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Abstract

The objective of this work is the development of a
methodology for transient stability analysis of electric
power systems (critical time determination for  short
circuit faults) based on a neural network. Here, it is
used back-propagation algorithm with an adaptive
process based on fuzzy logic. This methodology results
in a fast training, when compared to the conventional
formulation of back-propagation algorithm. The input
is composed by the nodal active and reactive electrical
power vectors and data about the fault, represented in
a similar way to the binary code. The output (critical
time) is determined by a computational program based
on a hybrid methodology – simulation / Liapunov
Direct Method. It is a less dimension network when
compared to those ones found in the literature,
however it needs a low computational cost in the
execution training. To illustrate the proposed
methodology, an example is presented which considers
a multi-machine system composed of 10 synchronous
machines, 45 buses, and 73 transmission lines, based
on the configuration of a southern Brazilian system.

1. Introduction

The Electric Power Systems transient stability
analysis can be done, for example by simulation, i.e., by
numeric solution of differential equations that describe
the system dynamic, and after, analyzing the
synchronous machine oscillation curves.

Considering the great number of faults to be
analyzed, either the simulation or the Liapunov Direct
Method are alternatives that offer no total conditions
yet to real time applications. Then, this work proposes
an investigation to use the Artificial Neural Networks in
the transient stability diagnosis.

To obtain the desired results, i.e., the network
presents ability to do complex diagnosis as in electric
power system problems, the so called network as a
configuration formed by units called neurons displayed
in layers and forming complex interconnections ([5, 10]).
These interconnections are formed by weights that have
to be adjusted in function of a set of patterns to produce
desired outputs. This activity is defined as being the
training or learning and it is done off-line. Once, it is
adjusted, the network will be able to do diagnosis with
satisfactory precision considering patterns that do not

belong to the training set (generalization ability). This
diagnosis can be done with no computational costs,
which can be a possibility to a real time analysis.

In this work the neural network training will be done
by Back-propagation technique (BP) ([10]). The BP
algorithm is considered a benchmark in precision.
However, its convergence is quite slowly. Then, the
proposal of this work is to adjust the training rate γ
during the convergence process, to reduce its execution
time. The γ  adjustment is done using a fuzzy controller.
We also use a decaying exponential function that
establishes a priority in the regulator actuation in the
initial training time and avoid instability in the
convergence process. The system dynamic  model
adopted in this work is the classical model ([1, 7]),
objecting, only, a reduction in the computational costs
to generate the training data. However, it can be used
more elaborated models without changing the proposed
architecture. The input is compounded by the nodal
active and reactive electrical power vector and the fault
data. The fault data is represented in a similar way to the
binary code. The output (critical clearing time) is
determined through a computational program based on a
hybrid methodology using simulation / Lyapunov Direct
Method ([4]). That is a network of reduced dimension
when compared to the main proposals found in the
literature. For this reason it has a smaller computational
cost to perform the training.

To illustrate the proposed methodology, an example
is presented which considers a multi-machine system
composed of 10 synchronous machines, 45 buses, and
73 transmission lines, based on the configuration of a
southern Brazilian system.

2. System Model

Considering an Electrical Power System composed
by ns synchronous machines, the dynamical behavior of
the i-th machine, related to Center of Angles (CA), is
described by the following differential equation
(classical model) ([1, 7]):

Mi   
..
θ i  − Pi (θ ) = 0,  i ∈ N (1)

where:

Pi (θ) = Pmi − Pei − ( Mi  PCOA ) / MT; (2)
Mi = 2 Hi / ωs;
ωs ∆ synchronous speed of the rotor
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= 2πf0;
Hi = inertia constant (s);
f0 = nominal frequency of system (Hz);
θi ∆ rotor angle of i-th synchronous machine

related to  CA (in elect. radians)
= δi − δ0;

δi = rotor angle of i-th synchronous machine in
relation to synchronously rotating reference
frame (in elect. radians);

δ0 = ∑
∈ Nj

Mj δj ;

Pmi = mechanical power of input (pu);
Pei = electrical power of output (pu);
PCOA ∆ accelerating power of CA

= ∑
∈ Nj

( Pmj − Pej);

MT = ∑
∈ Nj

Mj ;

N ∆ index set of synchronous machines that
comprise the system

= {1,2, . . . , ns}.

