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Abstract— This work concerns automatic classification of short circuits in transmission lines. These faults are
responsible for the majority of the disturbances and cascading blackouts. Each short circuit is represented by a
sequence (time-series) and both online (for each short segment) and offline (taking in account the whole sequence)
classification are investigated. Results with different preprocessing (e.g., wavelets) and learning algorithms are
presented, which indicate that decision trees and neural networks outperform the other methods. Another
contribution of this work is to promote the adoption of a public and comprehensive labeled dataset with short
circuit sequences, which allows to properly compare the algorithms and reproduce the results.
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1 Introduction

The electric power industry has currently a rea-
sonably sophisticated logistics to acquire and store
time series (waveforms) corresponding to power
quality (PQ) [1, 2] events. A typical example is
the oscillography equipments [3] that store wave-
forms along with additional information such as
date and time, in cases where the amplitude dif-
fers from its nominal value.

More specifically in the fault analysis field,
the companies are integrating their legacy super-
visory control and data acquisition (SCADA) sys-
tems, which report time to the second and do
not provide waveforms, with the so-called intel-
ligent electronics devices (IEDs) such as digital
fault recorder (DFRs) and digital relays, which
can support sampling frequencies of tens of kHz
and implement sophisticated algorithms [3]. In
both fields, classification and other data mining
tasks can be performed at the level of the IED (on-
line) or at a supervisory center (postfault), which
collects data from several sources.

This work investigates a particular and impor-
tant class of causes of PQ events: faults in trans-
mission lines. Studies showed that these faults
were responsible for 70% of the disturbances and
cascading blackouts [4, 5].

Due to the lack of freely available and stan-
dardized benchmarks, most previous publications
in this area used proprietary datasets, making dif-
ficult to compare algorithms and reproduce re-
sults. Another contribution of this work is to
promote UFPAFaults2, a public and comprehen-
sive labeled dataset with short circuit sequences,
which allows to properly compare the algorithms.
The faults of this datasets were simulated with the
Alternative Transients Program (ATP) [6]. ATP
models have a long history of good reputation with
respect to mimicking the actual system behavior
when well tuned. Data mining techniques (pre-
processing and machine learning algorithms) are

then used to train and test classifiers.
Most of the literature in faults classification

(see, e.g., [4]) adopts a raw or wavelet front end
and neural networks as the learning algorithm.
This work compares the neural networks with de-
cision trees and other classifiers, assuming raw and
wavelet front ends.

This paper is organized as follows. Section
2 presents definitions and the notation. Section
3 describes the simulation setup, including the
dataset of faults and the adopted algorithms (pre-
processing and learning). The simulation results
are discussed in Section 4, while Section 5 presents
the conclusions.

2 Classification of Time Series
Representing Faults

In this work, the time series represent faults,
which are basically short-circuits in transmission
lines. This section defines a notation that may
look abusive. However, there are many ways of
representing and classifying time series, and a pre-
cise notation is necessary to avoid obscure points.

Most transmission systems use three phases:
A, B and C. Hence, a short-circuit between phases
A and B will be identified as “AB”. Considering
the possibility of a short-circuit to “ground” (G),
the task is to classify a time series into one among
eleven possibilities: AG, BG, CG, AB, AC, BC,
ABC, ABG, ACG, BCG, ABCG. Algorithms to
solve this classification problem are used by DFRs,
distance relays and other equipments (see, e.g.,
[3]).

The signal capturing equipments are some-
times located at both endpoints of the transmis-
sion line. Most of them are capable of digitizing
voltage and current waveforms. It is assumed that
each equipment has a trigger circuit that detects
an anomaly and stores only the interval of inter-
est - the fault and a pre-determined number of



samples before and after the fault. The trigger
itself corresponds to a binary classification prob-
lem: “fault” or “no-fault” [7], but this interesting
problem is out of the scope of the present work.

Each fault is a variable-duration multivariate
time-series. The n-th fault Xn in a dataset (oscil-
lography records, for example) is represented by a
Q×Tn matrix. A column xt of Xn, t = 1, . . . , Tn,
is a multidimensional sample represented by a vec-
tor of Q elements. For example, this work adopts
Q = 6 (voltage and current of phases A, B and
C) in the experiments. In some situations [4], it
is possible to obtain synchronized samples from
both endpoints of a given line. In these cases the
sample is an augmented vector with twice the di-
mension of the single endpoint scenario.

