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Abstract – Convolutional neural networks (CNNs) are one of the deep learning techniques that, due to the computational
advance of the last few years, have leveraged the area of computer vision, allowing substantial gains in the most varied classi-
fication problems, especially those involving digital images. In this context, this paper aims to propose a methodology for the
classification of multiple pathologies related to different plant species. Initially, this methodology involved the image processing
and the generation of ten new databases, varying between 50 and 66 classes with greater representation. After training the models
(VGG16, RestNet101v1, ResNet101v2, ResNetXt50, and DenseNet169), a comparative study was conducted based on widely
used classification metrics, such as test accuracy, f1-score, and area under the curve. To attest the significance of the results,
Friedman’s nonparametric statistical test and two post-hoc procedures were performed, which demonstrated that ResNetXt50
and DenseNet169 obtained superior performances when compared with VGG16 and ResNets.
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1. INTRODUCTION

The advent of industrialization in the agricultural sector yielded a significant growth in food production worldwide, through
the incorporation of technologies that enabled the mechanization of the field and studies that allowed soil fertilization, genetic
improvement of seeds and the creation of more effective pesticides [1].

However, even though the mechanization of the countryside has made it possible to increase world food production in the
last five decades, the life expectancy of the population has also increased considerably. It is estimated that the food production is
expected to grow 70% in the world and double in developing countries to meet the food demand of the world population, which
is expected to reach 9.1 billion in 2050, taking into account climate change and rapid urbanization [2].

In this scenario, one of the biggest challenges related to world food security are the diseases that affect plants, as their
incidence can result in a drastic reduction in the yield of crops, compromising the quality of fruits, vegetables, grains, and
legumes [3] . According to the Society for General Microbiology [4], plant diseases contribute about 10% to 16% of losses in
the annual global crop, costing approximately $220 billion.

Usually, these pathologies affect the photosynthetic apparatus and the growth of the plant, in addition to being difficult to
control because their populations are variable in time, space, and genotype. About 85% of plant diseases are caused by fungal-
like organisms. Other serious plant diseases are caused by bacteria, viruses, and viroids, and few diseases are caused by certain
nematodes [3, 5].

In addition, note that these pathologies also have disastrous consequences for small farmers whose livelihoods depend on
healthy crops. In most developing countries, more than 80% of agricultural production is generated by small farmers and an
estimated loss of income of more than 50% due to pests and diseases, making small farmers a particularly vulnerable group to
pathogen-derived disturbances in food supply [6].

In this manner, many efforts have been made to prevent loss of crops due to disease. Historical approaches to widespread
application of pesticides have, in the past decade, been increasingly complemented by integrated pest management approaches
[6].
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However, the abundant use of chemicals, such as bactericides, fungicides, and nematicides to control these pathologies has
caused adverse effects on the agroecosystem, making it necessary to use effective techniques for early detection of the causative
agent for the control of diseases and the sustainability of the agroecosystem, avoiding the unnecessary waste of financial resources
and, consequently, obtaining healthier production [5, 7].

In this context, many studies have been carried out to predict incidents and minimize losses through computational intelligence
(CI) techniques based on deep learning (DL) and computer vision for pattern recognition in plants disease images databases
[6, 8–11].

Among numerous neural network architectures used in the DL area, convolutional neural networks (CNN) have been estab-
lished as a dominant approach to the recognition of visual objects due to their satisfactory results in different problems involving
computer vision [3, 12, 13]. The application of these models has been driven by the current advances in the processing capacity
of computers, mainly in relation to the use of graphic processing units (GPUs).

The rise in the use of these networks is due to the fact that they have proven to reach more accurate results than traditional
object recognition methods in a wide range of applications. Besides, the use of CNNs reduces the complexity regarding the defi-
nition of the architecture type and allows one to employ relatively deeper models with lower computational cost when compared
to traditional methods. Therefore, CNNs have been consolidated as a powerful tool for extracting nonlinear, discriminating, and
invariant features [14].

In this context, this paper establishes a methodology for the classification of diseases in plants, which involves image prepro-
cessing and application of different CNN architectures to classify between 50 and 66 diseases of multiple plant species present
in the XDB plant disease database, made available by Embrapa [7]. Ten databases were created from the XDB database, with
different numbers of classes and distinct image resolutions. The evaluation of results was based on widely used metrics, such as
test accuracy stage, f1-score, and area under the curve (AUC). Furthermore, a non-parametric statistical study was carried out to
verify the significance of the results, having as input the first metric mentioned above.

The main contributions of this reasearch are:

• A methodological proposal for the classification of diseases in plants based on the processing of digital images from
many plants with different types of diseases, which can be useful for specialists in this field, enabling early diagnosis that
contributes to the reduction of profit losses in the agricultural sector;

• A tool to control the spread of epidemics, contributing to food security in food production;

• A method for image preprocessing which facilitates the creation of standard databases from plant diseases image reposito-
ries that are still under development and have images with varied quality.