3. Neural Network Structure

The i-th output element (neuron) ([10]) is a linear
combination of the element inputs xj that are connected
to the element i by the weight wij:

ϑ  i  =  ∑
j

wij xj (3)

Each element can have a bias  w0 fed by an extra
constant input x0 = + 1. The linear output ϑ i is finally
converted in a non linearity  as a sigmoid ([5, 10]) and
relay ([5, 10]), etc. The relay functions are appropriated
for binary systems, while the sigmoid functions can be
employed for both continuous and binary systems.

4. Neural Network Training

The BP training is initialized by presenting a pattern
X to the network that will give an output Y. Following it
is calculated an error in each output (the difference with
the desired value and the output). The next step is to
determine the back propagated error by the network
associated to the partial derivative of the quadratic error
of each element related to the weights, and finally
adjusting the weights of each element. Then a new
pattern is presented, and  the process must be repeated
until convergence (|error| ≤ arbitrated tolerance). The
initial weights are usually adopted as random numbers
([10]). The BP algorithm consists in adapting the weights
such that the network quadratic error is minimized. The
sum of the instantaneous quadratic error of each neuron
of the last layer (network output) is given by ([10]):

ε 
2 = ∑

=

no

1i
ε i 

2  (4)

where:
ε i = d i – y i ;

d i = desired output of the ith element of the last
layer ;

y i = output of the i-th element of the last layer;
no = number of neurons of the last layer.

Considering the i-th network neuron and using the
descent gradient ([5, 10]) method, the weight
adjustments can be formulated by ([10]):

Vi
 (r+1) = Vi

 (r) + Φi (r) (5)
being:

Φ i (r) = − γ [∇i (r)];
γ = stability control parameter or training rate;
∇i (r) = quadratic error gradient related to neuron i

weights;
Vi ∆ vector containing neuron i weights

= [ w0i   w1i   w2i  . . .  wni ]
 T.

The adopted direction in equation (5) to minimize  the
objective function of the quadratic error corresponds to
the opposite gradient direction. The γ parameter
determines the vector length Φi. Considering that this
work deals with transient stability analysis
(determination of critical clearing time) (the values are
always positive), the nonlinear function to be used is the
sigmoid function defined by ([5, 10]) (varying  between 0
and +1):

yi = 1 / {(1 + exp (−λ ϑ  i)} (6)
being:
λ = constant that determines the function yi

slope.

Then, calculating the gradient as shown in equation
(5), considering the sigmoid function defined by
equation (6) and the momentum term, it is obtained the
following weight scheme ([5, 10]):

vij (r+1) = vij (r) + ∆vij (r) (7)
where:
∆vij

 (r) = 2 γ (1 − η) βj xi + η ∆vij (r− 1); (8)
vij  = weight corresponding to  the connection

with the i-th and the j-th neuron;
γ = training rate;
η = momentum constant (0 ≤ η < 1)  ([10]).

If the j-th element is in the last layer, then:
βj  = σj  εj (9)

being:
σj ∆ sigmoid function derivative, given by

equation (6),  related to ϑ j

= λ yj (1 - yj ). (10)
If the j-th element is in other layers, we have:

βj = σj ∑
∈ )j(Sk

wjk βk (11)

where:
S(j) = index set of the element that are in the next

layer to the j-th element layer and are
interconnected to the j-th element.

The γ parameter used as a stability control of the
iterative process is dependent of λ ([6]). The network
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weights are randomly initialized considering the interval
{0,1}.

