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AbstractO In this paper an adaptive observer for a claamogrtain nonlinear systems is proposed. Basethearly param-
eterized neural networks, Lyapunov argument, anddaptive bounding technique, the proposed schesw@es zero observer
error convergence, asymptotically, even in thegares of approximation error and disturbances, vesetige others error signals
remain bounded. In addition, the proposed schenes dot rely on any Riccati equation solution andoiés not suffer from
chattering.
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1 Introduction In this paper, motivated by the previous facts, the
problem of estimating the state of an uncertainr sys

Recently in [1] and [2] it was considered the asymp tem is considered. The aim is to relax the appboat
totic observation, based on linearly parameterae-n ~ @ssumption in [1] and [2], that is, the Riccati ation

ral networks (LPNNSs), of a class of uncertain nonli ~ constraint, whereas the chattering is avoided. @ase
ear systems in the presence of time-varying unknownon neural networks, Lyapunov method, an adaptive
parameters and non-vanishing disturbances. How-Pounding technique, and by using the design method-
ever, the proposed methods present several drawelogy introduced in [3], an asymptotic adaptive ob-
backs, which restrict the application: 1) observer ~ Server is proposed for a more general class of un-
[1] is based on a decaying-width design, hencarit ¢ known nonlinear systems that these in [1] and IE2].
exhibit chattering phenomenon when the width hasis proved that the observation error converges psym
decayed practically to zero, 2) observer in [2fiss  totically to zero, even in the presence of appraxim
continuous, then also exhibit chattering, and it as tion errors and disturbances, if some conditions on
sume that the unknown parameters have absolutelyhe design parameters are provided. The proposed
integrable derivatives. In addition, observers 1ji [ Work extends the state of the art in adaptive oleser
and [2] rely on a Riccati equation solution to be i ~ design, since it ensures convergence of the observa
plemented. tion error to zero, without chattering and Ricaatn-

On the other hand, in Vargas and Hemerly [3], a Straint. To the best of our knowledge, a smoottpada
robust modification for the weight adaptive law in fivé observer which does not suffer from chattering
neuro-identification problems was proposed to en-and ensures convergence of the estimated state to t
sure, in contrast to the literature, that the prtaii true has not been established in the literature yet
error converges to zero in the presence of appexim Throughout the paperr (J denotes the trace opera-
tion error and disturbances. The adaptive law con-tor, /lmin([)] denotes the minimum eigenvalue opera-
sisted of a leakage modification of a standard igrad tor, "[n] denotes the 2-norm adm denotes the Fro-
ent descent algorithm. However, in contrast to com- "
monly leakage modifications [13] which aim at sta- benius norm.
bility in the presence of approximation errors and
disturbances, the leakage term was introducedrfor,
addition to stability, ensuring that the state egon-
verges to zero. It was proved by using usual
Lyapunov arguments and an adaptive bounding techlPNNs can be expressed mathematically as
nique [14] that the state error converges asymptoti
cally to zero, whereas the others error signalsaiem PonW,2)=Wr(7) (1)
bounded. However, the proposed method relies on
the complete state measurement. In fact, the main rxL L . L, -
contributions of this seminal work were to provale where WO ) Kt D 0, m0 (_ — 07 s the )
appealing parameterization and weight adaptive lawsSO-called basis function vector, which can be abnsi
to asymptotical identification. So, asymptotic abse ered as a nonlinear vector function whose arguments
vation or tracking were not consider. are preprocessed by a scalar functis(i, and

r.L,,L, are integers strictly positive. Commonly

2 Linearly parameterized neural networks



used scalar functionss() include sigmoid, tanh, whereh,, such that hy >h, 20, is a known con-
gaussian, Hardy's, inverse Hardy’'s multiquadratic, stant.
etc [4]. However, here we are only interested i th

class of LPNNs for whichs(() is bounded, since in Assumption 2: The pairA, C is detectable and there

this case we have, exists a symmetric positive definite mattiX such
that
|¢) < 7 )
P(A-LC)+(A-LC)" P=-Q<0 (6)

being 7z, a strictly positive constant.

The class of LPNNs considered in this work in-
cludes HONN [5], RBF networks [6], wavelet net- o
works [7], and also others linearly parameterized WhereC~ lies in the span of the rows Gf
approximators as Takagi-Sugeno fuzzy systems [8],
which satisfy the so-called universal approximation Remark 1: Assumption 1 is common in approxima-
property: tion theory. Assumption 2 implies that the linear part

of the unknown system is dissipative or strictly posi-
Property 1 [9]: Given a constang, >0 and a con- tive real [10].