• A comparative study between CNNs, which proved the significance of the results obtained for different databases with
multiple plant diseases, from different Brazilian regions.

The remainder of this paper is organized as follows. In section 2, the state-of-the-art works are revisited. Section 3 presents
the proposed methodology, along with the database and model settings. Section 4 highlights the results and analysis. Section 5
synthesizes the conclusions and some future directions.

2 RELATED WORK

CNNs are one of the most used architectures in the supervised DL field, acting such that the data characteristics can be
exploited automatically to obtain the best results. This type of network can be summarized as a model based on the integration
of biological vision with the neural system [5]. These networks have high power of precision in classification tasks and object
recognition [3].

Recent applications of CNNs involve the detection of pedestrians and road signs [15], image recognition [16], tumor detection
[17, 18], genus identification of small insects [19], and detection of diseases in plants [9–11].

Plants infected with diseases usually exhibit visible marks or lesions on either the leaves, stems, flowers, and/or fruits.
Generally, each disease or pest condition presents a unique visible pattern, which can be used to uniquely diagnose the anomaly
[20]. Based on this assumption, many works have been developed based on CNNs for detecting plant diseases. This section
comprises an overview of the literature work in the field of disease recognition in plants through different CNN models.

In [21], it was pointed out the importance of the early diagnostic and precise identification of apple leaves diseases, which
might help in controlling the propagation of pathologies and ensure the healthy development. The research proposed an approach
to identify diseases in the apple leaves with a CNN based on the AlexNet model, using a database composed of 13,689 images.
The results showed that the AlexNet variant obtained a general precision of 97.62%, with a significant reduction in the number
of parameters. In terms of precision, an improvement of 10.83% over the original AlexNet was obtained.

In [11], the work covered the development of a model for plant diseases recognition based on the classification of leaves
images using a traditional pre-trained CNN. All the collected images were downloaded from the Internet and searched by diseases
and plant names in many sources and languages. The images were grouped in 15 different classes, where 13 of them represent
plant diseases which could be visually defined by the leaves. For the precision test, the cross validation technique with ten
repetitions was used to assess a predictive model. The experimental results of this model obtained the precision between 91%
and 98%.
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In the field of mobile applications, an automated image recognition system with the use of smartphones and high-performance
processors to detect plant diseases was implemented in [6]. For this task, they used CNNs, such as the AlexNet and GoogleNet
architectures, for comparative purposes. As expected, GoogleNet performed consistently better than AlexNet. In one of the test
cases, the first achieved an overall accuracy of 99.35% in the detection of 26 diseases in 14 plant species, in a total of 54,306
color images.

As noted, CNNs have been proved their potential when applied to the classification tasks. Besides, their power have demon-
strated that they can exceed human performance in some object recognition tasks [16]. However, for the success of these models,
large amount of training data labeled with the respective class is crucial to produce a rich feature hierarchy.

A method for identifying soy diseases, based on a transfer learning approach and pre-trained AlexNet and GoogleNet archi-
tectures, was developed in [22]. To identify three diseases, these models were trained using 649 images of unhealthy soy leaves
and 550 image of healthy soy leaves. In addition, a five-fold cross-validation strategy was used. The models based on AlexNet
and GoogleNet reached an accuracy of 98.75% and 96.25%, respectively, which demonstrated the efficiency for identifying
soybean diseases.

Regarding this proposed work, other studies have already demonstrated the feasibility of research in the XDB database [23]
[24]. The previous works highlighted some intermediate results, which were concentrated in the comparison studies between the
different architectures. The refinement of this idea resulted in the methodology for the classification of plant diseases described
in detail in the following section.

3. PROPOSED METHODOLOGY

This research aims to develop a methodology based on the image preprocessing and the application of different CNN models
to perform the classification of plant diseases from digital images encompassed in the XDB plant disease database. This database
was originally created and made public available by the Brazilian Agricultural Research Corporation (EMBRAPA) [7]. To
achieve this goal, a methodology based on four phases was established, as presented schematically in Figure 1.

Classification
Ranking
1º CNN A
2º CNN B
3º CNN C

Phase 4

Performance Analysis of
Results

Phase 3

Training and Testing
of CNNs

Phase 2

Image Preprocessing

Phase 1
Input:

...

Plant Disease Imaging
Database

Figure 1: Methodology for the classification of plant diseases.

The first phase of this methodology involved the selection of the database with diseases that affect plants as an input for the
CNN that were used. However, to make the training of the CNNs possible, it was necessary to include an intermediate phase,
called image preprocessing, which can standardize the size of all images and eliminate images with extremely small dimensions.
After this standardization, the training and testing phases of the CNNs began, which performed the extraction of relevant features
that made it possible to classify the pathologies. Finally, the performance analysis of the results was carried out, which aimed to
evaluate the output of the applied CNNs and to classify the best networks in a ranking based on non-parametric statistical tests.