By convenience, the parameter γ (training rate) can
be redefined by following:

γ  = γ* / λ (12)

Replacing equation (12) in equation (8), it will be
“cancelled” the amplitude dependency of σ  related to λ.
The σ amplitude will be maintained constant to every λ.
This  alternative is important considering that λ will only
actuate in the left and right tails of σ. Then, equation (8)
can be written as following:

∆vij
 (r) = { 2 γ* (1 − η) βj / λ } xi + η ∆vij (r−1). (13)

The BP algorithm is considered in the technical
literature a benchmark in precision, although its
convergence is very slow. In this way, this work
proposes to adjust the training rate γ* during the
convergence process objecting the reduction in the
execution training time. The γ* adjustment is done by a
proceeding based on a fuzzy controller.

The basic idea of the methodology consists in
determining the system state, defined as the global error
εg and the global error variation ∆εg, objecting a control
structure that leads the error to zero in a reduced
iteration number, when compared to the conventional
procedures. In this work, the control is formulated using
the fuzzy logic concepts. The global error εg and its
variation ∆εg are the system state components, and ∆γ*
is the control action that must be done in the system.
Initially, the global error is defined as:

εg  = ∑ ∑
= =

np

1j

no

1i
ε i 

2  (14)

where:
εg = global error of the neural network;
np = number of the network pattern vectors.

The global error corresponds to calculate all output
errors (output neurons) considering all network pattern
vectors. The training must be executed using procedure
2 (one iteration per pattern). The global error is
calculated in each iteration and parameter γ*, adjusted
by an increase ∆γ* determined by fuzzy logic. The
system state and the control action are defined as:

Eq = [εgq  ∆εgq ] T (15)

uq = ∆γ* q (16)
being:
q = current iteration index.

For a very big input pattern X, εg and ∆εg can
saturate. Then, the adaptive control is done using an
exponential decreasing function applied to the fuzzy
controller response. In this way, the adaptive controller
is done by:

∆γ * q = exp (− α q ) ∆ψq (17)
where:
α = an arbitrary positive number;

∆ψq = increase proceeding from the fuzzy
controller in instant q.

This parameter will be used to adjust the network
weight set referred to the subsequent iteration. The
process must be repeated until training be concluded. It
is a very simple procedure whose control system
requests an additional effort, although reduced,
considering that the controller has two input variables
and only one output. This is an improvement of that one
presented in reference [2], i.e., using the same variables
εg and  ∆εg to do the control. However, in this work
there are introduced the following contributions: 1)
improvement of BP algorithm proposal; 2) the proposal
of the fuzzy controller is original (a set of rules and the
use of an  exponential decreasing  function applied to
the controller response).
Definition. Consider a set of objects B. Then, a fuzzy set
A in B is defined as being a set  of  coordinated  pairs
([5, 9]):

A = {(b, µA (b)) | b ∈ B} (18)
being:
µA (b) = membership function of b in A.

The membership function µA (b) shows the degree of
how b is in A. The fuzzy control is basically formed by
three parts: (1) fuzzification that converts real  variables
in linguistic variables; (2) inference that consists in the
manipulation of rules using if-then statements, and fuzzy
operations (AND, OR, NOT, etc.) and (3) defuzzification
that converts the obtained results (linguistic variables)
in real variables, which form the control action. The
fuzzy membership functions can have three different
forms, as: triangular, trapezoidal and gaussian, according
to the preference/experience of the designer.

The most common defuzzification method is the
centroid ([5, 9]) that finds the inertial center of the fuzzy
set solution. We have the following equation
considering a discrete fuzzy set ([5, 9]):

u = ( ∑
=

nr

1i
aiiµ ) / ( ∑

=

nr

1i
iµ ) (19)

where:
µi = value of the membership function;
ai = value of the set that contains a membership

value;
nr = number of fuzzy rules.

