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Abstract— There are two contributions in this work, the first one is the presentation of the Vose (Vose, 1999) model for the
behaviour of random search algorithm under the point of viewof the method of types (Csiszár and Kórner, 1981), the secondone
is the use of algebraic code with genetic algorithms (GA) in order to speedup their convergence and precision in solutions.
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Resumo— Este trabalho apresenta duas contribuições, a primeira é a apresentação do modelo de Vose (Vose, 1999) para o
comportamento de algoritmo de busca aleatória sob o ponto devista do método dos tipos (Csiszár and Kórner, 1981). A segunda é
o uso de códigos algébricos em algoritmos genéticos (GA) para aceleração da convergência e aumento da precisão das soluções.
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1 Introduction

Random Heuristic Search (RHS) stands for a large
class of algorithms that can be classified by the heuris-
tic procedures. For example, the well known Simple
Genetic Algorithm (SGA)(Holland, 1975) is a sort of
RHS whose heuristic is based on mimic of biological
processes of selection, mutation and crossover. There
is a number of variations of this SGA paradigm, we
denote GA any of such variations. In general such that
variations are proposed to overcome some setbacks on
the SGA performance like premature convergence.

Inspite of setbacks, SGA works very well in a
number of optimization problems and many authors
have proposed theories in order to explain how and
why SGA efficacy. The most successful of these mod-
els make use of Markov chains being due to Vose and
others (Vose, 1999). The Vose model is the most gen-
eral and it is applicable to RHS whose machinery ap-
pears to be a discrete dynamical system on a certain
simplex through identification of populations with cor-
responding population types. The first contribution of
this paper is to interpret Vose model in the framework
of the method of types due to Csiszár (Csiszár and
Kórner, 1981).

The SGA can be conceived by specifying the
search spaceΩ ⊂ Z

k
2 and defining the heuristic pro-

cedure as the repetition of selection, mutation and
crossover operations over elements of a given subset
P ⊂ Ω. But there is no structure defined for the search
space. This lack of structure was recently identified as
one of the the causes for the diversity loss by Bryden
et all (Willson, 2006). Diversity loss makes the algo-
rithm to search at each iteration in smaller and smaller
portions of the search space resulting frequent prema-
ture convergence. In their work authors explore the
use of graphs to limit such loss in order to give to the
search space some structure and reduce loss of diver-
sity.

The second contribution of this paper is the appli-

cation of algebraic codes as an alternative technique to
keep diversity, speeding up and improving solutions
precision of GAs. The mechanism is to define the
search space as the linear subspace defined by an alge-
braic code, performing genetic operations over the in-
formation words and selection operation on the code-
words.

The paper is organized as follows. In Section 2
we present the relation of the Method of Types and
RHS. In Section 3 we present the application of al-
gebraic codes in the SGA. Finally, in Section 4 we
present some conclusions.

2 Method of Types and RHS

For t = 0, 1, . . . a population is a ordered multiset
denoted byXt = {X0, X1, . . . , Xr−1}wherer is the
size of the population and eachXi, i = 0, . . . , r−1 is
chosen i.i.d. under some probability distribution (PD)
from the search spaceΩ = {0, 1, . . . , n − 1}. Let
k(x|Xt) the number of copies of individualx ∈ Ω
in the populationXt, definept

i(X) = k(i|Xt)/r be
the proportion ofith individual. The vectorp(Xt) =
(

pt
0, . . . , p

t
n−1

)T
is calledpopulation type Xt. If it is

clear from the context we will omit the superindexes
and the symbolX from p(Xt).

Let Pr denote the set of sizer population types
with individuals selected from the search spaceΩ. Ob-
serve thatPr is a proper subset of the n-simplex

Λ =
{

p ∈ ℜn :
∑

pi = 1, pi ≥ 0
}

.

If p ∈ Pr, the set of populations of sizer and em-
pirical distributionp is calledcomposition classof p
defined byT (p) = {X ∈ Ωr : p(X) = p}.

We shall compare facts from the method of
types (Csiszár and Kórner, 1981) usually applied in
the framework of communications engineering with
results of the Vose model proposed in the frame-
work of RHS algorithms. We remark that the term



population in RHS jargon is correlate to the word
sequencein communication engineering jargon and
similar comparison correlate termsearch spacewith
termsource alphabet, respectively in RHS and com-
munication contexts. However an important distinc-
tion is that population size is small compared with
usual sequences size and search space is large com-
pared with usual source alphabets. More precisely we
setn ∈ O (2r) , wherer is around a couple of tenths.
Below we recall facts from the method of types.

Fact 1: In the context of communications there
are relatively few composition classes and in conse-
quence there are composition classes with a huge num-
ber of sequences. Universal source coding theorems
are based on this fact.

|Pr| =

(

r + n− 1

n− 1

)

≤ (r + 1)n (1)

In the context of RHS algorithmsn ∈ O(2r) so there a
huge number of composition classes. It is not expected
that the use of techniques inspired on universal source
coding to be profitable.

