
Proceedings of V Brazilian Conference on Neural Networks - V Congresso Brasileiro de Redes Neurais
pp. 19-24, April 2-5, 2001 - Rio de Janeiro - RJ - Brazil

 19

Competitive Learning and Symbolic Computation Integration

João Pedro Neto1, Helder Coelho1, and Ademar Ferreira2 ∗
1Faculdade de Ciências, Dept. Informática, Bloco C5, Piso 1, 1700 Lisboa – PORTUGAL

2Escola Politécnica, L.A.C., Av. Prof. Luciano Gualberto, 158, Trav. 3, 05508-900, SP – BRASIL
E-mails: jpn@di.fc.ul.pt, hcoelho@di.fc.ul.pt, ademar@lac.usp.br

∗ The work of A. Ferreira was supported in part by

FAPESP via Grant No. 97/04668-1

Abstract

In some recent works, it was shown that any
algorithmic description might be mapped on a
recurrent neural network. A neural oriented language
called NETDEF, such that each program corresponds to
a modular neural net that computes it, is the tool to
achieve this.

This article focuses on merging symbolic and sub-
symbolic computation. Adding high-order neurons to
the network model allows learning integration into the
NETDEF symbolic computing paradigm, since it is
possible to execute learning algorithms in the same
neural model that performs symbolic computation. It is
shown how the model may process competitive learning
methods inside this framework.

1. Introduction

The significance of systems integrating symbolic
and sub-symbolic computing techniques is already
consolidated (see [15] for a hybrid systems analysis).
Motivation for this structural hybridization can be
found in biology (humans are able to process high level
concepts supported by the brain’s neural biochemistry)
and in engineering (intelligent control design tends to
incorporate symbolic and sub-symbolic processing).

There are several different ways to accomplish this
hybridization. Some models separate the computation
methodologies, using sub-symbolic output structure as
an input to the classical AI control schemata (cf. [6]).
Others apply symbolic and sub-symbolic information in
the same data structure, as in [8] and in this work. This
paper uses a method that merges symbolic and
sub-symbolic computation into a single neural network
architecture (cf. [11]).

First, we briefly introduce the high-level
programming language NETDEF to hard-wire the neural
network model in order to perform symbolic
computation. Programs written in NETDEF can be
converted into neural nets through a compiler available
at www.di.fc.ul.pt/~jpn/netdef/netdef.htm.

Secondly, using special constructs named neuron-
synapse connections, it is possible to add learning
processes to NETDEF. Since the system is modular, after
compilation, we get modules performing programming
tasks and modules supporting sub-symbolic tasks.

2. NETDEF
In some recent works, it was shown that any

algorithmic description might be mapped on a
recurrent neural net (see [9] and [10] for details).
Herein, it is presented the mathematical model used to
encode and process symbolic computations.

The analog recurrent neural net model is a discrete
time dynamic system, x(t+1) = φ(x(t), u(t)), with initial
state x(0) = x0, where t denotes time, xi(t) denotes the
activity (firing frequency) of neuron i at time t, within a
population of N interconnected neurons, and uk(t)
denotes the value of input channel k at time t, within a
set of M input channels. The application map φ is taken
as a composition of an affine map with a piecewise
linear map of the interval [0,1], known as the piecewise
linear function σ:

 (1)

The dynamic system becomes,

 xj(t+1) = σ(∑
=

N

i 1
iji (t)xa + ∑

=

M

k 1
kjk (t)ub + cj) (2)

Where aji, bjk and cj are rational weights. Figure 1
displays a graphical representation of a single equation,
used throughout this paper. When aji (or bjk or ajj)
takes value 1, it is not displayed in the graph.

Figure 1: Graphical notation for neurons,
input channels and their interconnections.








≤
<<

≥
=

0,0

10,

1,1

x

xx

x

σ

cj

aji xi xj uk
bjk

 20

NETDEF is an imperative language, with syntax and
semantic very close to those of Occam. Its main
concepts are processes and channels. A program can be
described as a collection of processes executing
concurrently, and communicating with each other
through channels or shared memory.