The u value calculated by equation (19) corresponds
to the inertia center  projection of the figure defined by
the rule set over the control variable axe. Each state
variable must be represented between 3 and 7 fuzzy sets.
The control variable must also be represented by the
same number of fuzzy sets. The εg variable must be
normalized considering as a schedule factor the first
global error generated by the network, i.e., q = 0. With
this representation, the variation interval will be between
0 and +1. If the adaptation heuristic is accordingly
coincident the process convergence will be an
exponential decreasing. The ∆εg variable will vary
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between –1 and +1. If the convergence process is
exponential decreasing, the ∆εg values will always be
negative. In this case, although  the  ∆εg schedule is
between –1 and +1, it must be employed in the rule set,
an accurate adjustment between –1 and 0. In the other
interval (0, +1], the  adjustment can be more relaxed.

In the fuzzy controller the rules are codified as a
decision table form. Each input represents the fuzzy
variable value ∆ψ given the global error values εg and
the global error variation ∆εg. The parameter γ* must be
arbitrated in function of λ (sigmoid function slope).

The variations  γ*  also  follow the same procedure.
In the fuzzy controller the rules are codified as a

decision table form. Each input represents the fuzzy
variable value ∆ψ given the global error values εg and
the global error variation ∆εg. The parameter γ* must be
arbitrated in function of λ (sigmoid function slope). The
variations γ* also follow the same procedure.

Table 1 shows the fuzzy rule set in a total of 30 rules.
The number of rules can be increased to improve the
network performance during the training.

Table 1. Fuzzy controller rules.

εg
∆εg

ZE PVS PS ME PL  PVL

NL ZE ZE NS PL PL
NS NL ZE ME NL ME
ZE PS NL NL PS NS
PS PL ME PL NS ZE
ME ZE PL PS ZE NL
PL ZE NL ME ME ZE

where:
NL = Negative Large;
NS = Negative Small;
ZE = Near to Zero;
PVS = Positive Very Small;
PS = Positive Small;
ME = Medium;
PL = Positive Large;
PVL = Positive Very Large.

To analyze the developed methodology performance,
there are defined gains, considering the number of
cycles and the necessary time to training time, in the
following way respectively:

GC = NBP / NFBP (20)

GT = TBP / TFBP (21)
being:

NBP = BP number of cycles;
NFBP = fuzzy number of cycles;
TBP = execution time (processing) by BP (s);
TFBP = execution time by fuzzy BP (s).

5. Proposed Solution

The structure of the proposed neural network
intends to study the Electrical Power Systems transient
stability that corresponds to the determination of critical
clearing time for contingencies like short-circuit. It is a
non-recurrent network, basically compound by three
layers (input, intermediary, and output) and neurons
type sigmoid with soft slope (small λ) − utilized as a way
to reduce the training computational time. The input /
output stimulus are defined considering the input made
up for the nodal active and reactive electrical power
vector and data of the fault, represented in a similar way
to the binary code, and the output correspondent to the
critical times, for a list of contingencies pre-defined,
provided by a hybrid computational program ([4])
(simulation / Liapunov Direct Method).

5.1. Sigmoid Function

It is considered a sigmoid function defined by the
equation (6). In the BP algorithm, the adaptation of the
weights that connect each neuron is carried out using,
basically, the error propagated in the inverse direction,
multiplied by σ(ϑ) (partial derivative of y with respect to
ϑ) and by the input in the referred neuron. In this way,
the weights have effective adjustment only for values of
ϑ  situated in the central body of σ(ϑ) function. As the
weights become significant, occurs a deceleration of its
adjustments, having a tendency to a complete paralysis,
exactly where meet together the ends of both right and
left tails of σ(ϑ) ([6]). In view of this, in the specific case
of the critical time determination problem , it is proposed
the use of sigmoid function relatively small λ (inferior to
1), providing longer tails. This will permit a less
restrictive choice of the network weights, if compared to
the adopted in the bibliography. In a way this reduces
the possibility of a paralysis occurrence  and increases
the speed of the BP algorithm convergence.