Fact 2: PopulationXt is a random sequence.
Denote a specific realization of such that random se-
quence byxt, or x if t it is clear from the con-
text. Let q(x) the probability of a fixed sequence
x = {x0, x1, . . . , xr−1} to be selected i.i.d. under
a PDq, thenq(x) depends only on its typep(x) and
is given by

q(x) = 2−r(H(p)+D(p;q)) (2)

whereH() is the entropy function andD() divergence
between distributionsp andq. Remark that in the con-
text of communicationsr correspond to length of se-
quences and entropy and divergence are small com-
pared tor, however in the context of RHS both entropy
and divergence are comparable withlog r. This is be-
cause inspite of types haven entries onlyr of them
can be nonzero.
Fact 3: For any typep ∈ Pr and any PDq, the prob-
ability of a composition classT (p) underq satisfies

2−rD(p;q)

(r + 1)n
≤ q (T (p)) ≤ 2−rD(p;q). (3)

Fact 4: For any typep ∈ Pr,

2rH(p)

(r + 1)n
≤ |T (p)| ≤ 2rH(p). (4)

A basic component of any RHS is the so called
transition rule , τ : Λ → Λ. It is iterated to generate
populationsX0 τ

→ X1 τ
→ . . . Given a current popu-

lation typep the next population typeτ (p) results of
two maps, one of them is denotedheuristic function
or simplyheuristic is deterministic and the other one
is denotedsamplingor selectionis a nondeterministic
map. Such composition is illustrated schematically in
Fig. 1. Vose model interpret the RHS machinery as a

τ(p)

G(p)

G

τ

sampling

p

Figure 1: General transition ruleτ for any composed
of deterministic heuristic functionG and random sam-
pling. Note sampling is made i.i.d. under DPG(p)

dynamical system on the simplexΛ through identifi-
cation of populations with corresponding types. But
to the authors knowledge, Vose papers do not mention
the method of types. An important question is what is
the probability of the composition class the next popu-
lation will be within. Note that the information on the
problem is the same to any population from a specific
composition class.

In order to illustrate the interpretation of Vose re-
sults by the method of types we take the probability
thatq ∈ Pr is the next population type given thatp

is the current population type. Vose derives the exact
formulaPr[q] = r!

∏

G(pj)
rqj /(rqj)! to this proba-

bility, but this is hard to manipulate due to the presence
of factorials and there is no informational measure in-
serted.

Proposition 1

2−rD(q;G(p))

(r + 1)n
≤ Pr[q] ≤ 2−rD(q;G(p)). (5)

To verify the proposition above begin with the Vose
formula, apply ( 4) to the factorials and ( 2) to the
productG(pj)

rqj , then after some simplification the
result follows. Note thatPr[q] = Pr[T (q)], the prob-
ability of sample a populationX ∈ T (q), falls expo-
nentially at rate given by the divergenceD(q;G(p)).
Hence depending on heuristic functionG(), that gen-
eration to generation the population can concentrates
near populations with type given byG(p) with fast
loss of diversity. This characterize the frequent effect
of premature convergence.

In fact, probabilityq depends only on the cur-
rent one p, so the sequence ofrandom vector
p, τ(p), τ2(p) . . . can be viewed as an Markov chain
whose huge transition probabilities matrix are such
that shown in ( 5), explicitly:Pp,q = Pr[q]. From
the comments above it is clear the great importance of
the heuristic functionG () to the performance of RHS
algorithms. In fact we can say thatG () definesthe
RHS. We remark so that RHS algorithms are full char-
acterized by its heuristic function that determine the
kind of paths they will follow in the simplexΛ.



Input: objective-function,f(v) : D → R, D ⊂
R

m, linear algebraic code(l, k) with generator matrix
G
Output: optimum domain valuev⋆

Initialization:

• t← 0; X (t) ⊂R {0, 1}k; evaluateX (t)G;

Iteration:
WHILE STOP = FALSEDO

• Z
k ⊃ X′ (t) ←

variation: crossover, mutationX (t) ;

• evaluateX′ (t)G;

• X (t + 1)← selectionX′ (t) ; t← t + 1;

END

3 Algebraic Code-Based Genetic Algorithm
(CBGA)

The pseudo-code of the CBGA shown in the Algo-
rithm above is inspired in (de Assis, 1997) that estab-
lished an association between the SGAs performance
parameters thoroughness and sparsity with covering
and packing radii parameters of algebraic codes. The
idea is to explore the geometric structure of the alge-
braic codes in order to overcome premature conver-
gence and speed up convergence of SGAs.

A code is defined as a linear mapG : Z
k
2 → Z

l
2

whereZ2 is the binary finite field (Blahut, 1983). As
an example consider the well known Hamming (7,4)
code, whose mapG is given by the matrix below and
the relation betwen a codewordc and a information
word i is c = iG with operations inGF (2), e.g. the
informationi = 1000 is mapped toc = 1000101.

G =









1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1









The main difference between SGA and CBGA
concerns to the search space size. Search space is
now a subset defined by the code. Genetic operations
mutation and crossover are performed with elements
from Z

k
2 , after that each element ofX′ is multiplied

by the generator matrix of the code to obtain the set
X′G ⊂ Z

l whose elements havel − bit binary repre-
sentation. As it is well known the domainf() domain
is quantized in2l pieces. The procedure to compute
fitness is therefore performed with precision ofl bits.