The language has assignment, conditional and loop
control structures (Figure 2 presents a recursive and
modular construction of a process), and it supports
several data types, variable and function declarations,
and many other processes. It uses a modular
synchronization mechanism based on handshaking for
process ordering (the IN/OUT interface in Figure 2). A
detailed description of NETDEF may be found in [10] at
www.di.fc.ul.pt/biblioteca/tech-reports.

The information flow between neurons, due to the
activation function σ, is preserved only within [0, 1],
implying that data types must be coded in this interval.
The real coding for values within [-a, a], where ‘a’ is a
positive integer, is a one to one mapping of [-a, a] into
the working set [0, 1]:

 α(x) = (x + a)/2a (3)

Figure 2. Process construction for IF b DO x := x–1.

Input channels ui are the interface between the
system and the environment. They act as typical
NETDEF blocking one-to-one channels. There is also a
FIFO data structure for each ui to keep unprocessed
information (this happens whenever the incoming
information rate is higher than the system processing
capacity).

The compiler takes a NETDEF program and
translates it into a text description defining the neural
network. Given a neural hardware, an interface would
translate the final description into suitable syntax, so
that the neural system may execute. The use of neural
networks to implement arbitrary complex algorithms
can be then handled through compilers like NETDEF.

As illustration of a symbolic module, figure 2 shows
the process construction for IF b DO x := x–1. Synapse
IN sends value 1 (by some neuron xIN) into xM1 neuron,
starting the computation. Module G (denoted by a
square) computes the value of boolean variable ‘b’ and
sends the 0/1 result through synapse RES. This module
accesses the value ‘b’ and outputs it through neuron
xG3. This is achieved because xG3 bias -1.0 is
compensated by value 1 sent by xG1, allowing value ‘b’
to be the activation of xG3. This result is synchronized
with an output of 1 through synapse OUT. The next two
neurons (on the Main Net) decide between entering
module P (if ‘b’ is true) or stopping the process (if ‘b’
is false). Module P makes an assignment to the real
variable ‘x’ with the value computed by module E.
Before neuron x receives the activation value of xP3, the
module uses the output signal of E to erase its previous
value. In module E the decrement of ‘x’ is computed
(using α(1) for the code of real 1). The 1/2 bias of
neuron xE2 for subtraction is necessary due to coding α.

The dynamics of neuron x is given by (4). However,
if neuron x is used in other modules, the compiler will
add more synaptic links to its equation.

 x(t+1) = σ(x(t) + xP3(t) – xE3(t)) (4)

This resulting neural network is homogenous (all
neurons have the same activation function) and the
system is composed only by first-order neurons. The
network is also an independent module, which can be
used in some other context. Regarding time and space
complexity, the compiled nets are proportional to the
respective algorithm complexity.

There are some related works in the literature about
symbolic neural computation. Article [3] introduces
JaNNeT, a dialect of Pascal with some parallel
constructs. This algorithmic description is translated,
using several automated steps to produce a
non-homogenous neural network (with four different
neuron types) able to perform the required
computations. In JaNNeT, every neuron is activated only
when all its synapses have transferred their values.
Since this may not occur at the same instant, the global
dynamics is not synchronous.

-1

OUT IN

Module G
b RES

xG1 xG2

xG3

-1
-3/2

OUT

IN

x α(1)

Module E

2
RES xE1 xE2

xE3

xE4

x

IN
OUT

-1

E

RES

Module P

IN
OUT xP1 xP2

xP3

-1

OUT
OUT

OUT

-1
2

-1

IN G
IN IN

RES

P

Main Net

xM1 xM2

xM3 xM4

 21

Another neural language project is NIL (cf. [13]).
The NIL system is able to perform symbolic
computations by using certain sets of constructions that
are compiled into an appropriate neural net. An
important difference is that NETDEF has a modular
design, while NIL has not. Also, NIL does not provide
essential mechanisms required for a neural language
like a mutual exclusion scheme for variable access
security, temporal processes for real-time applications,
genuine parallel calls of functions and procedures,
blocking communication primitives for concurrent
process interaction, dynamic array assignment. NETDEF
deals and solves all these subjects without loosing its
modular properties.

These works also focus the symbolic potential on
neural network computation, and present valid
techniques for neural network construction, but they do
not try to merge sub-symbolic processing within the
same neural framework, while it is in this perspective
that rests the originality of this work.