The aim is to design a NNs-based adaptive ob-
server for (4) to ensure the observation error conver-
compact set, there exists a weight matik=W" gence, that is, the state error convergence to zero,
such that the output of the neural network architec-asymptotically, which will be accomplished despite

B'p=cC"V (7)

tinuous functionf : @ 0", where @ 10 is a

ture (wherelL, may depend o, and f ) satisfies the presence of approximation error and disturbances.
Supmg‘f(()—WDS(()‘ <& (3) 4 Neural parameterization and observer error
equation

where ([Jdenotes the absolute value if the argument .
|['] g We start by presenting the observer model and the

is a scalar. If the argument is a vector functiorlin definition of the relevant errors associated with the
then [{blenotes any norm ifn" . problem. _ ' '
From (3), by using LPNNSs, the nonlinear mapping
f(x,u) can be replaced bWDn(x,u) plus an ap-
3 Problem formulation proximation error terme(x,u). More exactly, (4)

] ) becomes
Consider the class of nonlinear systems

o — 0O
= Ax+ B[ f (xu)+h( xuvt)] x(0)=x @) K= A BWEzxu)+ Bexu) +Bh(xuvt)  (®)
: 4
y=cx where WPO O™ is an “optimal” or ideal matrix,

. . . which can be defined as
where xOX is the n-dimensional state vector,

uU is a mdimensional admissible input vector,
vOv OO9 is a vector of time varying uncertain
variables, yY is the g-dimensional output vector,

h are internal or external disturbances,
f:XxUs0O" andh: X xU xV x[0,00)» 0" are o
unknown continuous mapsA,B,C are known ma- ~ Wwith /° :M |”WHSU\;\,}, ay, is a strictly positive

trices of appropriate dimensions. In order to have a
well-posed problem, we assume thit, U,V are

. . . D
compact setsf and h are locally Lipschitzian with ~ &PProximation error term, corresponding W™,
respect tax in X xU xV x[0,0), such that (4) has a Which can be defined as

unique solution.

w":= arg mi sup‘ f (x,u)—VAVn(x,u)( 9)
wor L):El)J(Y

constantW is an estimate otv", and £(x,u) is an

We assume that the following can be established e(xu):= f(xu)-wWr(xu) (10)
Assumption 1: On a regionX xU ><V><[0,oo) The approximation, reconstruction, or modeling
||h( x,u,v,t)|| <h, ) error £ is a quantity that arises due to the incapacity

of LPNNs to match the unknown ma’p(x,u).



null, asymptotically, whereas, at the same time, the
Remark 2: It should be noted thav” and g(x,u) others error signals remain bounded. The design
) ) . , method is similar to that in [3]. However, the adap-
might be nounique. Howevefe(xu)| is unique by  tiye jaws are now defined based on the output error.
(9). In contrast to [3] where it was assumed that the state
The structure (8) suggests an observer of the form is completely measurable.
Before presenting the main theorem, we state a
S = A3<+BVA\/n(“x,u)—Ly (11) fact,. remark and lemma, which will be used in the
stability analysis.

. . nxn .
vyhere X is the estlmated.staté,QD. IS aposi- oo et WO, WWOO™ andCO0™ be
tive definite feedback gain matrix introduced to at- o
tenuate the effect of the nonzero uncertainties and th@ diagonal matrix such thalC'C =C, where
initial condition x,, and y =Cx -y is the output C=diag(c), ¢ >0. Then, with the definition of
error. It will be demonstrated that the observer (11) w =W -W", the following equalities are true:
used in conjunction with a convenient adjustment law

for W, to be proposed in the next section, ensures [VT/T 6;\/ )]_ — ~12

the asymptotic convergence of the state error to zero, 2Ar\WICW =W )| = ”CW”F

even in the presence of the approximation error and [~ 2 ={..0 2

disturbances. +”C6N‘W0MF ‘“CM ‘Wo]‘F
By defining the state estimation error as . 12 - 2

~ A . T — 2

X := X—-x, from (8) and (11), we obtain the observer ZFM Wo]— ”W“F + W - ‘VW ‘Wo”F

error equation

(14)