Crossover is the operation that combine informa-
tion from individuals that are submitted to selection
step, this is necessary to find the optimal element, but
crossover is also responsible by diversity loss from one
generation to the next, what characterize the GA pre-
mature convergence. Mutation is utilized to combat
such that setback, but other measures can be neces-
sary, e.g., recently Bryden et all (Willson, 2006) pro-

pose control the speed of convergence intermediating
crossover by the use of graphs. Note that the aim is
giving time to competing solutions mature. CBGA
seeks attain the same objective but work by means the
weight structure of the algebraic code that assure the
Hamming distance between elements of a population
submitted to selection to be greater than the minimum
distance of the code.

We have applied CBGA and GA to the test gener-
alized Rastrigin function, describe in Equation 6 and
plotted in Figure 2 tom = 2 and−2 ≤ vi ≤ 2, cho-
sen from 23 functions benchmark table presented by
Yao (Liu, 1999). This class of multimodal functions
is one of the 23 found in the table whose number of
local minima increases exponentially with the dimen-
sionm. Note that they appear to be the most difficult
class of problems for many optimization algorithms.

f(v1, . . . , vm) =

m
∑

i=1

(

v2
i − 10 cos(2πvi) + 10

)

,

−7.75 ≤ vi ≤ 7.75 (6)
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Figure 2: Rasting function tom = 2 and−2 ≤ vi ≤
2, i ∈ 1, 2

In all steps, that is selection, mutation and
crossover operations, GA has its individuals (chromo-
somes) represented with600 − bit integers . This
means that are 6 bits per dimension for GA. For
CBGA genetic operations must be performed with in-
formation symbols of the linear code, so ifR is the
code rate individuals must be represented with ap-
proximatelyR × 600 -bit integers, that is, 6 bits per
argumentvi, i = 1, . . . 100. We adopt the Golay
(23, 12, 7) to our test because it is a well known bi-
nary code with nice combinatorial properties. Hence
to make genetic operations the individuals must be
represented approximately12/23 × 600-bit integers.
We assume312-bit to that representation. After ge-
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Figure 3: Convergence comparison CBGA and GA

netic operations these 312 bits are mapped into 598-
bit integers that are the submitted to selection step of
the algorithm. Note that598 = 26 × 12 meaning that
in fact 26 “information words” are encoded. With di-
mensionm = 100 312 bits are distributed to represent
vis. Hencevis are represented by3.12 bit on average.

Fig.( 3) displays that as expected the CBGA con-
verges faster than the GA. The number of generations
to attain the minimum is near 64% compared to the
number required by the GA.

As the mutation probability must be adjusted to
each problem problem, for example to the values of
Figure 3 it was 0,01%, a new experiment with both
the SGA and CBGA algorithms with zero mutation
probability was performed and the resultswhereare
presented in Figure 4, with population size (PS) 500
and 600 to CBGA and 600 to SGA. As expected, with-
out mutation the premature convergence occur. But it
is worthy note that CBGA gives a better result than
SGA. It is a topic for future research to analyze if the
CBGA can avoid the use of the mutation probability.
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Figure 4: Convergence comparison CBGA and GA
with mutation probability equals to zero .

4 Summary

In this paper we have compared the Vose model for
RHS algorithms under the point of view of the method

of types. In particular we have shown that transi-
tion probabilityPq,p is dependent only of the heuristic
function. Another contribution of this is the proposi-
tion of an simple modification of GAs by means uti-
lization of algebraic codes to combat premature con-
vergence of GAs. The new algorithm performance is
compared with a GA by application both to a well
known benchmark problems. Future directions in-
cludes comparing CBGA with a recent graph-based
technique proposed to fight premature convergence in
GAs.

References

Blahut, R. E. (1983).
“Theory and Practice of Error Control Codes”,
Addison-Wesley Publishing Company, Inc.,
Owego, NY.

Csiszár, I. and Kórner, J. (1981).InformationTheory:
Coding Theorems for Discrete Memoryless
Systems, Academic Press, New York, USA.

de Assis, F. M. (1997). “Genetic Algo-
rithms and Packing of Block Codes”,
Proceedingsof the International Conference
on Telecommunications- ICT97, Vol. 3,
Melbourne, Australia, pp. 1045–1048.

Holland, J. H. (1975). Adaptation in Natural and
Artificial Systems., The University of Michigan
Press., Reading, Michigan.

Liu, G. L. X. Y. Y. (1999). “Evolutionary Pro-
gramming Made Faster”,IEEE Transactionson
EvolutionaryComputation, Vol. 3, pp. 82–102.

Vose, M. D. (1999).The Simple Genetic Algorithm,
MIT Press, Cambridge, Massachusetts.

Willson, K. M. B. D. A. A. S. J. (2006). “Graph-Based
Evolutionary Algorithms”, IEEE Transactions
on EvolutionaryComputation, Vol. 10, pp. 550–
567.