3.1 PLANT DISEASE DATABASES

The database used in this study was created by researchers from EMBRAPA. They collected images of plant pathologies
and the organization of the database was called Plant Disease Data Base (PDDB), which is available at https://www.digipathos-
rep.cnptia.embrapa.br/. As a result, 2,326 images from 171 diseases and other disorders were gathered, comprising 21 species of
plants [7].

However, as mentioned by the researchers, the PDDB database does not have a number of images that make it possible
to apply DL techniques for the extraction of disease features, as most classes are not representative [7]. Based on this issue,
to increase the size of the database, the images were divided into smaller images containing individual lesions or regions of
symptoms, according to some criteria, such as the extraction of leaves from diseased plants [7]. Thereby, this expanded database
(XDB) currently contains 46,513 images and is the object of study for this work. Figure 2 depicts some images from the XDB
database.

3.2 IMAGE PROCESSING AND DATABASE ORGANIZATION

Before using the images from the XDB database as input to the CNNs, it was necessary to carry out preprocessing steps,
because to execute DL models, it is crucial that the images present consistency regarding the position and size of the region of
interest, and sufficient representativeness in each class such that pathologies can be properly classified, improving the training
and, subsequently, the testing of CNNs.
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Figure 2: Sample images from the XDB.

The image preprocessing stages intend to create databases with different features based on the images from the XDB, for
testing the CNN models under different settings. Another motivation for carrying out these stages were the need of a method that
could facilitate the elimination of very small images that could hinder the generalization of CNN models. Preprocessing involved
two main steps: i) image selection and (ii) image resizing.

The step of selecting the images basically consisted of a validation that is justified by the fact that the XDB database is
composed of images with different dimensions, being some of them extremely small. In this sense, a method was implemented
to perform the selection of the desired images for the creation of ten databases that were used in this paper.

This validation was based on a proximity factor to the target dimensions, called the difference rate, which considered the
input dimensions, comparing the size of the current image with the target size. If the current image has dimensions below the
minimum limit defined by the rate of difference, it is eliminated from the group of images that compose the new database.

Table 1 shows the values corresponding to the rates applied to the dimensions established for the images comprised in the
databases created in this paper.

Table 1: Difference rate applied according to the chosen dimensions.

Dimensions Difference Rate
32×32 0
40×40 5%
48×48 10%
56×56 15%
64×64 20%

When one disregards the difference rate in the creation of databases with 32×32 images, all images equal to or greater than
these dimensions were considered. This methodology was adopted because the applied CNNs assume 32×32 as the minimum
image dimensions for their input. Although it is possible to define a rate of difference and then resize the images to the desired
target dimensions, it was observed that the images with dimensions smaller than 32×32 were extremely small.

From the dimensions 40×40 to 64×64, the difference rate varied with an increase of 5% as the target dimensions were
increased, i.e., all images that had a dimensions starting from dpx×px − (dpx×px × t) would be considered for a given new
database, where dpx×px refers to the target dimensions and t is the difference rate.

Afterwards, the selected images proceeded to the resizing step, which standardizes the dimensions accepted in the selection
step to the target dimensions. Figure 3 presents examples from the preprocessing steps.

Figure 3: Examples of images before and after the preprocessing steps.

After the preprocessing steps, ten databases were generated with configurations that can be observed in Table 2. Initially,
the databases were created with images that have dimensions varying by eight pixels, i.e., dimensions starting from 32×32 to
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64×64. These first five databases encompassed the 50 most representative classes, named in this study with the suffix “final”.
Besides, more five databases were created with a number of classes varying according to the most representative classes per target
dimensions, starting from 60 classes in the database of 64×64 images and reaching up to 66 classes in the database of 32×32
images. These last five databases followed the same previous pattern in dimensions and were classified using the suffix “hard”.

Table 2: Databases’ configurations.
Designation Target dim. #classes #images

bd32final 32×32 50 35,430
bd32hard 32×32 66 36,558
bd40final 40×40 50 32,043
bd40hard 40×40 65 33,049
bd48final 48×48 50 29,020
bd48hard 48×48 64 29,878
bd56final 56×56 50 27,079
bd56hard 56×56 62 27,786
bd64final 64×64 50 25,211
bd64hard 64×64 60 25,778

In this study, the representativeness in each class is related to the largest number of images belonging to a given class, with
no distinction of belonging to the same culture or pathology, as the XDB is not a balanced database in its original form.

In addition, due to the fact that the images in the XDB are small, which can more effectively represent the disease, the
databases of images with dimensions 32×32 have a larger number of images, as expected. On the other hand, although with the
largest resolution, the databases with images of dimensions 64×64 are the ones that group the smallest number of images.