Remark 4: The first equality in (14) leads to the fol-
lowing inequality:

2r W el -w, |2 ¢ W
W =

Fact 1: With the definitions (2) and (9), the ap- wherec max:ma>(ci) and ¢; i, :min(ci).
proximation error and disturbance terms are upper

X = -LX + BW7(x,u)- Be(x,u) - Bh( x,u,v.t)

+BafX,x,u)

(12)

where W:=W-W" is the error weight and (15)

%, xu) = m(%,u)- 7(x,u) is a disturbance term. + Cimin

bounded by Lemma 5.1: Let a scalar bounding function be given
by
( ;
Je(xu s L d=nfeH
Jexu) < c 2 o (b2 i
) EEZall ol - a{MF +Mp|2 ) ~2a)(p D}
where £, and ay, are positive constants. (16)
where
A H . = ~ (0] . 2IO
ssumption 3: The upper boundsg, >&, and IQﬂ,z// )— T+l 17)
+

a, > «p are previously known.

D . .
Remark 3: The previous knowledge of upper bounds @Nd ¥y:lo.a1,@2,¢/~> 0. Then, subject to the condi-

for approximation error and disturbances is commontion
in the robust on-line parameter estimation literature.
For instance, the dead zone algorithm uses a previous 12/(0)2 " (18)
knowledge of bounds for the approximation errors, as
can be seen in [11]-[12], or modeling error, as re- .
rted in [13].
ported in [13] WhereJ:M, the bounding function
4ail,
5 Adaptivelawsand stability analysis
is lower bounded, for al = Oby
This section is concerned with the definition of the
weight adaptive law to force the observer error to be



P(t)= " (19) Where
4aly

0'4250"'50*'(7'{)1 ﬂlz—'
Proof: Consider the Lyapunov-like function ([13]) "VVo"F\/C’zCi max

| (29)
\PRUA I (0 F2= zzlmoax a3 = Amn(Q)f|1]

By taking the derivative of (20) along (16) we 0b- 1q error signals,W,@ are uniformly bounded and
tain Y

lim, ., X(t)=0.
Vw == “CD;(“ Proof: Consider the candidate Lyapunov function
PR a1 @y

EEZ‘H"/’ ‘UZ(V‘N“F +[Wolf¢ ] —2mly } V=XTPR +tr (WM 2+ @ 52 (30)

Furthermore, based on (16) and (18) it follows where i = -y".
that tZ/(t)>O for all t = 0. Then, with the definition By evaluating (30) along the trajectories of (12),
(17), the Lyapunov derivative (21) can lower (16) and (23), and using the representation
bounded as tr MTCDXHT): x"CTWrr, we obtain

V, = -2l Sfp -] 22 V=-%[A- LO)" P+ P{A- LOR-XTc™ KEle +h-a)
-2l o i -w |- 20, i (v

Hence, if y < dy" we haveV,, = 0 which im- —omlGilcx +a( M2 2)4-&(:[52

plies that the bounding function is directed tovgard ! l//l/’ﬂ ” 2 VWﬂF MO"F ” “

the outside or boundary of the region +201|¢Dlp”cu>~<”

{(2/ |121551//D} . Consequently, based on (18), it (31)
By using Fact 2, the representation

q 21/712/:1/72+g?/2—¢152, and (6), the Lyapunov de-

We now state and prove the main theorem of therivative can be written as
paper.

follows that¢ = oy" for all t = 0.

V=-X"QX-X"C"KB(e +h-w)
Theorem 5.1: Consider the class of uncertain nonlin- o fa 5 2
ear systems described by (4), which satisfy Assump- —gTI”CDT(“ [”CW”F +”06N—WOMF —HC @VD—WOMF}
tions 1-3. Let the weight law be given by
W= —yW{zc(g?/—gz/D)Biv—(l —GZC'l)NO]”CDY(H}

+C%m (3<u)}

+ 2a2¢7“CD>?“tr6/VE’rWO)— ajl (4172 +2 —1,//52)“0%?“

e o] 7o x|+ 201 Fle7x]

