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Abstract

This paper proposes a novel neural model to the
problem of short term load forecasting. The neural
model is made up of two self-organizing map nets – one
on top of the other. It has been successfully applied to
domains in which the context information given by
former events plays  a primary role.

The model is trained and compared to a Multi-Layer
Perceptron load forecaster. It is required to compute
the one to twenty four steps ahead recursive load
forecasts. The paper presents the results, and evaluates
them.

1. Introduction

With power systems growth and the increase in their
complexity, many factors have become influential to the
electric power generation and consumption (e.g., load
management, energy exchange, spot pricing,
independent power producers, non-conventional energy,
generation units, etc.). Therefore, the forecasting
process has become even more complex, and more
accurate forecasts are needed. The relationship between
the load and its exogenous factors is complex and non-
linear, making it quite difficult to model through
conventional techniques, such as time series and linear
regression analysis. Besides not giving the required
precision, most of the traditional techniques are not
robust enough. They fail to give accurate forecasts when
quick weather changes occur. Other problems include
noise immunity, portability and maintenance[1]

Neural networks (NNs) have succeeded in several
power system problems, such as planning, control,
analysis, protection, design, load forecasting, security
analysis, and fault diagnosis. The last three are the most
popular [2]. The NN ability in mapping complex non-
linear relationships is responsible for the growing
number of its application to the short-term load
forecasting (STLF) [3, 4, 5, 6]. Several electric utilities
over the world have been applied NNs for load
forecasting in an experimental or operational basis [1, 2,
4].

So far, the great majority of proposals on the
application of NNs to STLF use the multi-layer
perceptron (MLP) trained with error backpropagation
algorithm. Besides the high computational burden for

supervised training, MLPs do not have a good ability to
detect data outside the domain of the training data. The
Kohonen's self-organizing map (SOM) has been
proposed to overcome these shortcomings [7]. However,
the SOM does not work appropriately for regression
problems, because it does not preserve the functionality
of the regression surface [8].

In this work, an extension of the original self-
organizing map to STLF is introduced. Reference [7]
adds a new input variable to the original explanatory set
in order to forecast based on the interconnection weight
between the extra input and the winner in the neural
grid. In the proposed approach there is no extra input, so
that the dimensionality of the explanatory variables is
preserved. The neurons in the output grid are associated
with different load values, preserving the functionality
of the regression surface as well. The proposed model
has been applied to load data extracted from a Brazilian
electric utility and compared to a MLP model.

This paper is divided as follows. In Section 2, load
forecasting models are discussed. These models are
compared through forecasting simulations in Section 3.
Finally, Section 4 presents the main conclusions of this
paper and indicates some directions for future work.

2. Load forecasting models

This section describes the load forecasting models.

2.1 The HNM

The model is made up  of two self-organizing maps
(SOMs). Its features, performance, and potential are
better evaluated in [9, 10].

 The input to the model is  a sequence in time of  m-
dimensional vectors, S1 = V(1), V(2), ..., V(t), ..., V(z),
where  the components  of each  vector  are  non-
negative  real  values.  The  sequence  is presented to the
input layer of  the bottom SOM, one vector  at a time.
The input layer  has m units, one  for each component
of the input  vector  V(t),  and  a  time  integrator.  The
activation X(t) of the units in the input layer is given by

1)(1)()( += ttt XVX               (1)

where 1  (0,1)  is  the decay  rate. For each input
vector X(t), the winning unit i*(t) in the map is the unit
which has the smallest distance (i,t). For each output
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unit i, (i,t) is given by the Euclidean distance between
the input vector X(t) and the unit’s weight vector Wi.

Each output unit i  in the neighborhood  N*(t) of the
winning unit i*(t) has its weight Wi  updated by

)]()()[()()1( titititi WXWW +=+     (2)

where   (0,1)  is  the  learning   rate. (i) is the
neighborhood interaction  function [11], a Gaussian
type function, and is given by
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where  1, 2, and 3 are constants,  is  the radius of
the  neighborhood N*(t), and (i,i*(t)) is the distance in
the map between  the unit i and the winning unit i*(t).
The distance  (i’,i’’) between any two  units i’ and i’’ in
the map is calculated according to the maximum norm,

{ }(i i max l l c c' '' ' '' ' '', ) ,=        (4)

where (l’,c’) and (l’’,c’’) are the coordinates of the
units i’ and i’’ respectively in the map.

