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Abstract 
 

In some recent works, it was shown that any 
algorithmic description might be mapped on a 
recurrent neural network. A neural oriented language 
called NETDEF, such that each program corresponds to 
a modular neural net that computes it, is the tool to 
achieve this.  

This article focuses on merging symbolic and sub-
symbolic computation. Adding high-order neurons to 
the network model allows learning integration into the 
NETDEF symbolic computing paradigm, since it is 
possible to execute learning algorithms in the same 
neural model that performs symbolic computation. It is 
shown how the model may process competitive learning 
methods inside this framework. 
 

1. Introduction 
 

The significance of systems integrating symbolic 
and sub-symbolic computing techniques is already 
consolidated (see [15] for a hybrid systems analysis). 
Motivation for this structural hybridization can be 
found in biology (humans are able to process high level 
concepts supported by the brain’s neural biochemistry) 
and in engineering (intelligent control design tends to 
incorporate symbolic and sub-symbolic processing). 

There are several different ways to accomplish this 
hybridization. Some models separate the computation 
methodologies, using sub-symbolic output structure as 
an input to the classical AI control schemata (cf. [6]). 
Others apply symbolic and sub-symbolic information in 
the same data structure, as in [8] and in this work. This 
paper uses a method that merges symbolic and 
sub-symbolic computation into a single neural network 
architecture (cf. [11]). 

First, we briefly introduce the high-level 
programming language NETDEF to hard-wire the neural 
network model in order to perform symbolic 
computation. Programs written in NETDEF can be 
converted into neural nets through a compiler available 
at www.di.fc.ul.pt/~jpn/netdef/netdef.htm. 

Secondly, using special constructs named neuron-
synapse connections, it is possible to add learning 
processes to NETDEF. Since the system is modular, after 
compilation, we get modules performing programming 
tasks and modules supporting sub-symbolic tasks. 

 

2. NETDEF 
In some recent works, it was shown that any 

algorithmic description might be mapped on a 
recurrent neural net (see [9] and [10] for details). 
Herein, it is presented the mathematical model used to 
encode and process symbolic computations. 

The analog recurrent neural net model is a discrete 
time dynamic system, x(t+1) = φ(x(t), u(t)), with initial 
state x(0) = x0, where t denotes time, xi(t) denotes the 
activity (firing frequency) of neuron i at time t, within a 
population of N interconnected neurons, and uk(t) 
denotes the value of input channel k at time t, within a 
set of M input channels. The application map φ is taken 
as a composition of an affine map with a piecewise 
linear map of the interval [0,1], known as the piecewise 
linear function σ: 

 
 
  (1) 

 
The dynamic system becomes,  

 xj(t+1) = σ( ∑
=

N

i 1
iji (t)xa  + ∑

=

M

k 1
kjk (t)ub  + cj ) (2) 

Where aji, bjk and cj are rational weights. Figure 1 
displays a graphical representation of a single equation, 
used throughout this paper. When aji (or bjk or ajj) 
takes value 1, it is not displayed in the graph. 

 
 
 

Figure 1: Graphical notation for neurons,  
input channels and their interconnections.  
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NETDEF is an imperative language, with syntax and 
semantic very close to those of Occam. Its main 
concepts are processes and channels. A program can be 
described as a collection of processes executing 
concurrently, and communicating with each other 
through channels or shared memory. 

The language has assignment, conditional and loop 
control structures (Figure 2 presents a recursive and 
modular construction of a process), and it supports 
several data types, variable and function declarations, 
and many other processes. It uses a modular 
synchronization mechanism based on handshaking for 
process ordering (the IN/OUT interface in Figure 2). A 
detailed description of NETDEF may be found in [10] at 
www.di.fc.ul.pt/biblioteca/tech-reports. 

The information flow between neurons, due to the 
activation function σ, is preserved only within [0, 1], 
implying that data types must be coded in this interval. 
The real coding for values within [-a, a], where ‘a’ is a 
positive integer, is a one to one mapping of [-a, a] into 
the working set [0, 1]: 

 α(x) = (x + a)/2a (3) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Process construction for IF b DO x := x–1. 

Input channels ui are the interface between the 
system and the environment. They act as typical 
NETDEF blocking one-to-one channels. There is also a 
FIFO data structure for each ui to keep unprocessed 
information (this happens whenever the incoming 
information rate is higher than the system processing 
capacity). 

