x),....,t(x
onjn1jn −− ; and the

partial derivatives are calculated using the chain rule to
account for the composed function situation explicit in
Eq.(4), including the backpropagation rule (see, e.g.,
Chandran (1994)) in the feedforward neural network
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that approximates the derivative function of the
dynamic system.

3.2 Least Action Internal Model

In the Internal Model Neural Control (IMNC)
scheme ( Hunt and Sbarbaro (1991)), besides the
internal forward model of the plant, it is needed to have
a neural network for the inverse of the plant, as the
controller. In what follows, a speciali zed model is
adopted for the identification of the inverse of the plant
dynamics.

In a usual IMNC method, the controller neural
network is trained by, for example, minimizing the
functional:
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where, L,...2,1j),j(ys =  is a training sample of values of

the desired speciali zed response; )w,j(y cc  is the

controlled response, at time j, and the result of the
control action )w,1j(u c− , at time j-1, on the plant.

In a more elaborated approach, instead of the
functional of Eq.(6) one that weights previous
knowledge of the weights cw  and that constraints least

control actions can be considered, as follows:

            Figure 1: Speciali zed Controller Training
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where 1
wP − , 1

yR−  and 1
uR−  are appropriate weight

matrices.
To calculate the gradient of )w,j(y cc  with respect to

the controller neural network weights cw , one has to

consider the controller neural network in series with
the plant forward model )t(y jn . The chain rule is used

to first calculate the approximate gradient of the
controlled response with respect to )w,1j(u c− , to then

use the backpropagation rule to calculate the gradient
of this control with respect to the controller neural
network weights.
Notice that the training minimizing the functional of
Eq.(7) is in batch and intended to be done off line. For
sequential, on line training, only one prediction pattern

)j(ys , is considered at a given time t, and thus L=1 is

taken in Eq.(7).

4 Numerical Integrator Totally Based Schemes

Notice that instead of using a neural network to
provide a discrete forward model for the dynamics, one
could directly use )u,x(f  in the numerical integrator
algorithm to get the discrete forward model
approximating the mathematical model of the dynamic
system (Eq.(1)).

In the case of the predictive control scheme, this
numerical integrator model can be directly used to
calculate the partial derivatives in Eq.(5). In the case of
the internal model control scheme, the numerical
integrator is taken as an approximate plant forward
model, in series with the controller neural network,
allowing the use of the chain rule to calculate the
gradient of the controlled response.

5. Conclusions

A new approach to get dynamic systems discrete
forward models, to be used in control schemes where an
internal model is needed, was proposed. The possibilit y
of using ODE numerical integrators, as such internal
models, was made explicit.

It was shown that the structure of these numerical
integrators can be exploited to get neural discrete
forward models where the neural network has only to
learn and approximate the algebraic and static
derivative function in the dynamic system ODE.

Independently of any numerical experiment, the
following conclusions can be drawn, concerning the
expected use and results:
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(i) it is a simpler task to train a feedforward
neural network to learn the algebraic , static
function of the dynamic system ODE
derivatives (where the inputs are samples of
state and control variables), than to train it to
learn a NARMAX type of discrete model (
where the inputs are samples of delayed
responses and controls (e.g., Carrara et al
(1998)));

(ii ) the neural network certainly will be simpler, in
terms of the necessary number of layers and
number of neurons, since it does not have to
learn the dynamic law , but only the derivative
function;

(iii ) the use of the ODE numerical integrator, as a
discrete time approximate model , does not
destroy the parallel processing characteristic ,
since the numerical integrator algorithm will
only involve calculations and evaluations of
linear combinations of the trained neural
network;

(iv) the existing knowledge about step size and
order adjustment in numerical integration can
be used to control expected prediction
accuracy;

(v) when the dynamic time responses are not too
small , and a reasonably good  ODE
mathematical model is available, the
numerical integrator can directly be used as a
discrete internal model;

(vi) even in the situation where an ODE
mathematical model is not available, as long
as dynamic system input output pairs are
available to be used as training information,
the structure of the numerical integrator with a
feedforward network in place of the derivative
function can be trained to get a discrete
internal model in control schemes;

(vii ) finall y, it is important to consider that the use
of a neural network in the dynamic system
discrete model will naturall y allow the
implementation of adaptive control schemes,
due to the learning capacity of the neural
network.
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