3.3 TRAINING AND TESTING OF CNNs

3.3.1 MODELS’ CONFIGURATION

In this study, the VGG model was selected because it is a reference in the area of computer vision, being one of the first to
obtain satisfactory results in a large volume of data. The DenseNet and ResNet models were selected because they have superior
results in the current literature. ResNetXt was chosen because it concentrates characteristics from VGG and ResNet models,
making it interesting to compare the performances between these CNNs. Specifically, the VGG16, DenseNet169, ResNet101v1,
ResNet101v2, and ResNetXt were adapted and then applied to the ten databases generated from XDB (Table 2).

In terms of adaptations to the original architectures, the VGG16 model was configured with 200 neurons in the first two fully
connected layers, both followed by a dropout regularization of 0.5, before the output layer. The DenseNet model had the addition
of a fully connected layer composed of 200 neurons, followed by a dropout regularization of 0.5, before the output layer. The
last configuration was adopted for the ResNet101v1, ResNet101v2, and ResNetXt models. All CNNs were pre-trained in the
ImageNet [25] database and their implementations were based on the Keras framework [26].

The training of all models was performed using the stochastic gradient descent (SGD) algorithm [27] with momentum equal
to 0.9, and learning rate starting at 10 −3 and decreasing to a minimum of 0.5 × 10 −6. For all CNNs, 200 epochs and batch size
of 64 were considered, with a reduction in the learning rate by the factors 10 −1, 10 −2, 10 −3, and 0.5 × 10 −1 when the number
of epochs was greater than 80, 120, 160, and 180, respectively, considering that the result in the test data did not improve after
five consecutive epochs.

The operation of the SGD involves performing one update at a time, which generally makes the training process much faster.
In general, the SGD makes it possible to jump to new and potentially better local minimum [27]. It has been shown that when the
learning rate is slowly decreased, the algorithm demonstrates the same convergence behavior as the batch descending gradient,
approximately converging to a local or global minimum for convex and non-convex optimizations, respectively [28]. For these
reasons, the reduction in the learning rate over time is justified in this paper.

3.3.2 DATA SEPARATION

When one applies the CNN models, generally three data sets are required: training, validation, and testing. The training set is the
collection of images to be used by the network to automatically learn its intrinsic parameters (e.g., the weights). The validation
set is used to adjust hyperparameters that are essential for fine-tuning purposes. These hyperparameters include, among others,
learning rate, batch size, number of epochs, and network architecture. The values of these hyperparameters are often defined
empirically, as they are linked to the problem [3].

Therefore, the model being trained can be evaluated in the validation set at the end of each epoch, which allows the training
process to be monitored and possible underfitting/overfitting to be detected. Generally, training and validation sets come from
the same data source that is subdivided.
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The testing data set is used only when the training phase is completed, with the aim of evaluating the final generalization
of the model. The accuracy in the testing set is, therefore, one of the most important metrics to be computed, as it provides an
overview of the model’s performance beyond the process of exploring the hyperparameters.

Specifically for this paper, there is no distinction between the validation and testing data sets, as the hyperparameters are not
optimized along with the validation set. The majority of the hyperparameters were fixed or varied empirically from works in
the literature. Thus, for each database (Table 2), 70% of the images were used in the training stage, while the remaining images
were employed for evaluating (validation/testing) the learned models. Note that the training and testing sets were shuffled at each
epoch for a given execution.

3.3.3 REGULARIZATION TECHNIQUES

This work applied regularization techniques widely used to improve the generalization of the CNN models and reduce the
overfitting. Generally, the first regularization step involves gathering more data, that is, increasing the amount of images of
pathologies in plants. However, obtaining many images for a given class can be complicated in a context of plant diseases,
especially because the XDB still in the construction process.

As a result, the proposed methodology used data augmentation techniques based on images that already existed in the training
data. These techniques consist of transforming the geometry or intensity of the original images to make them as new images,
by employing some operations, such as rotation, mirroring, random cropping, zooming, adding noise, changing the contrast
and brightness values, and so on. The augmentation operations can be performed in different manners, using one or more
transformations per image. Besides, the transformations can be also applied before the start of the entire training process or when
each batch of images is loaded.

In this paper, an automatic method was developed to increase the number of images in the training data. This method applied
horizontal rotation and displacement, vertical displacement, and ZCA whitening [29,30], which were performed when each batch
of images was loaded during each training epoch. All data augmentation effects were performed using the Keras framework.

Among the regularization techniques applied directly to the models, the dropout can be considered, which is a mechanism
that eliminates a random set of neuron activations to avoid excessive adjustment during the training stage, such that each neuron
can learn to detect a useful feature to produce the correct response. In this research, in all CNNs, following each fully connected
layer (except the output layer), a dropout equivalent to 0.5 was applied.

