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Abstract

Due to their simplicity and relatively small silicon
area, hardware realizations of neural networks (NN)
often rely on capacitors for storing the synaptic
weights. The weights, however, must be constantly
changed (adapted) during the learning process.
Circuits capable of incrementing-decrementing these
stored (analog) values on-board are generally
complex, resulting in large-area MOS implementations.
For this reason, learning is often done off-board, being
the weights loaded onto the NN later. This paper
addresses a capacitive circuit which implements an
incrementing-decrementing scheme directly on the
storage medium. The circuit makes use of a second
(small) capacitor, which transfers charge to or removes
charge from the main (storage) capacitor, hence
increasing or decreasing its voltage. The variation of
the stored voltage is exponential, changing  faster in
the beginning of the adaptation procedure and slower
at the end.

1. Introdution

Even very simple neural networks require a
substantial number of synaptic weights to perform a
given function. The most frequent way used to store
these weights in analog implementations of neural
circuits is by means of small, local capacitors [1]-[9]. One
of the difficulties, however, is that the weights must be
changed (adapted) constantly during the learning
process. Circuits capable of incrementing-decrementing
these stored (analog) values on-board are invariably
complex, requiring therefore large silicon areas.

This paper addresses a capacitive circuit which
implements an increment-decrement scheme directly on
the storage medium, requiring for that very little
additional silicon space. The circuit makes use of a
second (small) capacitor, which transfers charge to or
removes charge from the main (storage) capacitor, hence
increasing or decreasing its voltage (synaptic weight),
according with requirements dictated by the neuron
during the learning phase. As will be shown, the stored
voltage varies exponentially, that is, the size of ∆V (the

voltage increment or decrement) is initially bigger and
then decreases as further adaptation cycles are applied.

2. Capacitive increment-decrement storage
circuit

Fig. 1 illustrates the basic capacitive increment-
decrement principle. If capacitors C1 and C2 are initially
charged with voltages V1 and V2, respectively, then after
the switch is closed the common voltage will be
V=(C1V1+C2V2)/(C1+C2). This implies that voltage V2, for
example, will suffer an in(de)crement equal to ∆V=(V1-
V2)C1/(C1+C2). Therefore, by designing the ratio
λ≡C1/(C1+C2) properly, one can make the in(de)crements
as small (or as large) as desired.
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Figure 1: Basic capacitive increment-decrement principle.
Upon closing the switch, voltage V2 will suffer an
in(de)crement ∆V=λ(V1-V2), where λ is a design
parameter given by λ≡C1/(C1+C2).

Fig. 2 summarizes the main circuit (shown later). In it,
two fixed voltages, VH (high) and VL (low) are used to
pre-charge the auxiliary (small) capacitor C’. Initially the
neuron defines whether the synaptic weight
(represented by voltage V, stored on the main capacitor,
C) should be increased (INC switch closed) or decreased
(DEC switch closed). Then, with SHARE open, the
LOAD switch is pulsed closed, thus pre-charging C’
with either voltage VH or VL. If now, with LOAD open,
the SHARE switch is closed, charge will be redistributed
between the two capacitors, causing the voltage V on
the main capacitor to increase or decrease, respectively,
by the amount

∆V=λ(VH – V)   or   ∆V=λ(VL – V),             (1)

where λ≡C’/(C+C’).
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Figure 2: Summary of capacitive inc-dec circuit.

It is easy to verify that, if we start with a voltage V
(on C), and apply a series of n successive INC cycles, V
will grow exponentially and, after n cycles, its value will
be

V[n] = VH – (1-λ)n (VH –V)                   (2)

Eq. (2) is illustrated on the left-hand side of Fig. 3,
starting with V=VL. Likewise, if we start with V and apply
n successive DEC cycles, we obtain

V[n] = (1-λ)n V ,                            (3)

which is illustrated on the right-hand side of Fig. 3,
starting with V=VH.

The complete circuit is shown in Fig. 4. As can be
seen, two full CMOS switches, controlled by two global
signals, LOAD and SHARE, are used to perform the
steps described above, while a local switch, controlled
by the DIR (direction) signal, originated by the local
neuron, determines which voltage (VH  or VL) should be
used to pre-charge C’. Notice in the inset that the
control clocks are non-overlapping.

