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Abstract

The appropriate operation of a radial basis
function (RBF) neural network depends mainly upon an
adequate choice of the number and positions of its
basis function centers. The simplest approach to train
an RBF network is to assume fixed radial basis
functions defining the activation of the hidden units,
followed by the application of a regression procedure
to determine the linear output weights. The main
drawback of this strategy is the lack of an efficient
algorithm to determine the amount and positions of the
RBF centers. In this paper, an immunological
approach makes use of the training data in order to
initialize the radial basis functions. The approach to be
proposed is inspired by the vertebrate immune system,
and tries to compress the information contained in the
data set while positioning the prototype vectors into
representative regions of the input space. The
algorithm is compared to random and k-means center
selection, and results are reported concerning
regression and classification problems.

1. Introduction

RBF neural networks are powerful function
approximators for multivariate nonlinear continuous
mappings. They have a simple architecture and the
learning algorithm corresponds to the solution of a
linear regression problem, resulting in a fast training
process. The RBF network behavior strongly depends
upon the number and position of the basis functions at
the hidden layer. Traditional methods to determine the
centers are: randomly choose input vectors from the
training data set [1]; vectors obtained from
unsupervised clustering algorithms, such as k-means,
applied to the input data [2]; or vectors obtained
through a supervised learning scheme [3].

Over the last few years the immune system has been
used as a rich source of inspiration to develop new
computational tools for solving complex engineering
problems, among which we can stress computer and
network security [4, 5, 6], optimization problems [7, 8],
and robotic control [9]. Recently, de Castro & Von
Zuben [7] proposed a data compression algorithm to
solve classification problems described by a set of
unlabeled data. In this paper, we will show that, with a
few refinements, this algorithm can be directly applied
to the problem of defining RBF network centers.

2. RBF neural network

An RBF neural network can be regarded as a
feedforward network composed of three layers of
neurons with entirely different roles (Figure 1) [11].
The input layer is made up of sensory units that connect
the network to its environment. The second layer, the
single hidden layer, applies a nonlinear transformation
from the input space into the hidden space. The
nonlinear hidden units are locally tuned and their
responses are outputs of radial basis functions. The
output layer is linear, supplying each network response
as a linear combination of the hidden responses [12, 3].

For a p-dimensional input vector x = (x1, x2, ... , xp),
where x ∈ X ⊂ ℜp, the RBF network outputs can be
computed by the following expression:
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where wi = [wi1, ... , wim]T, i = 1,...,o, are the network
weight vectors for each output neuron i,
g = [g1, g2, ... , gm]T is the vector of basis functions, and
o is the number of network output units. Given a set of
prototype vectors cj ∈ ℜp and standard deviations
σj, j = 1,...,m, the output of each radial basis function is

mjhg jjj ,...,1),1||,(|| =−= cx , (2)

where hj( ⋅ ) is the basis function and || ⋅ || is a norm,
usually the Euclidean norm, defined on the input space.

In the context of an interpolation problem, a
mapping function y: ℜp → ℜ satisfying Equation (1),
for o = 1, has to be determined. Consider a set of N data
points {xi ∈ ℜp| i = 1,...,N}. If the desired output values
are known for all these N data points, i.e.
{ di ∈ ℜ| i = 1,...,N}, then each basis function may be
centered on one of these data points. So, there are as
many centers (prototype vectors) as data points: m = N
[13]. In matrix notation,

H w = d, (3)

where the N-by-1 vectors d and w represent the desired
response vector and the output weight vector,
respectively. H is an N-by-N matrix, called
interpolation matrix. The solution to the problem stated
in Equation (3) is given by

w = H−1d (4)
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Figure 1: Radial Basis Function (RBF) network.

Micchelli’s theorem [14] stated that the only pre-
requisite for the existence of H−1 is that the N data
points are distinct, regardless the values of N and p.