A sample composed by the measured currents
and voltages is called raw. Alternatively, para-
metric representations such as wavelets [8] can be
used.

Independent of the adopted parametric repre-
sentation, a single sample typically does not carry
enough information to allow performing reason-
able decisions. Hence, the samples are often con-
catenated or averaged to create a frame F. Frames
have dimension Q×L, where L is the frame length
and their concatenation Ẑ = [F1 . . .FN ] is a ma-
trix of dimension Q×LN , where N is the number
of frames of the fault.

The frames can overlap in time such that
the frame shift S, i.e. the number of samples
between two consecutive frames, is less than the
frame length. Hence, the number of frames for
a fault Xn is Nn = 1 + b(Tn − L)/Sc, where b·c
is the flooring operation. It should be noticed
that, if S = L (no overlap between frames)
and a frame is a concatenation of samples F =
[xt−0.5(L−1), . . . ,xt−1,xt,xt+1, . . . ,xt+0.5(L−1)],
the matrices X = Ẑ coincide.

The frames can be conveniently organized as
vectors of dimension K = QL, and Ẑ resized to
create Z = [z1 . . . zN ] of dimension K×N . It is as-
sumed hereafter that the processing is performed
on Z (not X).

For example, for Q = 6 raw currents and volt-
ages, frames F of dimension 6 × 5 could be ob-
tained by concatenation of samples, e.g., taking
for each central sample, its two neighbors at left
and the two at its right. In this case, assuming
S = L = 5 and a fault with T = 10 samples,
X = Ẑ would have dimension 6 × 10, while Z
would be a 30 × 2 matrix. In practical systems,
one can adopt Q = 6 and K = 198 [4].

Fault classification systems can be divided
into two types. The first one aims at performing a
decision (classification) for each frame F. This is
typically the goal in on-line scenarios, at the level
of, e.g. a protection relay [4]. On-line fault clas-
sification must be performed on a very short time
span. It is often based on a frame corresponding

to half or one cycle of a sinusoidal signal of 60
or 50 Hz. Assuming, 60 Hz and a sampling fre-
quency of fs = 2 kHz, one cycle corresponds to
L = 2000/60 ≈ 33 samples. Alternatively, the de-
cision can be made at a supervisory center in a
post-fault stage. The latter case deals with ma-
trices Z of variable dimension K ×Nn, while the
former with vectors z of a fixed dimension K. The
on-line and post-fault systems try to solve prob-
lems that can be cast as conventional classifica-
tion [9] and sequence classification [10] problems,
respectively.

In a conventional classification scenario, one
is given a training set {(z1, y1), ..., (zM , yM )} con-
taining M examples. Each example (z, y) con-
sists of a vector z ∈ RK called instance and a
label y ∈ {1, . . . , Y }. A conventional classifier is
a mapping F : RK → {1 . . . , Y }. Some classi-
fiers are able to provide confidence-valued scores
fi(z) for each class i = 1, . . . , Y , such as a prob-
ability distribution over y. For convenience, it
is assumed that all classifiers return a vector y
with Y elements. If the classifier does not natu-
rally return confidence-valued scores, the vector
y is created with a unitary score for the cor-
rect class fy(z) = 1 while the others are zero
fi(z) = 0, i 6= y. The final decision is based on
the max-wins rule F(z) = arg maxi fi(z).

Contrasting to the on-line case, the post-fault
classifier is a mapping G : RK×Nn → {1, . . . ,Y }
and the training set {(Z1, y1), . . . ,(ZM , yM )} con-
tains M sequences and their labels.

There are techniques for implementing G that
deal directly with sequences, such as hidden
Markov models (HMM) [11] and dynamic time-
warping (DTW) [12]. Another alternative is the
frame-based sequence classification (FBSC) archi-
tecture, in which the fault module repeatedly in-
vokes a conventional classifier F (e.g., neural net-
work or decision tree) to obtain the scores y =
(f1(z), . . . , fY (z)) for each class. To come up with
the final decision, the fault module can then take
in account the scores of all frames. For example,
the module can calculate an accumulated score
gi(Z) for each class and then use the max-wins
rule

G(Z) = arg max
i

gi(Z),

where possible alternatives are:

gi(Z) =
N∑

n=1

fi(zn) (1)

or

gi(Z) =
N∑

n=1

log(fi(zn)). (2)

In FBSC, the accuracy of G(Z) is clearly depen-
dent on the accuracy of the classifier F(z).