3. Learning Processes

The next step was to integrate learning and hard-

wiring mechanisms into the computation tools already
developed, merging two standard computation
methodologies (symbolic and sub-symbolic) in a single
neural architecture. To accomplish these requirements,
the model was extended in order to include neuron-
synaptic connections. Although we are not concerned
with biological plausibility, neuron-synaptic
connections in the brain are known to exist in the
complex dendritic trees of genuine neural nets, [12].
Herein, their task is to convey values and use them to
update and change other synaptic weights.

Figure 3. Graphical notation for neuron-synapse
connection in equation (5).

Figure 3 displays the diagram of a neuron-synaptic
connection, linking neuron x to the connection between
neurons y and z. Semantically, synapse of weight wzy
receives the previous activation value of x.

The dynamics of neuron z is defined by the
high-order dynamic rule1:

 z(t+1) = σ(2a.x(t).y(t) - a(x(t) + y(t))
 + 0.5a + 0.5)) (5)

1 The expression is the result of α(α-1(x(t))*α-1(y(t))).

This calculation is necessary because the data flow values are
encoded through α, given by (3). To avoid ambiguities, the
first argument refers to the neuron-synapse connection, and
the second, to the input neuron.

High-order nets (i.e., networks having neurons with
high-order input-output relation) can be found on the
scientific literature (cf. [1], [2]).

This inclusion, introduces some useful tools into
NETDEF. Namely, direct multiplication (due to the
special transfer function), deletion and insertion of
connections in execution time (because it is possible to
change synaptic weights at runtime), and the key
feature, learning.

Many neural learning algorithms receive inputs and
adapt the synaptic weights, adapting the network
structure towards the problem solution. Each algorithm
uses some appropriate procedures to update the network
weights (cf. [5]), inspired by means of pure
mathematical reasoning (e.g., the LMS rule) or by
biological inspiration (e.g., the Hebb rule).

The control structure given by the NETDEF language
can be used to regulate learning processes, since it is
flexible enough to handle arbitrary algorithms. Usually,
learning algorithms consist of several weight
calculations and rules that state how the entire module
should change in order to respond in a new way to the
environment. The learning structure consists of a set of
neurons, arranged in an appropriate architecture (in
layers, in a bidimensional grid), keeping the knowledge
acquired during the learning procedure.

The learning module embodies the control structure
and the learning structure. This module is affected by
outside requests, like processing the information
presented by a new learning sample, or resetting the
weight values. Control and learning are implemented
in the same homogeneous framework, and they are
joined together homogeneously. Integration with
Hebb-like learning rules was presented at [11]. The
focus in this paper is competitive learning networks.

4. Competitive Learning

In an unsupervised learning algorithm, only the

attribute values of each training set sample are given.
Then, the algorithm must decide how to map them, in
order to form a set of reasonable classes or clusters.
This method of self-organization is commonly called
cluster analysis (cf. [4], [7] and [5]).

The system does not know the desired outputs. The
network must rely on what is called competitive
learning, where all neurons compete for some learning
opportunity and just the ‘winner’ has the chance to
improve. The winner is the neuron that achieves the
greater activation value based on those sample input
values. If neuron k wins the competition, each weight
wki connected to input u is then modified by rule (6),

 ∆wki = η . (ui – wki) (6)

where η is the learning coefficient.
The weights of the winner are updated in a way to

intensify its response to the same input sample. This

y z

x

 22

way, the winner has strengthened its winning status.
After some iteration with the training set, the network
will eventually converge to a stability condition and the
training process will end. The activation of some
specific neurons only occurs on a certain set of input
vectors. Then, each neuron embodies a cluster
containing those same vectors.

A learning module in NETDEF consists of a set of
interconnected neuronal structures. Some of these
structures are used to keep the needed information for
learning process execution, namely, the input sample,
the actual synaptic weight matrix and the desired net
response (for supervised learning algorithms).

The internal execution of a learning module in
order to learn a sample takes the following steps (after
both module definition and initialization have
occurred):

1. Loading input sample in appropriate neural
structure (called X);

2. Sample initialization procedure (optional step);
3. Matrix multiplication of X by W (the synaptic

weight data structure), and assignment of result
to Y (another neural structure keeping the net
response);

4. Synaptic weight (and bias) update by a given
rule;

5. Update of internal variables (like iteration turn
number and average synaptic change);

6. Sample finalization procedure (optional).

Figure 4. Computing net response.