According to Broomhead & Lowe [11], the strict
interpolation problem described above may sometimes
not be a good strategy for the training of RBF networks
because of poor generalization to previously unseen
data. In addition, if N is large, and/or if there is a great
amount of redundant data (linearly dependent vectors),
the likelihood of obtaining an ill-conditioned matrix H
will be higher. The constraint of having as many RBFs
as data points makes the problem overdetermined. To
overcome these computational difficulties, the
complexity of the network has to be reduced, requiring
an approximation to a regularized solution [15]. This
approach involves the search for a suboptimal solution
in a lower dimensional space. A new set of m1 basis
functions (m1 < N), assumed to be linearly independent,
has to be defined. The set of centers {cj | j = 1,...,m1}
must be determined, such that in the case of m1 = N,
di = xi, ∀ i. If we disregard the regularization
parameter, the solution w* to the least-squares data-
fitting problem, for m1 < N, is simply given by

w* = H+ d = (HTH)−1HTd, (5)

where H+ is the pseudo-inverse of the matrix H [11].
Haykin [12] argued that experience with this

method showed it is relatively insensitive to the choice
of regularization parameters, as far as an appropriate
choice of the RBF centers is performed.

So, the approach used here to train an RBF neural
network is to assume fixed radial basis functions as the
activation of the hidden units. The locations of the
centers might be chosen somehow, usually at random,
or from the training data set as will be proposed in this
paper, using an immune-inspired approach. For the
RBFs, we will employ a Gaussian function whose
standard deviation is fixed according to the spread of
the centers
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where j = 1,...,m1 is the number of centers (hidden
units), 

1max 2/1 mdj =  is the standard deviation (the

same for all basis functions), dmax is the maximum
distance between the chosen centers, x is the input
vector, and cj is the j-th center location.

This choice for σj guarantees that the individual
radial basis functions are not too peak or too flat;
conditions that should be avoided [12].

So, the only parameters to be learnt are the weights
in the network output. A straightforward procedure for
doing so is to use the pseudo-inverse method presented
in Equation (5).

3. A brief review of immunology

Among the many types of immune principles, two
were used to determine the location of the centers:
(1) the clonal selection principle, and (2) the immune
network theory. An interested reader might refer to the
book of Janeway Jr. & Travers [16] as a good
introduction to immunology, and to the technical report
by de Castro & Von Zuben [17] for an introduction to
the artificial immune systems and their applications.

The clonal selection principle explains how the
adaptive immune system (IS) responds to the invasion
of a pathogenic microorganism, called antigen (Ag).
When an antigen invades our bodies, a subset of the
immune cells recognizes these antigens, through a
complementary match, and is selected for reproduction.
The cellular reproduction is asexual (mitosis or
cloning). During reproduction, the clones suffer a
hypermutation process that alters their shapes with
relation to the parents, creating the possibility of
improving their ability to recognize the selective
antigen. Those new cells, whose affinity with the
antigen is improved, are rescued to become part of a
memory set that will act in future responses. Another
subset of the clones becomes plasma cells,
characterized by a high rate of antibody secretion.
Antibodies (Ab) are molecules (cell receptors) that bind
to antigens for their posterior elimination. A schematic
overview of the clonal selection principle is depicted in
Figure 2.

Clonal  selection
Memory cells

Antigen

Plasma cells

Figure 2: The clonal selection principle. An antigen is
recognized by an immune cell, resulting in its
proliferation and differentiation into memory and
plasma cells. A memory cell is a long living cell
presenting high affinity with the antigenic stimulus,
while a plasma cell secretes antibodies in a high rate.
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(suppression)

Ab2Ag Ab1

Ab2 is recognized by Ab1

(Ab2 is the internal image of Ag)

Ag1 is recognized by Ab1
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Figure 3: The immune network idea. An antigen (Ag)
and an antibody (Ab2) are recognized by Ab1. The Ag
recognition promotes a network activation, while the
Ab2 recognition promotes a network suppression. Ab2 is
considered the internal image of the antigens.

The immune network theory, as originally proposed
by Jerne [18], hypothesized mainly a novel viewpoint of
self/nonself discrimination, i.e., how the immune
system differentiates between our own cells and
pathogenic substances (antigens). The immune system
was formally defined as an enormous and complex
network of cells and molecules that recognize each
other even in the absence of antigens. The relevant
events in the immune system are not only the
molecules, but also their interactions. The immune cells
can respond either positively or negatively to the
recognition signal. A positive response would result in
cell proliferation, activation and antibody secretion,
while a negative response would lead to suppression.
Figure 3 depicts the immune network idea.