The  input  to  the  top  SOM  is  determined by the
distances (i,i*(t)) of the n  units in the map  of the
bottom SOM. The input is thus a sequence in time of n-
dimensional vectors, S2 =  ( (i,i*(1))), ( (i,i*(2))),
..., ( (i,i*(t))), ..., ( (i,i*(z))), where  is  a n-
dimensional transfer function on a n-dimensional space
domain.  is defined as
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where  is a constant, and N*(t) is a neighborhood of
the winning unit.

The sequence S2 is then presented to the input layer
of the top SOM, one vector at a time. The input layer
has n units, one for each component of the input vector

( (i,i*(t))), and a time integrator. The activation X(t)
of the units in the input layer is thus given by
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where 2  (0,1) is the decay rate.
The dynamics of the top SOM is identical to that of

the bottom SOM. Figure 1 shows the HNM.
The input  data  in  the  experiment  consists of

sequences of load data. Seven neural input units are
required. The first unit represents the load at the current
hour. The second, the load at the hour immediately
before. The third, fourth and fifth units represent
respectively the load at twenty-four hours behind, at one
week behind, and at one week and twenty-four hours

behind the hour whose load is to be predicted. The sixth
and seventh units represent a trigonometric coding for
the hour to be forecast, i.e., sin(2 .hour/24) and
cos(2 .hour/24). The load data are linear transformed
according to pre-specified minimum and maximum
values. The normalized data ranges from 0 to 1. Each
unit receives these normalized values.

Figure 1: The HNM

2.2. The MLP model

One single hidden layer has been utilized. One to
three hidden neurons have been used depending on the
period of the year. Hyperbolic and linear activation
functions have been adopted in the hidden and output
layers, respectively.

The basic set of input variables correspond to the
lagged values of the hourly load series (P) by 1h, 2h,
24h and 168h. The trigonometric coding for the hour to
be forecast is used too (HS and HC).

The load values are preprocessed using two different
techniques; ordinary normalization (minimum and
maximum values in the [0;1] range) and single
differencing. The differencing process computes the
differences of adjacent values of a load series, i.e. the
new series represents the variations of the original one.
According to [12], adding differenced variables to that
basic set of input improves the forecaster’s performance.

A. MLP1 Model

The MLP1 model is the simplest one. It uses the
basic set of input variables with ordinary normalization.
The output variable is also normalized with the same
procedure.

B. MLP2 Model

 Differenced variables are added to the MLP1’s set
of inputs. Therefore, two time series are employed; the
normalized and the differenced one. Differencing is
applied to the normalized series. Only the first-order
time differences (D) are considered. Fig. 2 illustrates the
MLP2 load forecaster.
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Figure 2: The MLP2 model

3. Tests

3.1 The HNM training process

Two different hierarchical neural models have been
conceived. The first one is required to foresee   the time
horizon 1-6h. The training of the two SOMs of this
model takes place in two phases – coarse-mapping and
fine tuning. In the coarse-mapping phase, the learning
rate and the radius of the neighborhood are reduced
linearly whereas in the fine-tuning phase, they are kept
constant. The bottom and the top SOMs were tested and
trained respectively with map sizes of 15x15 in 700
epochs, and 18x18 in 850 epochs. It was used low
values for decay rates - 0.4 and 0.7 for the bottom and
top SOMs, respectively. According to [9], low decay
rates reduce the memory size for past events, and that
seems to be critical for predictions on distant horizons.
The initial weights are given randomly to both SOMs.

Forecasting the remaining time leads (i.e., 7-24h) is
addressed by the second model. The same training
process previously described is applied to this model
too. Nevertheless, medium values for decay rates - 0.5
and 0.8 for the bottom and top SOMs, respectively, were
used instead. These new values for decay rates extend
the memory size for past events [9], and consequently,
yield more accurate predictions on large horizons.

One single model has been estimated to deal with the
different days of the week.

3.2 MLP training process

Six-week windows have been taken for training (and
testing), with data grouping according to the day of the
week. For each day of the week, a MLP has been
trained, applying the backpropagation algorithm with
cross-validation. Different partitions for the training and
testing sets are randomly created every 50 epochs.
During the NNs training, there is no particular treatment
for holidays. Special days have been excluded from the
training set.