The performance of the fault classifiers can
be evaluated according to their misclassification



rates Es and Ef , for the sequence (post-fault) and
frame-by-frame (on-line) modules, respectively.

One can see that there are many degrees of
freedom when designing an algorithm for fault
classification. The next section presents the
framework adopted.

3 Simulation Setup

The simulations used the UFPAFaults2 dataset,
which can be downloaded from www.laps.ufpa.
br/freedatasets/UfpaFaults/. This dataset is
composed by 1.000 simulated faults, which were
split into two disjoint sets with 500 examples each,
to be used for training and testing. An explana-
tion about how the faults are generated with the
software AmazonTP is given in [13].

3.1 Preprocessing and front end

It is beneficial to normalize the raw data such that
the waveforms have amplitudes approximately in
the range [-1, 1] (per unit or pu). This work used
two types of normalization, which are called here
prefault and allfault. In the prefault normaliza-
tion, a fixed-duration interval of the signal preced-
ing the disturbance is used to find the maximum
absolute value Xmax. Then, this maximum value
is used as base for the conversion of each phase
to pu. The allfault normalization takes in account
all duration of the waveforms for getting the maxi-
mum and minimum amplitudes of each phase, and
the converting to pu. Both normalizations adopt
a distinct normalization factor for each of the Q
waveforms. For example, if one waveform has an
overshoot of amplitude Xmax, the allfault can con-
vert Xmax to 1 and keep the whole waveform in
the [-1, 1] range, while prefault may convert Xmax

to a value much larger than 1, because its nor-
malization factor is based on a pre-fault interval
(where the amplitudes are typically close to their
nominal values).

After the analog to digital conversion and pre-
processing, the front end is responsible by all oper-
ations to generate the sequence that will be passed
to the mining algorithms (e.g., classification and
clustering). All front ends in this work assume an
input sequence X with Q = 6 raw currents and
voltages at fs = 40 kHz.

Wavelet is a popular representation for fault
classification [14]. There are many ways of rep-
resenting a sequence through wavelet coefficients.
In this work, two front ends based on wavelets are
investigated.

Some works in the literature use only one of
the details or calculate the average power of the
coefficients [15]. In constrast, the waveletconcat
front end concatenates all the coefficients and or-
ganizes them in a matrix Z. One has to take in
account that the coefficients have different sam-

pling frequencies. For example, assuming a 3-level
decomposition of a signal with fs = 2 kHz, there
are four signals (sequence of coefficients) for each
of the Q waveforms: the approximation a, and
three details d1, d2 and d3, which have sampling
frequencies, given by 250, 1000, 500, 250, respec-
tively. Therefore, instead of using a single L, the
waveletconcat front end adopts a value Lmin for
the signals with lowest fs (a and d3 in the pre-
vious example). The other signals use a multi-
ple of Lmin. Invoking the previous example again,
L = 8Lmin and the frame lengths for d1 and d2

are 4Lmin and 2Lmin, respectively.
A similar reasoning is applied to the shift S,

which requires the definition of Smin.
The coefficients are then organized in a frame

F of dimension Q × L, where L = 2kLmin for a
decomposition level k. The number of frames is
given by

N = 1 + b(Ta − Lmin)/Sminc,

where Ta is the number of elements in a.
Another alternative for organizing the wavelet

coefficients is by taking the windowed normalized
total energy (average power) of each coefficient.
This front end is called waveletenergy and, sim-
ilarly to the waveletconcat, it has to deal with
signals of different sampling frequencies. Their
main distinction is that, instead of concatenating
all coefficients, waveletenergy represents X by its
energy (or power) in frequency bands specified by
the wavelet decomposition. Hence, waveletenergy
looses information but can achieve a significant re-
duction in computational cost of the classification
algorithms by decreasing the number of parame-
ters.