The compiler takes a NETDEF program and 
translates it into a text description defining the neural 
network. Given a neural hardware, an interface would 
translate the final description into suitable syntax, so 
that the neural system may execute. The use of neural 
networks to implement arbitrary complex algorithms 
can be then handled through compilers like NETDEF. 

As illustration of a symbolic module, figure 2 shows 
the process construction for IF b DO x := x–1. Synapse 
IN sends value 1 (by some neuron xIN) into xM1 neuron, 
starting the computation. Module G (denoted by a 
square) computes the value of boolean variable ‘b’ and 
sends the 0/1 result through synapse RES. This module 
accesses the value ‘b’ and outputs it through neuron 
xG3. This is achieved because xG3 bias -1.0 is 
compensated by value 1 sent by xG1, allowing value ‘b’ 
to be the activation of xG3. This result is synchronized 
with an output of 1 through synapse OUT. The next two 
neurons (on the Main Net) decide between entering 
module P (if ‘b’ is true) or stopping the process (if ‘b’ 
is false). Module P makes an assignment to the real 
variable ‘x’ with the value computed by module E. 
Before neuron x receives the activation value of xP3, the 
module uses the output signal of E to erase its previous 
value. In module E the decrement of ‘x’ is computed 
(using α(1) for the code of real 1). The 1/2 bias of 
neuron xE2 for subtraction is necessary due to coding α. 

The dynamics of neuron x is given by (4). However, 
if neuron x is used in other modules, the compiler will 
add more synaptic links to its equation. 

 x(t+1) = σ( x(t) + xP3(t) – xE3(t) ) (4) 

This resulting neural network is homogenous (all 
neurons have the same activation function) and the 
system is composed only by first-order neurons. The 
network is also an independent module, which can be 
used in some other context. Regarding time and space 
complexity, the compiled nets are proportional to the 
respective algorithm complexity. 

There are some related works in the literature about 
symbolic neural computation. Article [3] introduces 
JaNNeT, a dialect of Pascal with some parallel 
constructs. This algorithmic description is translated, 
using several automated steps to produce a 
non-homogenous neural network (with four different 
neuron types) able to perform the required 
computations. In JaNNeT, every neuron is activated only 
when all its synapses have transferred their values. 
Since this may not occur at the same instant, the global 
dynamics is not synchronous.  
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Another neural language project is NIL (cf. [13]). 
The NIL system is able to perform symbolic 
computations by using certain sets of constructions that 
are compiled into an appropriate neural net. An 
important difference is that NETDEF has a modular 
design, while NIL has not. Also, NIL does not provide 
essential mechanisms required for a neural language 
like a mutual exclusion scheme for variable access 
security, temporal processes for real-time applications, 
genuine parallel calls of functions and procedures, 
blocking communication primitives for concurrent 
process interaction, dynamic array assignment. NETDEF 
deals and solves all these subjects without loosing its 
modular properties. 

These works also focus the symbolic potential on 
neural network computation, and present valid 
techniques for neural network construction, but they do 
not try to merge sub-symbolic processing within the 
same neural framework, while it is in this perspective 
that rests the originality of this work. 

 

3. Learning Processes 
 
The next step was to integrate learning and hard-

wiring mechanisms into the computation tools already 
developed, merging two standard computation 
methodologies (symbolic and sub-symbolic) in a single 
neural architecture. To accomplish these requirements, 
the model was extended in order to include neuron-
synaptic connections. Although we are not concerned 
with biological plausibility, neuron-synaptic 
connections in the brain are known to exist in the 
complex dendritic trees of genuine neural nets, [12]. 
Herein, their task is to convey values and use them to 
update and change other synaptic weights. 

 
 

 

Figure 3. Graphical notation for neuron-synapse 
connection in equation (5).  

Figure 3 displays the diagram of a neuron-synaptic 
connection, linking neuron x to the connection between 
neurons y and z. Semantically, synapse of weight wzy 
receives the previous activation value of x.  

The dynamics of neuron z is defined by the 
high-order dynamic rule1: 

 z(t+1) = σ( 2a.x(t).y(t) - a(x(t) + y(t))  
                                 + 0.5a + 0.5) )  (5) 

                                                        
1 The expression is the result of α(α-1(x(t))*α-1(y(t))). 

This calculation is necessary because the data flow values are 
encoded through α, given by (3). To avoid ambiguities, the 
first argument refers to the neuron-synapse connection, and 
the second, to the input neuron. 