A comparison of HNM and MLP models have been
performed. After the one-step ahead training, the one to
twenty four steps ahead recursive load forecasts are

computed. The load forecasters are retrained at the end
of the day. The training window is moved one day
forward, and the forecasts for the next 24 hours are
performed (predictions always start at midnight). A load
series from an electric utility in Rio de Janeiro has been
used (maximum load around 3,900 MW). This
validation procedure is repeated for one year.

The Mean Absolute Percentage Error (MAPE),
Mean Square Error (MSE), Mean Error (ME) and
Maximum percentage error (MAX) has been used to
evaluate the load forecasting models.

The following tables present the performance of the
forecasters for 1-24 steps ahead predictions (Tables 1,
3), and a global average evaluation (Tables 2, 4).
Figures 3 and 4 show actual and forecast loads for two
particular days. The first one is a typical weekday
(Friday, 02/03/1995). On the other hand, the second one
is a special weekday (Tuesday, 02/07/1995).

The results from HNM are very promising,
considering that no data segmentation and preprocessing
has been applied to it.

Table 1: Hourly percentage error for 02/03/1995.
Time (h) MLP1 error MLP2 error HNM error

1 0,92 1,63 1,70
2 0,28 1,62 0,99
3 1,92 1,73 2,19
4 3,57 1,20 0,70
5 4,48 0,68 0,68
6 3,97 1,67 0,71
7 2,70 2,40 1,47
8 2,32 2,54 0,76
9 5,12 1,02 2,26

10 4,78 2,26 0,94
11 2,79 0,83 0,74
12 1,37 0,41 2,37
13 2,50 0,48 3,90
14 2,92 3,61 4,01
15 4,51 0,96 3,19
16 4,58 0,06 3,89
17 0,54 3,84 5,36
18 3,48 3,26 2,49
19 3,75 0,05 2,24
20 1,31 0,41 2,74
21 1,62 0,00 0,75
22 0,96 1,80 2,77
23 1,16 2,62 4,12
24 1,91 2,85 4,89

Table 2: Overall evaluation of the predictors for
02/03/1995.

INDEX MLP1 MLP2 HNM
MAPE (%) 2,64 1,58 2,33

MSE (MW ) 10156 4211 8675
ME (MW) -51,50 39,04 52,99
MAX (%) 5,12 3,84 5,36
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Table 3: Hourly percentage error for 02/07/1995.
Time (h) MLP1 error MLP2 error HNM error

1 7,88 3,22 0,11
2 7,98 4,12 1,14
3 8,76 5,42 0,41
4 6,14 3,25 0,58
5 6,09 3,63 0,12
6 6,37 4,47 1,04
7 4,23 2,81 2,98
8 4,07 3,27 0,43
9 2,72 3,11 1,31

10 1,99 2,49 1,75
11 4,28 4,50 1,90
12 4,83 5,26 1,02
13 6,18 7,17 1,04
14 7,49 9,87 3,54
15 6,57 9,26 0,90
16 5,41 7,36 0,63
17 6,76 8,67 1,86
18 6,27 7,36 6,11
19 6,28 7,01 1,85
20 3,72 5,51 1,81
21 2,90 4,69 2,19
22 5,74 5,76 1,24
23 7,78 5,93 6,38
24 11,56 8,53 8,30

Table 4: Overall evaluation of the predictors for
02/07/1995.

INDEX MLP1 MLP2 HNM
MAPE (%) 5,92 5,53 2,03

MSE (MW ) 36259 35174 7885
ME (MW) 180,65 172,69 8,70
MAX (%) 11,56 9,87 8,30

Figure 3: Actual and forecast load for 02/03/1995.
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 Figure 4: Actual and forecast load for 02/07/1995.

4. Conclusions

A novel artificial neural model for sequence
classification and prediction is presented. The model has
a  topology made up of two  self-organizing map
networks, one on top of the other. It encodes and
manipulates context information effectively.

The results obtained have shown that the HNM was
able to perform efficiently the prediction of the electric
load in both very short and short forecasting horizons.
We intend to do further research on the model, and
study carefully the effects of the time integrators on the
predictions in order to produce a better adaptability.

Future work will focus on the incorporation of input
variables related to weather. Due to climatic diversity
over the geographical zone of interest, many
meteorological stations are necessary to establish a
significant correlation with the load. Installation of such
devices is still being planned by the local electric utility.
Although it would be desirable to count on such
information, the univariate adaptive procedure proposed
in this paper implicitly tracks the weather induced load
changes over the short-term.
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