5.2. Input-Output Stimulus

It is proposed a neural network which pattern
vector is defined by:

X = [P T Q T Λ  T] T (19)
where:
X = pattern vector;
P = [ P1   P2  . . .  Pρ ]

 T;
Q = [ Q1  Q2  . . .  Qρ ]

 T;
Pi = active power of ith system bus ;
Qi = reactive power of ith system  bus ;
Λ = vector that contains the number of

contingencies represented in a code like the
binary code (−1,+1).

The choice of this binary representation is  preferable
in relation to (0,+1) representation, considering that the
network input component “0” does not modify the
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weights. In this way (−1,+1) representation gives a faster
convergence and consequently  being more efficient.
Each component of the Λ  vector correspond to 1 bit of
the representation in binary code. The pattern vector is a
n-dimensional, and:

n  = 2 ρ  +  nb  (20)
where:
ρ = number of system buses ;
nb = number of bits that corresponds to the

contingency number.
In this case, considering the classical model, only the

active and reactive power vectors of the system bus is
necessary for the evaluation  of Electrical Power
Systems transient stability − determination of critical
clearing times. Considering the topology, the nodal
voltages and the other parameters of the model (inertial
constant, transient reactance, etc.) are kept unchanged,
although the voltage can admit small variations in
function of the change of the generation outline /
system load. As the number of bits nb is considerately
smaller than 2ρ, then the proposed network is
significantly smaller, if compared to those presented  in
the  literature to solve transient stability problem: using
back-propagation neural networks ([8]), and using
Kohonen neural networks ([3]).

6. Application

There are considered faults like three-phase short-
circuits with time of fault elimination equal to 0.15s (9
cycles considering a 60Hz operation), followed by the
outage of the transmission line. The one-line diagram
system is shown in Figure 1 (Appendix A). This system
is composed by 10 synchronous machines, 73
transmission lines and 45 buses, based on the
configuration of a southern Brazilian system. The
desired outputs (critical clearing times) are data obtained
of the transient stability studies (simulation) considering
several levels of generation / load, corresponding to
light load, base case, and two levels of heavy load,
respectively 60, 80, 100 and 120% of base case (like as
proposed in the reference [8]). In this case, the vectors P
and Q can be substituted by a proportional  parameter

(p = 0.6, 0.8, 1 or 1.2), i.e., n is equal to (1 + nb). Table 2
shows the principal parameters referred to the used
neural network and the training. Table 3 shows the
comparative results by conventional BP and BP with
fuzzy controller.

Table 2. Neural network specification.

Item Value
Pattern vectors number 40
Number of layers 3
Number of neurons per layer 5-10-1
Tolerance 0.01
Training rate γ* 5.5
Moment term η 0.8
Inclination of sigmoid function λ 0.3
Parameter α 0.00071

Table 3. Comparative results.

Item Conventional
BP

BP with fuzzy
controller

Number of cycles 5368 1334
Processing time (s) 14.12 4.28
Gain GC 1 4.02
Gain GT 1 3.29

Table 4 shows a comparative study of the results
that were obtained by simulation and the use of neural
network with fuzzy controller (Fuzzy BP). The transient
stability system analysis is referred to the generation /
load levels equal to 70, 90, 110 and 130% of the base
case. The symbol bk (ik−jk ) presented in the first column
of the Table 4 means the occurrence of a short circuit at
bus bk with outage of transmission line between the
nodes ik  and jk . We observe at Table 4, that the results
of neural network analysis are close to those obtained
by simulation. It is verified that the analysis time, by
neural network, is considerably less when compared to
simulation. The program was processed in a Pentium II
(450 MHz and 256 MB of  RAM memory). The
processing time is only referred to the BP algorithm
execution, excluded the reading / output data operations.

Table 4. Comparative studies of the transient stability analysis.