The central characteristic of the immune network
theory is the definition of the individual’s molecular
identity (internal images), which emerges from a
network organization followed by the learning of the
molecular composition of the environment where the
system develops. The network approach is particularly
interesting for the development of computational tools
because it potentially provides a precise account of
emergent properties such as learning and memory, self-
tolerance, size control and diversity of cell populations.
In general terms, the structure of most network models
can be represented as
RPV = INC − DUC + RSC (7)

where RPV is the rate of population variation, INC is
the increase of network cells, DUC is the death of
unstimulated cells, and RSC is the reproduction of
stimulated cells that includes Ab-Ab recognition and
Ag-Ab stimulation.

4. RBF center selection: an immunological
approach (ICS)

In this paper, we will use an immune-inspired
learning algorithm [7], called aiNet, disregarding the
steps responsible for constructing the network
architecture, to define a data clustering algorithm to
select radial basis function centers, resulting in the ICS
algorithm. In the ICS algorithm, each input pattern xi,
i = 1,...,N, corresponds to an antigenic stimulus, while

each candidate center, zj, j = 1,...,m1, corresponds to an
antibody.

Basically, the ICS algorithm works as follows:
1. A set of candidate centers is initialized at random,

where the initial number of candidates and their
positions is not crucial to the performance;

2. The clonal selection principle will control which
candidates will be selected and how they will be
updated;

3. The immune network theory will identify and
eliminate (suppress) self-recognizing individuals,
controlling the number of candidate centers.

Note that the clonal selection principle will be
responsible for how the centers will represent the
training data set. On the other hand, the immune
network theory will avoid data redundancy, such that
Micchelli’s theorem applied to Equation (4) is satisfied
(see Section 2). In fact, as the resulting number m1 of
prototype vectors {cj | j = 1,...,m1}, will be much
smaller than the number of training patterns, m1 << N,
the extended result of Broomhead & Lowe [11] will be
used to define the network output weights, as described
by Equation (5).

If we assume that the set of N patterns
X = {x1,x2,...,xN}, xi ∈ ℜp, i = 1,...N, to be used as the
inputs of an RBF neural network is a set of unlabeled
data, the data compression problem results in the
determination of a new set
Z = {z1,z2,..., }

1mz  composed of m1 patterns (zj ∈ ℜp,

j = 1,...m1), where m1 << N. Z is not necessarily a
subset of X.

The elements composing the Z set will serve as
internal images of the X set, and will be responsible for
mapping existing clusters in the data set into RBF
centers. Figure 4 presents hypothetical elements of X
(stars) and the respective elements of Z (labeled circles)
generated by the ICS algorithm. Notice that the number
of elements in Z is much smaller than the number of
elements in X (m1 << N).

The Z set is initialized randomly with a fixed
number of elements that will compete with each other
for pattern recognition, and those successful will
proliferate, i.e., generate copies subject to mutation,
while those who fail recognition will be eliminated. In
addition, if two elements from the Z set recognize each
other (based upon a given distance metric, assumed to
be the Euclidean distance in this work), a suppressive
step will occur. In our model, suppression is performed
by eliminating the self-recognizing elements from Z,
given a suppression threshold σs. Every pair xi-zj

(representing an Ag-Ab pair), will be related to each
other in a metric-space S through the affinity dij of their
interactions (dissimilarity), which reflects the
probability of starting a clonal response, according to
the clonal selection principle discussed in the previous
section. Similarly, an affinity sij will be assigned to
each pair zi-zj, reflecting their interactions (similarity).
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Figure 4: Illustration of the performance of the data
compression algorithm (ICS) for pattern classification
and approximation, respectively. The stars represent
elements of X, and the numbered circles the resulting
labeled elements of Z. Notice that each element of Z
represents a group (cluster) of elements belonging to X.
(a) 3 elements composing the set Z of RBF centers are
defined by the ICS approach. (b) The elements from set
Z will determine the number and positions of RBF
centers such that the function can be appropriately
approximated.