Classification is simple. The module just executes
steps 2 and 3, and saves the result on vector Y. The
execution time of learning and classifying takes only a

constant time delay. This is achieved because of the
neural network massive parallelism and the increase in
neuron number (i.e., spatial complexity).Let’s examine
in detail the various learning process steps. Step 1 is
conducted by symbolic structures such as vector
assignment, from the input values into the internal
input vector X. Step 2 is made optionally in the
beginning of the process, in order to execute some
procedural task that will prepare the net to learn that
specific sample (some symbolic module does this).

The third step computes net response, given the
input values already kept in vector X, and the actual
weight matrix values computed from previous iterations
(kept in matrix W). Figure 4 shows the neural network
that performs this task. The boxed neurons represent
the data structures keeping input data, weight matrix
and proper net response, namely, vectors X, W and Y.

Matrix multiplication is achieved by neuron-
synaptic connections (to correctly sum all coded values,
the net must insert after each multiplication a value of
C = – 0.5*(n–1), see figure 4) and the information flow
is controlled by NETDEF synchronization mechanism.

Step 4 depends on the specific learning algorithm
used. Herein, competitive learning provides equation
(6) as the update rule of the winner neuron. In this
case, before proper weight update, the module must
find which neuron is the winner, keeping all others
unaffected. This is the most complex structure of
NETDEF competitive learning modules.

In figure 5, it is shown the network that checks if
the jth output neuron is the winner (all output neurons
will have a similar network).

M is the minimum integer value with the following
property: For any x, if α(x) > 0 then M.α(x) ≥ 1. This
is used to extract any residual value after an invalid
subtraction between two codes (i.e., if there is any
residual value from α(x)– α(y), then x>y).

Figure 5. Finding if Yj is the winner.

The net subtracts all other output activations with
the target neuron Yj. If neuron Yj achieves maximum

-1

Y_1

Y_k

...
-1

...

OUT

Y_j

-1

-M

-M
M

RESj

IN

-1

IN X_n X_1 ...

Y_k Y_1 ...

-1

-1

...

...

W_1

W_nk

...

-1

C

OUT

 23

activation, it will cancel all eventual residuals from
those subtractions, and the input signal will pass
through RESj outputting 1.

Otherwise, at least one residual will exist, thus
canceling the input signal. In this way, only one
neuron, the winner, will activate its output result.

If by some rare chance (since weight values are
initialized to small random values) two neurons are
both declared winners, the net will not learn the sample
until next iteration (when the weight matrix will be on
a different state).

After finding the winner, the network should update
the correct synaptic connections. This computation is
outlined in figure 6.This network performs the
updating rule described by equation (6). Basically, it
subtracts wji from xi, to multiply the result by the

learning coefficient η. This result is then sent to the
proper position at the weight matrix, updating the
synaptic connections of the winning neuron.

Figure 6. Evaluating ∆Wji.

Finally, one or more symbolic modules conduct any
proper internal variable updating and also execute an
eventual finalization procedure. One example is now
presented in this article. Usually, in competitive
learning algorithms, the learning coefficient is a
function of time, where its values are given by
formula (7).

 η(t) = 0.1 – t / 105 (7)

In figure 7, neuron T is an internal variable keeping
the number of learning iterations already performed,
since the last initialization. The net computes the exact
formula given by equation (7). So, in the next learning
sample, the updating rule (6) will have a different
behavior, since the learning coefficient was changed.

Figure 7. Updating learning coefficient.

The set of neural networks presented in this paper,
help the reader perceive the actual interchange between
two different ways of computing information and
knowledge.

A symbolic module may access, within its scope,
any internal structure from the learning module (e.g.,
the weight matrix or the numeric value of an internal
variable) in order to retrieve information gathered from
the learning process, and can also consult the proper
net response in order to retrieve classification results.

On the other hand, a learning module may access
symbolic values from runtime variables of control
structures. This may be useful for specific learning
algorithms in the initialization and finalization sample
procedures.