4. RESULTS AND ANALYSIS

The strategy used in this paper involved starting to train these algorithms from an intermediate point, instead of performing
the training from the beginning. This is because the ImageNet database has images of plants [25], even in healthy condition, thus
the pre-training in this database contributed to a greater efficiency in the refined training carried out after this stage. This fact
also justifies the use of the SGD algorithm and the decay in the learning rate over epochs, as the objective is to slowly optimize
pre-trained models as an refinement, without abruptly exploring the space of features.

It should be noted that all experiments were performed on an NVIDIA GeForce GTX 1050 TI GPU with 4 GB of video
memory, along with a 2.2 GHz (4.1 GHz) Intel Core i7-8750H processor and 16 GB of RAM. The average computational time
of the most costly executions considering the database “32hard”, which has the largest number of images, were ResNet101v1
and ResNet101v2, with 10 hours and 10 min, and 11 hours and 30 min, respectively, followed by DenseNet with approximately
9 hours and 30 min and ResNetXt with 6 hours. The CNN with the lowest average execution time was VGG16, which lasted
3 hours and 30min. Note that although the CNNs were executed in the GPU, making more than ten executions for each model
proved to be costly in time. Considering all the executions, the averaged times presented relatively low standard deviations.

4.1 PERFORMANCE EVALUATION THROUGH ACCURACY, F1-SCORE, AND AUC

Considering a shuffle strategy in the database split during each epoch from the training process, from ten executions of each
CNN in each database, the performance averages for the accuracy metrics, f1-score, and AUC in the test data are presented
in Tables 3, 4 and 5, respectively. In a global analysis, it is possible to verify that, in most cases, ResNetXt50 maintained a
better performance in databases that comprised images with dimensions greater than 40 × 40, among all CNNs and metrics
considered, while DenseNet169 obtained better results in databases that involved images with smaller dimensions than 48 ×
48 and results marginally lower than the ResNetXt50 for databases that included images with dimensions larger than 40 × 40.
On the other hand, ResNet101v1 obtained the worst results in the databases of images with dimensions 32 × 32, although it
surpassed ResNet101v2 in all databases of images with dimensions greater than 32 × 32. ResNet101v1 also had results superior
to those reached by VGG16, in databases of images with dimensions larger than 48 × 48, except for a tie performance in the
database “56final”. The metrics related to the test accuracy and AUC better highlighted the performances of the CNNs, showing
relevant differences between the achieved results.

When one considers the results based on the accuracy metric in the test (Table 3) in databases of images with dimensions 40
× 40 and 64 × 64, it is possible to observe that the performances of ResNetXt50 and DenseNet169 remained similar, with small
advantage for the former. A slightly larger difference between them can be seen in the databases of images with dimensions
48 × 48 and 56 × 56, with a positive highlight for ResNetXt50, while in the databases of images with dimensions 32 × 32,
DenseNet169 obtained the best results among all CNNs. On the other hand, the ResNets presented a lower performance, with
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ResNet101v2 being the negative highlight for all databases used in this experiment, while ResNet101v1 still managed to obtain
results that were marginally superior to those achieved by VGG16.

Table 3: Average of test accuracy for the databases.

VGG16 ResNet101v1 ResNet101v2 ResNetXt50 DenseNet169
32final 0.936 0.876 0.916 0.940 0.942
32hard 0.929 0.878 0.911 0.936 0.940
40final 0.947 0.943 0.933 0.955 0.954
40hard 0.941 0.939 0.930 0.950 0.949
48final 0.955 0.953 0.943 0.965 0.962
48hard 0.950 0.946 0.938 0.961 0.957
56final 0.959 0.959 0.951 0.966 0.962
56hard 0.954 0.958 0.949 0.965 0.961
64final 0.963 0.964 0.953 0.970 0.971
64hard 0.960 0.966 0.949 0.968 0.967

As summarized Table 4, a similar trend in the results was observed when one considers the metric f1-score in databases of
images with dimensions larger than 40 × 40, in which ResNetXt50 achieved a slightly higher performance than DenseNet169,
although the latter achieved the best results in the databases of images with dimensions 32 × 32 among all CNNs. On the other
hand, although VGG16 has obtained results relatively superior to those reached by ResNets in the databases of images with
dimensions 32 × 32 and in the database “40final”, in all other subsequent databases the performance of this CNN was lower
when compared to ResNet101v1, although it was considerably better when compared to ResNet101v2.

Table 4: Average of f1-score for the databases.