The following notation will be adopted:
X: matrix with the original data set as its rows
(X ∈ ℜN×p);
T: temporary matrix containing a number Nt of
candidate centers as its rows (T ∈ ℜNt×p);
C: matrix with the m1 centers (memory cells), as its
rows, taken from the rows of T (C ∈ ℜm1×p);
Nc: no. of clones generated by each stimulated center;
D: dissimilarity matrix with elements dij (x-z);
S: similarity matrix with elements sij (z-z);
n: n highest affinity centers selected for reproduction
and mutation;
ζ: percentage of the matured centers to be selected;
σd: natural death threshold; and
σs: suppression threshold.

Each RBF candidate center is considered to be an
element, or cell, of the immune network model. The
learning algorithm aims at building a memory set,
arranged as the rows of matrix C, that recognizes and
represents the data structural organization. The more
specific the centers (cells), the less parsimonious the
network1 (low compression rate), whilst the more
generalist the centers, the more parsimonious the
network with relation to the number of centers
                                                       

1 Note that network in this section refers to the immune network
model, and might not be confused with the RBF neural network.

(improved compression). The suppression threshold
(σs) controls the specificity level of the centers, the
clustering arrangement and the network plasticity. As a
suggestion, the user must first set a small value for σs

(e.g., σs ≤ 10−3) and continuously fine-tune the network
performance.

The ICS learning algorithm works as follows:
1. At each iteration step, do:

1.1 For each input pattern i, do:
1.1.1 Determine its affinity, dij , to all the network

centers according to a distance metric;
1.1.2 Select the n highest affinity network centers;
1.1.3 Reproduce (clone) these n selected centers.

The higher the center affinity, the larger the
number of clones (Nc);

1.1.4 Apply Equation (9) to these Nc centers;
1.1.5 Determine D for these improved centers;
1.1.6 Re-select ζ% of the highest affinity centers

and create a partial Cp memory centers
matrix;

1.1.7 Eliminate those centers whose affinity is
inferior to threshold σd, yielding a reduction
in the size of the Cp matrix;

1.1.8 Calculate the network zi-zj affinity, sij ;
1.1.9 Eliminate those candidates with sij  < σs

(clonal suppression);
1.1.10 Concatenate C and Cp, (C ← [C;Cp]);

1.2 Determine S, and eliminate those centers whose
sij < σs (network suppression);

1.3 Replace r% of the worst individuals;
2. Test the stopping criterion.

In steps 1.1.1, 1.1.5 and 1.1.8 we adopted the
Euclidean distance as a metric of similarity and
dissimilarity. Steps 1.1.1 to 1.1.7 describe the clonal
selection and hypermutation processes. Steps 1.1.8 to
1.1.10 and 1.2 to 1.3 simulate the immune network
activity. The affinity of the cells with the given input
pattern xi can be improved by the following expression
(biased mutation):

jijjjj  ),(. ∀−−= xccc , (8)

where, cj is the j-th clone (j-th row of matrix C) and αj

is the learning rate, or mutation rate. The αj value is
set according to the xi-zj affinity, the higher the affinity,
the smaller the αj. Equation (9) proposes a biased
search, where the x-z complementarity is increased
proportionally to α. By doing so, we guide our search to
locally optimize the network cells (greedy search) in
order to improve their pattern recognition capability
along the iterations.

As can be seen from this algorithm, a clonal
immune response is elicited to each presented input
pattern. Notice also the existence of two suppressive
steps in this algorithm (1.1.9 and 1.2): the clonal
suppression is responsible for eliminating intra-clonal
self-recognizing centers, while the network suppression
searches for similarities between different sets of
network clones. After the learning phase, the network
centers represent internal images of the input patterns
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(or groups of patterns) presented to it. As a complement
to the general network structure presented in Equation
(8), our model suppresses self-recognizing centers
(steps 1.1.9 and 1.2).

The ICS output is taken to be the matrix of memory
cells’ coordinates (C) that represent the final centers to
be adopted by the RBF network. The stopping criterion
of the ICS algorithm is given by a pre-defined number
of iterations.