In this way, a straightforward communication
mechanism exists, based on shared variable access,
between symbolic and sub-symbolic NETDEF neural
modules.

5. Conclusions and Future Work

This paper focuses on competitive learning
integration within the NETDEF system, which is a
framework for neural networks construction able to
describe arbitrarily complex symbolic computations.

An extension of this system, a neuron-synaptic
connection model (using second-order neurons), is
applied to include learning processes. With this feature,
sub-symbolic and symbolic computations are linked
together in the same neural framework.

Competitive learning algorithms can be integrated
on NETDEF modules, using a modular and recursive
approach and with an interface system suitable for
information and instruction exchange between symbolic
and sub-symbolic elements.

In the future, our main concern focus on how to
enlarge the interface mechanism of these NETDEF
modules, in order to achieve further integration with
other learning algorithms, namely, to extend the net
topology of competitive learning nets to include
neighbor adaptations like in Kohonen networks.

Other interesting subject is trying to enhance the
NETDEF syntax – handling the symbolic and
sub-symbolic interaction modules – in order to ease the
user programming task.

References

[1] Giles, C., Miller, C., Chen, D., Chen, H., Sun, G., and

Lee, Y., Learning and extracting finite state automata
with second-order recurrent neural networks, Neural
Computation, [4] 3, 1992, 393-405.

[2] Goudreau, M., Giles, C., Chakradhar, S., and Chen, D.,
First-Order Versus Second-Order Single-Layer
Recurrent Neural Networks, IEEE Transactions of
Neural Networks, [5] 3, 1994, 511-513.

Wji -1
∆Wji

X_i
η

0.5 -1

IN OUT

T

αR(1/105)

η

αR(1/10)-1.5

IN

-1

-1

 24

[3] Gruau, F., Ratajszczak, J., and Wiber, G., A neural
compiler, Theoretical Computer Science, [141] (1-2),
1995, 1-52.

[4] Hartigan, J.A., Clustering Algorithms, NY: Wiley, 1975.
[5] Haykin, S., Neural Networks – A Comprehensive

Foundation, 2nd ed., Prentice Hall, 1999.
[6] Hendler, J. and Dickens, L., Integrating Neural and

Expert Reasoning: An Example, In Proceedings of AISB-
91, Leeds, 1991. Cited in Wilson, 93.

[7] Kohonen, T., Self-Organizing Maps, Berlin: Springer-
Verlag, 1997.

[8] Lange, T., Hodges, J., Fuenmayor, M., and Belyaev, L.,
Descartes: Development Environment for Simulating
Hybrid Connectionism Architectures, In Proceedings of
the 11th Annual Conference of the Cognitive Science
Society, Ann Arbor, MI, 1989. Cited in Wilson, 93.

[9] Neto, J.P., Siegelmann, H., and Costa, J.F., On the
Implementation of Programming Languages with Neural
Nets, In First International Conference on Computing
Anticipatory Systems, CASYS 97, CHAOS [1], 1998,
201-208.

[10] Neto, J.P. and Costa, J.F., Building Neural Net Software,
Technical Report DI-99-05, Computer Science
Department, University of Lisbon, 1999. Available at
www.di.fc.ul.pt/biblioteca/tech-reports.

[11] Neto, J., Costa, J., Ferreira, A. (2000). Merging Sub-
symbolic and Symbolic Computation, In H. Bothe and R.
Rojas (eds), Proceedings of the Second International
ICSC Symposium on Neural Computation (NC'2000),
329-335. ICSC Academic Press, 2000.

[12] Shepherd, G. M., Neurobiology, 3rd ed., Oxford
University Press, 1994.

[13] Siegelmann, H., On NIL: The Software Constructor of
Neural Networks, Parallel Processing Letters [6] 4,
World Scientific Publishing Company, 1996, 575-582.

[14] Sun, G., Chen, H., Lee, Y., and Giles, C., Turing
equivalence of neural networks with second-order
connections weights, Proc. International Joint
Conference on Neural Networks, IEEE, 1991.

[15] Wilson, A. and Hendler, J., Linking Symbolic and
Subsymbolic Computing, Technical Report, Dept. of
Computer Science, University of Maryland, 1993.