High-order nets (i.e., networks having neurons with 
high-order input-output relation) can be found on the 
scientific literature (cf. [1], [2]). 

This inclusion, introduces some useful tools into 
NETDEF. Namely, direct multiplication (due to the 
special transfer function), deletion and insertion of 
connections in execution time (because it is possible to 
change synaptic weights at runtime), and the key 
feature, learning. 

Many neural learning algorithms receive inputs and 
adapt the synaptic weights, adapting the network 
structure towards the problem solution. Each algorithm 
uses some appropriate procedures to update the network 
weights (cf. [5]), inspired by means of pure 
mathematical reasoning (e.g., the LMS rule) or by 
biological inspiration (e.g., the Hebb rule). 

The control structure given by the NETDEF language 
can be used to regulate learning processes, since it is 
flexible enough to handle arbitrary algorithms. Usually, 
learning algorithms consist of several weight 
calculations and rules that state how the entire module 
should change in order to respond in a new way to the 
environment. The learning structure consists of a set of 
neurons, arranged in an appropriate architecture (in 
layers, in a bidimensional grid), keeping the knowledge 
acquired during the learning procedure. 

The learning module embodies the control structure 
and the learning structure. This module is affected by 
outside requests, like processing the information 
presented by a new learning sample, or resetting the 
weight values. Control and learning are implemented 
in the same homogeneous framework, and they are 
joined together homogeneously. Integration with 
Hebb-like learning rules was presented at [11]. The 
focus in this paper is competitive learning networks. 

 

4. Competitive Learning 
 
In an unsupervised learning algorithm, only the 

attribute values of each training set sample are given. 
Then, the algorithm must decide how to map them, in 
order to form a set of reasonable classes or clusters. 
This method of self-organization is commonly called 
cluster analysis (cf. [4], [7] and [5]). 

The system does not know the desired outputs. The 
network must rely on what is called competitive 
learning, where all neurons compete for some learning 
opportunity and just the ‘winner’ has the chance to 
improve. The winner is the neuron that achieves the 
greater activation value based on those sample input 
values. If neuron k wins the competition, each weight 
wki connected to input u is then modified by rule (6),  

 ∆wki = η . ( ui  – wki  ) (6)  

where η is the learning coefficient. 
The weights of the winner are updated in a way to 

intensify its response to the same input sample. This 

y z 
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way, the winner has strengthened its winning status. 
After some iteration with the training set, the network 
will eventually converge to a stability condition and the 
training process will end. The activation of some 
specific neurons only occurs on a certain set of input 
vectors. Then, each neuron embodies a cluster 
containing those same vectors. 

A learning module in NETDEF consists of a set of 
interconnected neuronal structures. Some of these 
structures are used to keep the needed information for 
learning process execution, namely, the input sample, 
the actual synaptic weight matrix and the desired net 
response (for supervised learning algorithms). 

The internal execution of a learning module in 
order to learn a sample takes the following steps (after 
both module definition and initialization have 
occurred): 

1. Loading input sample in appropriate neural 
structure (called X); 

2. Sample initialization procedure (optional step); 
3. Matrix multiplication of X by W (the synaptic 

weight data structure), and assignment of result 
to Y (another neural structure keeping the net 
response); 

4. Synaptic weight (and bias) update by a given 
rule; 

5. Update of internal variables (like iteration turn 
number and average synaptic change); 

6. Sample finalization procedure (optional). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Computing net response. 

Classification is simple. The module just executes 
steps 2 and 3, and saves the result on vector Y. The 
execution time of learning and classifying takes only a 

constant time delay. This is achieved because of the 
neural network massive parallelism and the increase in 
neuron number (i.e., spatial complexity).Let’s examine 
in detail the various learning process steps. Step 1 is 
conducted by symbolic structures such as vector 
assignment, from the input values into the internal 
input vector X. Step 2 is made optionally in the 
beginning of the process, in order to execute some 
procedural task that will prepare the net to learn that 
specific sample (some symbolic module does this). 

The third step computes net response, given the 
input values already kept in vector X, and the actual 
weight matrix values computed from previous iterations 
(kept in matrix W). Figure 4 shows the neural network 
that performs this task. The boxed neurons represent 
the data structures keeping input data, weight matrix 
and proper net response, namely, vectors X, W and Y.  