3.2 Learning Algorithms

The simulations in this paper relied on Weka [9],
which has many learning algorithms. Specifically,
the work used decision trees (J4.8, which are a
Java version of C4.5 [9]), multilayer artificial neu-
ral network (ANN) trained with backpropagation,
naive Bayes and K-nearest neighbor (KNN) [9].
For KNN, instead of using the whole dataset in the
test stage, the K-means clustering algorithm was
adopted for finding a specified number of centroids
to represent the training set [9]. This can substan-
tially reduce the computational cost of KNN. A
discriminative Gaussian Mixtures (GMM) classi-
fier [16] was also adopted, which estimates a mix-
ture of Gaussians for each class.

These classifiers were used for on-line fault
classification experiments, where the decisions are
made on a frame-by-frame basis. For post-fault
classification, among the several options (HMM,
DTW, etc.), this work adopts FBSC architectures
by modifying the Weka code [9] to invoke the pre-
vious classifiers.



Table 1: Approximate computational cost for
some classifiers, where sigm is a sigmoid function
and mac is a multiply and add operation, executed
in one cycle in modern DSP chips.

Classifier Cost
J4.8 log2 pn if-else
ANN (Y + ph) sigm, (K + Y )ph mac
KNN pmK mac
GMM Y pgK mac
Naive Bayes Y K mac

It is interesting to compare the computational
cost of the classifiers during the test stage. The
training stage can be done offline and is typically
less important. The cost depends on the complex-
ity of each classifier and can be roughly estimated
as follows. A binary decision tree as J4.8 with
pn internal nodes requires log2(pn) comparisons
to reach a leaf. Assuming ANNs with one hidden
layer of ph nodes, each node computes an inter-
nal product between vectors of dimension K + 1
(input dimension plus bias) and calls a sigmoid
function. Similar work is done by each of the Y
nodes of the output layer, but with vectors of di-
mension ph. A KNN classifier using pm stored
vectors (training instances or centroids calculated
by clustering) and the Euclidean distance, requires
computing pm internal products or, alternatively,
pm squared norms of vectors of dimension K. As-
suming each of the Y classes being modeled by
a mixture with pg Gaussians, the GMM classifier
requires Y pg Euclidean distances for calculating
log-likelihoods. When the Naive Bayes classifier
uses a one-dimensional Gaussian for each element
of the input z (as in this work), its cost is equiva-
lent to a GMM with one Gaussian per class. This
rough estimate of the total cost at the test stage
of these classifiers is summarized in Table 1.

To provide a single cost estimate, the table
suggested in [17] was used to weight the differ-
ent operations (arithmetic, logical, etc.). These
weight obviously depend very much on the com-
puting platform but they are helpful to provide a
first approximation.

3.3 Parameter selection

Often, the best performance on a particular
dataset can only be achieved by tedious param-
eter tuning. This is a computational intensive
approach, but avoids tuning the parameters by
repeatedly evaluating the classifier using the test
set. A popular strategy is to perform this param-
eter (or model) selection using cross-validation.

It should be noted that, conventionally, the
examples are assumed to be independently and
identically distributed (iid) “samples” from an un-
known but fixed distribution P (z, y). However,

Table 2: Front end parameters (Q = 6 and the
wavelet is db4 with 3-levels).

Front end Parameters
raw L = 9, S = 9, K = 54
waveletconcat Lmin = 4, Smin = 2, K = 192
waveletenergy Lmin = 1, Smin = 1, K = 24

this assumption is invalid when training and test
datasets of fault classification experiments can
have vectors z extracted from the same sequence.
This fact is important in practice because when
performing model selection based on, e.g. cross-
validation, the procedure can lead to overfittting
because vectors that were extracted from the same
waveform have relatively high similarity among
them.

Because of that, automatic model selection
used a validation file disjunct with respect to the
train and test files. Combinations of possible pa-
rameters were specified as a grid and searched ex-
haustively.

4 Experimental Results

In the preprocessing stage, the 40 kHz waveforms
were decimated by 20 to create sequences with
fs = 2 kHz.