5. Performance evaluation

In order to evaluate the performance of the proposed
immune-inspired algorithm for RBF center selection
(ICS), it was applied to a regression and a classification
problem. This results were compared to those of the
random initialization technique, presented in Section 2,
and to the k-means method. The k-means method
classifies an input vector by assigning it the label most
frequently represented among the k nearest samples [2].

The stopping criterion, SC, for the ICS method is a
fixed number of generations, and CR represents the
percentile compression rate obtained by the proposed
strategy, i.e. the ratio between the resulting amount m1

of RBF centers and the total amount N of training data.
Note that the ICS method is stochastic in nature, so
each time the algorithm is run, a slightly different
network architecture (amount and center positions)
might arise, but with a similar performance. Typical
results will be presented here.

In the first problem tested, REG, it was generated
315 data samples for one period of the sin(x) function
with noise uniformly distributed over the interval
[−0.7,+0.7] (see Figure 5). Notice that the ICS
algorithm is trained only with the input data,
disregarding the desired outputs (unsupervised
learning).

Figure 5 also presents the performance of the three
algorithms applied to this problem. The resulting
number of RBF centers for the ICS method was 8,
corresponding to a compression rate of 97.46%.

-π/2 π/2

-1.5

-1

-0.5

0

0.5

1

1.5
(1)

(2)

(3)

Figure 5: Regression problem (REG), m1 = 8. Crosses:
training data; (1): ICS; (2) random initialization of
centers; (3) k-means selection of centers.

Random Selection: decision surfaces

(a)
K-Means Selection: decision surfaces

(b)
ICS: decision surfaces

(c)

Figure 6: Center positions and decision surfaces for the
SPIR problem and the three algorithms tested, m1 = 54.
(a) Random initialization. (b) k-means initialization.
(c) ICS.

The same amount, m1 = 8, of RBF centers was
adopted by the random and k-means methods of center
initialization for the REG problem. In Figure 5 we can
notice that the results obtained by the ICS and k-means
strategies are practically the same, with the difference
that the ICS algorithm can automatically determine the
number of RBF centers.

Figure 6 depicts the center positions and decision
surfaces determined by the three algorithms applied to
the SPIR problem, that is composed of 2 non-linearly
separable spirals with 95 samples each. The ICS
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approach produced a network with 54 centers (this
number of centers was then applied to the other
methods), corresponding to a compression rate of
71.58%. The random initialization sometimes results in
wrong decision surfaces (Figure 6(a)), while the ICS
method always lead to a correct classification for the
parameters adopted. The ICS and k-means methods
were able to classify the data with an error rate of 0.0%,
while the random initialization presented an error rate
of 24.7%. Note that the k-means clustering algorithm
may position centers in regions of no data (Figure
6(b)). The training parameters for the ICS learning
algorithm were: σs = 0.5, σd = 0.01, n = 4, ξ = 20% and
SC = 5, for both problems.

6. Concluding remarks

This paper presented the development and
evaluation of a new paradigm to define the number and
position of radial basis function neural network centers.
The proposed learning scheme makes use of an
unsupervised learning approach for the creation of the
prototype vectors, based only on the input data set.

An immunologically inspired technique for data
compression is introduced. The strategy is plastic in
nature, i.e., automatically determining the number of
prototype vectors, and positioning them into locations
of the input space which are crucial to the
implementation of the input-output mapping. This
strategy allows the representation of the input space
with different resolution levels by distributing the
prototypes according to the density distribution of the
data set in the input space.

The performance of the proposed technique was
compared to that of the random and k-means center
selection procedures. Experiments demonstrated that a
random initialization of centers might lead to
misclassification and biased approximation. The k-
means unsupervised selection can waste network
resources by creating prototypes in insignificant regions
of the input space while ignoring regions that are
important for the input-output mapping [12].

The method presented has the advantage that it
allows the construction of a reduced set of radial basis
function centers, satisfying the Micchelli’s condition
for the application of the simplest training algorithm
for RBF: the pseudo-inverse method.

Similar to most unsupervised learning approaches,
the main drawback of the proposed strategy is the
existence of user-defined parameters.
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