VGG16 ResNet101v1 ResNet101v2 ResNetXt50 DenseNet169
32final 0.917 0.852 0.896 0.925 0.926
32hard 0.881 0.828 0.864 0.904 0.910
40final 0.930 0.928 0.913 0.940 0.940
40hard 0.896 0.901 0.885 0.915 0.916
48final 0.934 0.937 0.920 0.950 0.946
48hard 0.907 0.910 0.889 0.931 0.922
56final 0.940 0.940 0.931 0.950 0.948
56hard 0.911 0.926 0.907 0.938 0.930
64final 0.944 0.948 0.930 0.958 0.956
64hard 0.929 0.936 0.913 0.946 0.946

As synthesized in Table 5, the results pointed out by the AUC metric reinforced that the best results were from ResNetXt50
followed by DenseNet169 by a marginal difference, where it is possible to highlight a tie in the results for database “40hard” and
an advantage of DenseNet169 in the databases of images with dimensions 32 × 32. With respect to VGG16, it was demonstrated
that its results were superior to those from ResNets in databases of images with dimensions less than 56 × 56, except for the
result from the database “40hard”, where the performance of ResNet101v1 was marginally higher than VGG16. In the database
“56final”, there was a tie between the performance of ResNet101v1 and VGG16, and in the database “56hard” and in the two
databases of images with dimensions 64 × 64, ResNet101v1 surpassed the performance of VGG16 and ResNet101v2. Moreover,
for the databases of images with dimensions 32 × 32, the AUC metric evidenced that ResNet101v2 obtained better results than
ResNet101v1, although they were not sufficient to surpass the results of the best CNNs, i.e., ResNetXt and DenseNet169.

From the results presented by accuracy, f1-score, and AUC metrics, it was verified that the ResNetXt50 and DenseNet169
models had a better performance in terms of all databases used in this study, with a slight advantage for ResNetXt50.

It is possible to infer that one of the reasons that made ResNetXt50 obtained a superior result in comparison to the other
models is due to the simplicity of its architecture, as it is highly modular and works with the reuse of residual blocks, which
reduce the computational cost in the executions. Furthermore, ResNetXt50 brought together the strong points from VGG and
ResNet, such as the increase in the dimension of cardinality, which has proven to have satisfactory results in the literature [31].
For the results of DenseNet169, it can be deduced that they were satisfactory due to the advanced information flow that travels
through the network during the training stage, making all layers of the model aware of the information inherent in the previous
layers. Another point to consider is the fact that both ResNetXt50 and DenseNet169 have regularization mechanisms that
significantly reduce problems related to the vanishing gradient, which is a challenge in the VGG16 architecture. For the results
obtained by ResNets, it is assumed that the pre-training in the Imagenet database did not favor or was not sufficient for a better
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Table 5: Average of AUC metric for the databases.

VGG16 ResNet101v1 ResNet101v2 ResNetXt50 DenseNet169
32final 0.957 0.922 0.945 0.960 0.962
32hard 0.937 0.907 0.925 0.947 0.951
40final 0.963 0.962 0.954 0.969 0.968
40hard 0.945 0.946 0.937 0.953 0.953
48final 0.966 0.965 0.958 0.972 0.970
48hard 0.950 0.948 0.938 0.959 0.955
56final 0.969 0.969 0.964 0.974 0.971
56hard 0.953 0.958 0.949 0.965 0.960
64final 0.969 0.970 0.961 0.975 0.975
64hard 0.963 0.965 0.951 0.969 0.970

classification performance given the fact that the pre-training included only images of healthy plants, or even for the ResNet
architectures, which have great depth, needing more epochs to achieve more acceptable results.

For the purpose of visualizing the performances of CNNs in the training and testing stages, the following results are presented
for the 32hard and 64hard databases, as they denote extremes in terms of image quality. Note that ResNet101v1 was excluded
from this analysis to make the result visualization easier.

In Figure 4, the performances of the applied CNNs are presented in terms of accuracy throughout the epochs of the training
stage in the database “32hard”. It is observed that ResNetXt50 and DenseNet169 have already started the training with results
superior to the other CNNs, although the first one has a slight advantage until around the epoch 80. VGG16 and ResNet101v2
initially maintained performances with some differences until around the epoch 60, where up to approximately the epoch 80, the
performances were significantly similar. In the subsequent epochs, VGG16 surpassed ResNet101v2 until the end of training.
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Figure 4: Performance of ResNetXt50, DenseNet169, VGG16, and ResNet101v2 in terms of accuracy during the training stage
in the database “32hard”.

With regard to the performance of CNNs in the testing stage on the database “32hard”, it is verified in Figure 5 that the best
results of ResNetXt50 and DenseNet169 in the training contributed positively to a better generalization in the classification of
new images from the various classes of plant diseases, while a relatively unsatisfactory performance was noticeable in relation to
ResNet101v2, which does not characterize a overfitting effect. VGG16 obtained an intermediate performance, approaching the
best results from the epoch 80, where it is possible to perceive the positive effect of applying a reduction in the learning rate for
this model, as well as the major distance between its results and the ones obtained by ResNet101v2.