Results for the three different front ends in
Table 2 are discussed. The first front end, which
is called raw, adopts L = 9 raw samples (central,
four at the left and four at the right), such that
K = 54. There is no overlap (S = L). The two
wavelet front ends used a Daubechies 4 (db4) [8]
with a 3-level decomposition. Hence, for each of
the Q = 6 waveforms, the wavelet decomposi-
tion generated four signals. The waveletconcat
adoped Lmin = 4 and Smin = 2, while waveleten-
ergy used Lmin = Smin = 1. For example, As-
suming a 6 × 5000 matrix X (already at fs = 2
kHz), waveletconcat generates a sequence Z with
K = 192 and N = 311 frames. Table 3 indicates
the parameters of the classifiers obtained by the
automatic model selection procedure.

Figure 1 shows a comparison between the two
normalization methods adopted in this work. For
both, the best results were obtained by the ANN
and J4.8 classifiers. The large difference for the
Naive Bayes classifiers requires further analysis.

Figure 2 shows the results for the two wavelet
front ends (the results for the raw are repeated for
convenience). These two did not outperform the
best result obtained with the front end raw. One
should notice, however, that there are many de-
grees of freedom when designing a front end based
on the wavelet transform, and these should be seen
as baseline results.

Figure 3 indicates the estimated computa-
tional cost of some classifiers. Model selection



Table 3: Parameters of the classifiers designed by
the automatic model selection procedure for the
prefault normalization.

Front end Classifier Parameter
raw ANN ph = 32
(K = 54) J4.8 pn = 258

Naive Bayes -
KNN pm = 1111
GMM pg = 8

wavelet- ANN ph = 16
concat J4.8 pn = 413
(K = 192) Naive Bayes -

KNN pm = 1111
GMM pg = 1

wavelet- ANN ph = 36
energy J4.8 pn = 287
(K = 24) Naive Bayes -

KNN pm = 1100
GMM pg = 4
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Figure 1: Error rate Ef using the raw front end
and different normalization strategies.

chooses different classifiers when the normaliza-
tion strategy changes. An exception is the Naive
Bayes classifier, which does not have such param-
eters and presents the same cost.

Some FBSC post-fault classifiers G were de-
signed using Eq. (1) and the max-wins rule. Fig-
ure 4 shows Ef − Es, the absolute reduction in
error rate when comparing sequence classification
and the corresponding conventional classification.
For example, the GMM presents Ef = 51.3% and
Es = 31.6%, which leads to a difference of 19.7%.

Figure 5 shows a comparison of the robustness
of the J4.8 and ANN classifiers to the addition of
white Gaussian noise (AWGN) to the waveforms.
Both classifiers were trained with waveforms not
contaminated by noise and tested under a condi-
tion of a signal to noise ratio of 30 dB, i.e. a forced
mismatch condition between train and test. It can
be seen that in this case, J4.8 was slightly less ro-
bust to noise than the ANN.
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Figure 2: Error rate Ef of front ends waveleten-
ergy, waveletconcat and raw (the first set of
results is the same as in Fig. 1).
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Figure 3: Computational cost of the test stage
estimated using the table suggested in [17] for
the best classifiers found by the model selection
procedures, for prefault and allfault normaliza-
tions. The cost of the KNN classifiers were around
180,000.

5 Conclusions

This paper presented a thorough description of the
issues related to the design of fault classification
modules for power electric systems. The solutions
to this problem involve digital signal processing
and machine learning algorithms. Consequently,
there are many degrees of freedom when designing
a classifier. For example, the wavelets front ends
would probably benefit from finer tuning.

The experimental results indicated that neu-
ral networks and decision trees outperformed the
other classifiers. Decision trees seem particularly
interesting when one is trying to minimize the
computational cost, such as in the development
of embedded devices. Neural networks achieved a
better accuracy and improved robustness.

The post-fault classification deserves more in-
vestigation. The FBSC architecture is just one
among many options. It is interesting that a
GMM classifier, which outputs log-likelihoods,
had a large discrepancy between Es and Ef , while
the difference was much smaller for ANN. This is
another topic that deserves further investigation.



0

2

4

6

8

10

12

14

16

18

20

E
rr

o
r 

D
if

fe
re

n
ce

 (
%

)

ANN

J4.8

Naive Bayes

KNN

Gaussians Mixture

Figure 4: Difference Ef − Es between the er-
ror rates for frame-by-frame and sequence classi-
fication using prefault normalization and the raw
front end.
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Figure 5: Difference between datasets with noise
and without noise (the first set of results is the
same as in Fig. 1).
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