Matrix multiplication is achieved by neuron-
synaptic connections (to correctly sum all coded values, 
the net must insert after each multiplication a value of  
C = – 0.5*(n–1), see figure 4) and the information flow 
is controlled by NETDEF synchronization mechanism. 

Step 4 depends on the specific learning algorithm 
used. Herein, competitive learning provides equation 
(6) as the update rule of the winner neuron. In this 
case, before proper weight update, the module must 
find which neuron is the winner, keeping all others 
unaffected. This is the most complex structure of 
NETDEF competitive learning modules. 

In figure 5, it is shown the network that checks if 
the jth output neuron is the winner (all output neurons 
will have a similar network). 

M is the minimum integer value with the following 
property: For any x, if α(x) > 0 then M.α(x) ≥ 1. This 
is used to extract any residual value after an invalid 
subtraction between two codes (i.e., if there is any 
residual value from α(x)– α(y), then x>y). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Finding if Yj is the winner. 

The net subtracts all other output activations with 
the target neuron Yj. If neuron Yj achieves maximum 
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activation, it will cancel all eventual residuals from 
those subtractions, and the input signal will pass 
through RESj outputting 1.  

Otherwise, at least one residual will exist, thus 
canceling the input signal. In this way, only one 
neuron, the winner, will activate its output result. 

If by some rare chance (since weight values are 
initialized to small random values) two neurons are 
both declared winners, the net will not learn the sample 
until next iteration (when the weight matrix will be on 
a different state). 

After finding the winner, the network should update 
the correct synaptic connections. This computation is 
outlined in figure 6.This network performs the 
updating rule described by equation (6). Basically, it 
subtracts wji from xi, to multiply the result by the 

learning coefficient η. This result is then sent to the 
proper position at the weight matrix, updating the 
synaptic connections of the winning neuron. 

 
 
 
 
 
 
 
 
 
 
 

Figure 6. Evaluating ∆Wji. 

Finally, one or more symbolic modules conduct any 
proper internal variable updating and also execute an 
eventual finalization procedure. One example is now 
presented in this article. Usually, in competitive 
learning algorithms, the learning coefficient is a 
function of time, where its values are given by 
formula (7).  

 η(t) = 0.1 – t / 105 (7) 

In figure 7, neuron T is an internal variable keeping 
the number of learning iterations already performed, 
since the last initialization. The net computes the exact 
formula given by equation (7). So, in the next learning 
sample, the updating rule (6) will have a different 
behavior, since the learning coefficient was changed.  
 

 
 
 
 
 
 
 
 

Figure 7. Updating learning coefficient. 

The set of neural networks presented in this paper, 
help the reader perceive the actual interchange between 
two different ways of computing information and 
knowledge. 

A symbolic module may access, within its scope, 
any internal structure from the learning module (e.g., 
the weight matrix or the numeric value of an internal 
variable) in order to retrieve information gathered from 
the learning process, and can also consult the proper 
net response in order to retrieve classification results.  

On the other hand, a learning module may access 
symbolic values from runtime variables of control 
structures. This may be useful for specific learning 
algorithms in the initialization and finalization sample 
procedures.  

In this way, a straightforward communication 
mechanism exists, based on shared variable access, 
between symbolic and sub-symbolic NETDEF neural 
modules. 

 

5. Conclusions and Future Work 
 

This paper focuses on competitive learning 
integration within the NETDEF system, which is a 
framework for neural networks construction able to 
describe arbitrarily complex symbolic computations. 

An extension of this system, a neuron-synaptic 
connection model (using second-order neurons), is 
applied to include learning processes. With this feature, 
sub-symbolic and symbolic computations are linked 
together in the same neural framework. 

Competitive learning algorithms can be integrated 
on NETDEF modules, using a modular and recursive 
approach and with an interface system suitable for 
information and instruction exchange between symbolic 
and sub-symbolic elements. 

In the future, our main concern focus on how to 
enlarge the interface mechanism of these NETDEF 
modules, in order to achieve further integration with 
other learning algorithms, namely, to extend the net 
topology of competitive learning nets to include 
neighbor adaptations like in Kohonen networks.  

Other interesting subject is trying to enhance the 
NETDEF syntax – handling the symbolic and 
sub-symbolic interaction modules – in order to ease the 
user programming task. 
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