Figure 6 shows the performances of CNNs in terms of accuracy throughout the epochs of the training stage in the database
“64hard”. It is inferred again that only ResNetXt and DenseNet169 started the training stage with superior results, while after the
epoch 100, the performance among all CNNs remained similar, which demonstrated that the strategy of generating new images
during the training had a positive effect along the epochs for all CNNs applied in this database. Specifically, despite minor
differences from the epoch 100, ResNetXt50 remained with a superior overall performance, while ResNet101v2 remained in last
place.

In the testing stage, on the database “64hard”, some discrepancies were more evident in the results, when compared to the
training results, as can be seen in Figure 7. An almost imperceptible difference between the performance of ResNetXt50 and
DenseNet169 is noted, in contrast to the performance of the VGG16, where the difference between it and the other CNNs is
clear. Although the training results demonstrate similarities, the ability of CNNs to generalize to new test images demonstrated
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Figure 5: Performance of CNNs ResNetXt50, DenseNet169, VGG16, and ResNet101v2 in terms of accuracy during the testing
stage in the database “32hard”.
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Figure 6: Performance of ResNetXt50, DenseNet169, VGG16, and ResNet101v2 in terms of accuracy during the training stage
in the database “64hard”.

that the trained model of ResNet101v2 had some specialization in the training data, when compared with the other CNNs.
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Figure 7: Performance of the ResNetXt50, DenseNet169, VGG16 and ResNet101v2 in terms of accuracy during the testing stage
in the database “64hard”.

4.2 NON-PARAMETRIC STATISTICAL TEST

To verify the significance in all possible peer-to-peer comparisons between CNNs, Friedman’s non-parametric statistical test
was performed, complemented by the post-hoc procedures Shaffer and Bergmann to adjust the initially computed p value. These
experiments assumed the following null and alternative hypotheses, respectively: H0 which considers that the results of the
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compared algorithms have no differences; and H1 which considers that the results of the compared algorithms differ.
To apply the Friedman test, the original results in terms of test accuracy (Table 3) were converted using a ranking-based

transformation [32]. Table 6 summarizes the computed ranking from Friedman test, which highlights the ResNetXt50 and
DenseNet169 models as the best ones, with a slight advantage for the former, while ResNet101v2 was considered the worst CNN
taking into account all databases of this study. Therefore, it is possible to infer that there is significance in the multiple possible
comparisons between CNNs, and in some cases the hypothesis H0 can be refuted and the hypothesis H1 can be accepted.

Table 6: Average ranking computed by the Friedman test.

CNN Ranking
ResNetXt 1.3

DenseNet169 1.7
VGG16 3.4

ResNet101v1 3.8
ResNet101v2 4.8

Table 7 presents all hypotheses for comparisons and the p values unadjusted and adjusted by the Shaffer and Bergmann
post-hoc procedures. It is important to note that the lower the value of p, the greater the significance between the results of the
compared CNNs, which culminates in the rejection of the null hypothesis H0 and, consequently, the acceptance of the alternative
hypothesis H1 with a high degree of confidence.

Thus, as evidenced by Table 7, ResNetXt50 has a significantly superior performance when compared to ResNet101v1,
ResNet101v2, and VGG16. On the other hand, the comparison between ResNetXt50 and DenseNet169 did not demonstrate
adequate significance to guarantee any inference of better or worse performance with a satisfactory degree of confidence. When
one compares the performance of VGG16 with ResNet101v1, it is noticed that there is no significance, while the comparison
between VGG16 and ResNet101v2 suggests some significance, where the results presented by VGG16 were superior. Finally,
the hypothesis that made the comparison between the performances of ResNets was not significant.

Table 7: Unadjusted (Friedman) and adjusted (Shaffer and Bergmann) p values for multiple comparisons.

Hypotheses p unadjusted p Shaffer p Bergmann
ResNet101v2 vs. ResNetXt50 7.430983723703081E-7 7.430983723703081E-6 7.430983723703081E-6
ResNet101v2 vs. DenseNet169 1.1648657367238044E-5 6.989194420342827E-5 6.989194420342827E-5
ResNet101v1 vs. ResNetXt50 4.0695201744492504E-4 0.0024417121046695503 0.0024417121046695503

VGG16 vs. ResNetXt50 0.0029794666563330327 0.017876799937998195 0.01191786662533213
ResNet101v1 vs. DenseNet169 0.0029794666563330444 0.017876799937998268 0.01191786662533213

VGG16 vs. DenseNet169 0.01620954140922542 0.06483816563690167 0.03241908281845084
VGG16 vs. ResNet101v2 0.04771488023735128 0.19085952094940511 0.19085952094940511

ResNet101v1 vs. ResNet101v2 0.1572992070502848 0.47189762115085443 0.3145984141005696
ResNetXt50 vs. DenseNet169 0.5716076449533316 1.1432152899066632 1.1432152899066632

VGG16 vs. ResNet101v1 0.5716076449533326 1.1432152899066632 1.1432152899066632

In addition, a non-parametric statistical test of paired comparisons (1 × N) called contrast estimation based on medians was
performed [33], intended to estimate the contrast between the medians of the results, considering all peer-to-peer comparisons
between CNNs. This estimation is a quantitative difference that is especially useful for computing the extent to which one CNN
outperforms the other. The performance of CNNs is reflected by the magnitudes of the differences between them in each domain.