(23) (32)
Furthermore, by using Remark 4, condition (27),

where § is given by (16),4, > 01 is an identity Lemma 5.1, and notation (29), the Lyapunov deriva-

matrix, and tive (32) can upper bounded as

K=P"+P 4
. } . V s [0 -+ e,
Then, subject to the condition (18), and if

_177 (Ci min M?“'z: * Cimin M’ _WO“IZ: -G max’\ND_WO“'z: \J
20K, o 2
alo —all(zﬁz +{? —1/152)+a2”\f\l —WO“FJ+20'1I1/JD¢7}
a, = Gi min (26) (33)
tr (WDrWo)S 0 (27) Further using (26) and rearranging terms, we ob-

tain

Ais|WO-wo| <8, (28)



V sle x| -alfl-omdii; -a0°

* el

—aﬂ(&z —z/fﬂz}mﬂw%}

+a,||KB| . (34)

By employ the definition ofy"

ing that & = — "
duces to

, see (25), recall-
, and using Lemma 5.1, (34) re-

V <fe5] -l -6V, -

e -

_a'lll]/2 "'al“//DZ +20’1|l/1%}

+(al|0/2+ci max‘

(35)
which, by using (17), implies

V < |C 5 -asl| -

+[a'1|0/2+ G max”WD_Wo“i )& -G mwl//EvWD _Wo”i
;“i P+ aajg™ }

(36)

Thus by using Lemma 5.1 and rearranging terms

in (36), we finally obtain

Vfe -t

~ 2 (4ayl,)
‘”{A I U
_ad” {IO —(IO /24 G W —Wo“i /alﬂ

y+y"

S AR A

(37)
It addition, we note from (28) that
-} 2 Lot
F asG max"\NO";: (38)

s

By substituting (38) into (37), and using Lemma
5.1, we arrive at

< =i QX

(39)

Hence, the error signal& W@ are uniformly

bounded. Further, sindéis bounded from below and
non increasing with time, we have

v(0)-V,

m < oo (40)

t
im,_., [|X()* dr <
0

where lim,_,V(t)=V, <. Notice that with the
bounds onX,W,{,& andh, ||§||2 is uniformly con-

tinuous. Thus from (12), it follows thatX is
bounded. Hence by Barbalat’s lemma [13], we con-
clude thatlim, _,, X(t)=0.

O
Remark 5: It should be highlighted thaE"X in (16)
and (23) can be computed vig. Since C" lies in
the span of the rows @, there exists a matrik such

that CP=TC. In [2] it is shown a way to determine
T: consider the singular value decompositiorCof

c=uxVv' (41)
and the pseudo inversg",
ct=vX*uT 42)

where U 0O%9 e vOO™" are orthogonal matri-
D

{ Okx(nk) }
Ofgipk  O(g-k)(n-k) |

o0; >0 are the singular
the rank of C, and

} Then, T=Cc'C*,

ces, x=
D =diag(o;,i =12,..k),
values of C, k is
+ :|: D™ ka(q—k)
-k Ofn-sch(a)
since it satisfies the equatid®” = TC . In summary,
Cx=TCx=Ty .

Remark 6: Conditions (6), (18), (24), and (26) are
trivial since them are defined by the user accaydin

a desired performance. Condition (25) implies the
previous knowledge of upper bounds for the ap-
proximation error and disturbances, which is en$ure
by Assumption 1 and 3. Conditions (27) and (28)

require at least that the sign of some entry \M”
and bounds for the ideal weights are known. The pre
vious knowledge of bounds for the modeling error
and ideal weights is not peculiar to the proposed
scheme. Most robust modifications in the literature
as for example, switchingr, parameter projection,
and dead-zone requit@ priori information on the
plant or modeling error for ensuring stability, res
ported in [13].

Remark 7: It should be noted that condition (28) can
be rewritten as



Zq max
a

MD‘V%“ZS ) S\/qmﬁzlw\bllw_%“ (43)

Hence, there is at least one way of selectingdthe
sign parameters to satisfy this interval conditibp:
selecting the design constamt, to be large enough

and, in the sequence, by adjusti‘rr‘gD —WOHF to be

small enough, what can be achieved by appropriate
selection of the matri¥\, .

6 Conclusions

In this paper an adaptive observer that ensures ob-
server error convergence to zero, even in the pres-
ence of approximation error and disturbances, was
proposed. The main peculiarities of the proposed
scheme are that it does not assume the existerace of
solution for a Riccati equation, as usual in therd-
ture, and it does not suffer from chattering phenom
ena. The use of the proposed methodology for im-
plementing an asymptotic tracking control system is
under investigation.
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