Fig. 3: Exponential behavior of inc-dec circuit (Eq. (2) on
the left, Eq. (3) on right).

3. System resolution and convergence

One thing to be noticed is that the auxiliary
capacitor, C’, takes up very little silicon area. Indeed, the
smaller λ the higher the system resolution. However, if
the resolution is too high, it might affect the system
convergence time. Both aspects are discussed below.
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Figure 4: Complete diagram of the capacitive inc-dec
circuit. Two full CMOS switches, controlled by the two
global signals (common to all neurons) LOAD and
SHARE, are used to perform the pre-charge and charge-
sharing functions. A locally generated signal, DIR
(direction), defines the pre-charge voltage (VH or VL).
The control signals are depicted in the inset.

3.1 System resolution

We define the system resolution as the ratio between
the circuit’s dynamic range, VH –VL, and a single
iteration voltage step, ∆V.  So it is easy to verify, from
Eq. (2) or (3), or in Fig. 3, that the resolution is minimal
when V is near either VH or VL and must be changed
(adapted) toward the other extreme, for in this case ∆V is
maximum (using n=1 in Eq. (2), for example, one obtains
∆Vmax=λ(VH –VL)). For our purposes, we will consider V
at the midpoint of the dynamic range, in which case
∆V=λ(VH –VL)/2.

If we want the system resolution to be b bits,
then
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Eq. (4) serves to determine the design parameter λ.
For instance, for an 8-bit resolution, the design of the
capacitors must obey C=127C’.

Still regarding the system resolution, it is important
to notice that the resolution discussed above
corresponds to a single iteration. Clearly, if repeated
adaptation cycles are applied, basically any voltage
value can be obtained on C.

It is also noteworthy that this kind of approach (of
storing weights on capacitors), though relatively robust,
for disturbance errors during learning are corrected
automatically, does not allow very high resolutions, so
the use of a large spread of weight values is not
possible. For practical reasons, the resolution is seldom
above 8 bits.
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3.2 System convergence

Another aspect of relevance relates to the
convergence time. For instance, the dynamic range of
the weights should be smaller than that of the inc-dec
circuit, for it would take an infinite amount of time (an
infinite number of iterations) if V were to reach VL or VH.
This is clear in Fig. 3.

Figure 5: Distinct dynamic ranges used to improve
convergence.

Fig. 5 illustrates the use of distinct dynamic ranges,
where VL and VH are used for the inc-dec circuit, while
the weight values are restricted to the range from V’L to
V’H. In this case, making use of Eq. (2), we verify that the
maximum number of iterations (worst case) needed for V
to go from the lower to the upper extreme (that is, from
V’L to V’H) is given by
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Likewise, using Eq. (3), we verify that moving from
V’H  to V’L  requires
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iterations. For example, if the voltages in Fig. 5 are 0V,
1V, 4V, and 5V, and λ=1/32 (b=6 bits), then n=51
iterations are needed to go from one extreme to the other
of the neuron’s dynamic range.

4. Experimental results

A 16-cell increment-decrement chip was fabricated
through MOSIS, using 1.2µm CMOS technology. The
transmission-gate transistors were all of size W/L=12/2,
and the capacitors were designed using double-poly,
being the area of C 800µm2. For C’ two options were
employed, one with 40µm2 (λ≅0.05) and the other with
260µm2 (λ≅0.25). A microphotograph of an isolated cell

appears in Fig. 6(a), while one set of measurements
(respective to the option with the larger value of C’) is
presented in Fig. 6(b). The upper trace of Fig. 6(b) shows
the DIR signal, which causes a succession of INC
cycles, followed by a succession of DEC cycles. The
corresponding voltage (weight) on capacitor C is shown
in the lower trace of the scope. The measurements
resemble Fig. 3, with the voltage increments-decrements
in good agreement with Eqs. (2) and (3).

(a)

(b)

Figure 6: (a) Inc-dec cell microphotograph and (b)
experimental results.

5. Conclusion

We have presented a very simple, area-efficient VLSI
implementation of an analog storage circuit, which
allows the stored values to be changed directly on
board. The circuit operates based on the principle of
charge-redistribution between two capacitors. The
implementation is appropriate for neural networks and
other highly parallel analog signal processing systems.
A theoretical analysis was presented, along with
experimental results obtained from a 1.2µm CMOS chip.
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