Table 8 synthesizes the results of applying the contrast estimation test on the results related to the accuracy metric in the
testing step (Table 3). Note that comparisons between the same models of CNNs have no value precisely because they are not
valid comparisons. In comparisons between different CNNs, this test demonstrated that the ResNets did not outperform any other
CNNs, and ResNet101v1 outperformed ResNet101v2 by a small margin.

In turn, comparisons involving the performance of VGG16 demonstrated that it surpassed only ResNets, with larger and lower
differences to ResNet101v2 and ResNet101v1, respectively. Among the best results, ResNetXt50 surpassed the performance of
all other CNNs.

In summary, the statistical tests validated many conclusions obtained in the experiments, such as the fact that the ResNetXt50
and DenseNet169 models obtained the best results when compared to the others, and the low generalization performance of the
ResNets. In addition, these tests refuted significance in the following comparisons: ResNet101v1 vs. ResNet101v2; ResNetXt50
vs. DenseNet169; and VGG16 vs. ResNet101v1.

5 CONCLUSION

The present work proposed a methodology for classifying diseases in plants based on the application of DL techniques in
a database of digital images from multiple pathologies referring to different plants. To achieve the proposed objectives, the
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Table 8: Non-parametric statistical test as contrast estimation.
VGG16 ResNet101v1 ResNet101v2 ResNetXt DenseNet169

VGG16 0.000 0.002410 0.01146 -0.008925 -0.007413
ResNet101v1 -0.002410 0.000 0.009048 -0.01134 -0.009823
ResNet101v2 -0.01146 -0.009048 0.000 -0.02038 -0.01887
ResNetXt50 0.008925 0.01134 0.02038 0.000 0.001512

DenseNet169 0.007413 0.009823 0.01887 -0.001512 0.000

images from the XDB database were subjected to preprocessing techniques based on the difference rate and resizing, aiming
to standardize the images that served as input for the training of CNNs. It should also be noted that ten databases of different
dimensions were created, based on the XDB database, to assess the performances of CNNs when submitted to different situations.
The databases involved examples of different classes, taking into account the most representative classes.

After training the models, the evaluation of results took place through the metrics accuracy, f1-score, and AUC. Then, to assess
the performances of the CNNs used in the classification task and generate a ranking of performances, Friedman’s non-parametric
statistical study was performed considering the post-hoc procedures Shaffer and Bergmann.

From the results, ResNetXt50 achieved promising classification results when compared to those obtained by VGG16, ResNet101v1,
and ResNet101v2, in terms of test accuracy and other related metrics, Friedman’s non-parametric statistical test, and contrast es-
timation test. On the other hand, taking into account the Friedman test, the comparison between the performances of ResNetXt50
and DenseNet169 was not significant enough to infer which CNN had the best performance. Differently, the contrast estimation
test showed a small difference between them, revealing the best performance of ResNetXt50.

The use of CNNs proved to be efficient with regard to the task of classifying images of diseased plants, as well as the
configuration selected for training, except for the ResNets which could not obtain efficient results as the other models tested
under the same conditions. Furthermore, it is believed that the increase in the number of epochs could improve the classification
accuracy for these CNNs, although it is still necessary to evaluate the cost-benefit in relation to the computational cost.

In general, although the proposed methodology in this paper is an improvement on the work proposed in [23], the present
work includes more CNNs architectures and databases with different sizes and challenges, with the objectives of validating the
methodology and assessing the distinct scenarios provided through the aforementioned inclusions.

Moreover, the experiments showed that the selected CNNs are able to learn the patterns related to the pathologies present in
the digital images of plants, being useful to classify problems with a varied amount of data and multiple classes in a satisfactory
manner.

To continue this research, the ideas for possible future work are:

• The creation of other databases of plant diseases based on the XDB database with dimensions greater than 64 × 64;

• Change the configuration of CNNs, increasing the number of epochs, to assess the impact on the performance of CNNs,
especially ResNets;

• Use the same methodology in more databases of plants diseases that are still under construction to test the generalization
of the proposed methodology;

• Combine two or more criteria for decision making about the best CNN model;

• Add other non-parametric statistical tests in the performance analysis stage, with the aim of reinforcing the reliability of
the results, as well as add other performance metrics as input for these tests.
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