Critical Clearing Time (seconds)

70 % of
Base Case

90 % of
Base Case

110 % of
Base Case

130 % of
Base CaseFault

Simulation Fuzzy BP Simulation Fuzzy BP Simulation Fuzzy BP Simulation Fuzzy BP
11(11−25) 0.5100 0.5128 0.3450 0.3398 0.2150 0.2144 0.1000 0.1200
15(14−15) 0.4200 0.4171 0.3550 0.3491 0.3000 0.2895 0.2250 0.2229
18(16−18) 0.2250 0.2199 0.1550 0.1493 0.0900 0.0917 0.0350 0.0502
18(18−44) 0.2250 0.2266 0.1550 0.1494 0.1000 0.0916 0.0400 0.0596
25(11−25) 0.5850 0.5968 0.4450 0.4489 0.2650 0.2706 0.1050 0.1227
25(25−26) 0.6650 0.6857 0.5750 0.5829 0.5050 0.4756 0.3700 0.3620
29(29−30) 0.4700 0.4724 0.3700 0.3825 0.2950 0.3068 0.2550 0.2330
33(33−36) 0.3100 0.3125 0.2400 0.2435 0.1800 0.1820 0.1250 0.1182
35(35−45) 0.4150 0.4158 0.3300 0.3284 0.2650 0.2622 0.2100 0.2072
39(39−40) 0.2700 0.2646 0.1950 0.1888 0.1350 0.1285 0.0900 0.0795
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7. Conclusion

This work investigated the use of Artificial Neural
Network for critical clearing times determination of faults
elimination like short circuit in Electrical Power Systems.
The employed Neural Network was that of multi-layers,
non- recurrent with activation function as sigmoid.
Then, the proposal of this work is to adjust the training
rate γ during the convergence process, to reduce its
execution time. The results, considering a multi-machine
system composed of 10 synchronous machines, 45
buses, and 73 transmission lines, can be satisfactory
when compared to other methodology based on neural
networks. In this  work we consider several levels of
generation / load, corresponding to light load, base case,
and two levels of heavy load, i.e., are proportional levels.
In sequence, are investigated other types of generation /
load levels, no proportional that are more realist case,
and better elaborated Electrical Power Systems
dynamical models e.g., the complete model of Park ([1]).
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Appendix A

(   ) Transmission line number.

A

3
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 5
10
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8
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230 kV
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Londrina
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  Ivaiporã
Areia

525

Curitiba-Norte
        525

Curitiba

525
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Joinvile
230
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230

J. Lacerda

Salto
Osório

Pinheiro
525

Itaúba

 Passo
 Fundo

Farroupilha
230

Gravataí

Siderópolis

Forquilinha
Ceci
    230

Blumenau

525

230

230
230

230

525
230

13.8 230kV

 V. Aires
13.8

525 kV 230 kV

13.8525

230

 44

  3

 18

  5

 22

 21 26

 27

 4

 11

  12 42 43

 15

 34

 35

 24
  1

 29

 20

 28  23

S. Mateus

 Barracão

 32

 30

 38

 13

 45

  8

  7

  6

13.8

13.8

13.813.8

16

  2

 9
 39

 40

 31

 14

 37

Xanxerê

 230 kV

230

13.8
13.8

230

230

S. Santiago

  41

  25

  19

  36  10

Segredo
525

Apucarana

 (22)

 (24) (25)

 (72)
 (71)

 (73)

 (11)

 (30)
 (29)

 (31)

 (44) (41)

 (43) (52) (51)

 (23)

 (56)

 (55)

 (53) (54)

 (38)  (37)

 (35)  (34)

 (33)
 (32)

 (10)
 (7)

 (61)
 (60)
 (59)

 (47)

 (9)  (8)

 (57)

 (46)

 (42)

 (3)  (39)

 (27)

 (26)

 (6)

 (64)
 (63)
 (62)

 (14)
 (13)
 (12)

 (15)

 (48)

 (18)

 (65)

 (49)

 (66)

 (36)

 (40)

 (28)
 (45)

 (20)

 (21)

 (58)

 (16)  (17)

 (70)

 (50)

 33

 (69)

 (67)

 (5)  (2)

 (1)
 (68)

 (4)

 (19)

230

 17

Pato
Branco

B

C

One-line Diagram of Power System

Figure 1. Representation of test systems.


