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Abstract – Choosing a suitable size for signal representations, e.g., frequency spectra, in a given machine learning problem
is not a trivial task. It may strongly affect the performance of the trained models. Many solutions have been proposed to
solve this problem. Most of them rely on designing an optimized input or selecting the most suitable input according to an
exhaustive search. In this work, we used the Kullback-Leibler Divergence and the Kolmogorov-Smirnov Test to measure the
dissimilarity among signal representations belonging to equal and different classes, i.e., we measured the intraclass and interclass
dissimilarities. Moreover, we analyzed how this information relates to the classifier performance. The results suggested that both
the interclass and intraclass dissimilarities were related to the model accuracy since they indicate how easy a model can learn
discriminative information from the input data. The highest ratios between the average interclass and intraclass dissimilarities
were related to the most accurate classifiers. We can use this information to select a suitable input size to train the classification
model. The approach was tested on two data sets related to the fault diagnosis of reciprocating compressors.
Keywords – Deep learning, Kullback-Leibler Divergence, Kolmogorov-Smirnov Test, Input Size Selection.

1. INTRODUCTION

Deep learning techniques have been widely used in signal processing. They are applied on several domains, e.g. speech and
audio recognition [1], fault detection and diagnosis [2, 3], feature extraction on images and videos [3, 4]. Those techniques learn
to represent the input information at different complexity levels along with their intermediate layers. In other words, the first
layers of the network learn local and simpler patterns from the input information, while the following layers use those patterns
to build more complex concepts. Such a hierarchical characterization of the input information may improve the description of
objects for a given task, e.g. objects classification or detection [5].

The deep learning-based models may have their performance enhanced or worsened according to the kind of information
they receive, e.g. time- or frequency-domain signals, and one- or n-dimensional inputs. Choosing the most suitable input
representation for a given problem is not a trivial task. Moreover, this issue also affects other approaches than the deep learning-
based ones, such as traditional machine learning, statistics, among others [6, 7].

Many solutions have been developed, aiming to solve this problem. A large group of solutions focuses on input design. One
example is presented by Khandelwal et al. [8]. They proposed a performance index to measure the optimality of a given input
for fault diagnosis. Their proposal is based on the analysis of LTI systems. Wang-Jian [9] designed input signals for multi UAVs
formation anomaly detection. Furthermore, Heirung and Mesbah [10] provided an overview of the state-of-the-art methods for
input design regarding the active fault diagnosis. They also discussed the primary considerations in the formulation and solution
of input design problems.

Another critical group of solutions uses the input selection. It contains a wide range of techniques, which depend on the
nature of the data. Most of the works found in the literature that chooses a subset of variables that belong to a more extensive
set are strictly related to feature selection. One example is the work of van de Laar and Heskes [11], which performed the input
selection based on an ensemble of neural networks. Regarding time series, Sorjamaa et al. [12] used input selection criteria
such as k-Nearest Neighbors, Mutual Information, and Nonparametric Noise Estimation (NNE) in the long-term prediction of
electricity loads.

In this work, we used the Kullback-Leibler (KL) Divergence and the Kolmogorov-Smirnov (KS) Test as metrics to select a
suitable input size for the fault diagnosis problem. Those inputs are frequency spectra and spectrograms. To be more specific,
we used the ratio between the average interclass and intraclass metric values of those inputs to infer how accurate the trained
classifier would perform. This was a comparative analysis, i.e., we compared ratios obtained from different input sizes and
inferred which size was the most appropriate to train an accurate classification model. This approach was tested on two data sets
related to the fault diagnosis of reciprocating compressors.

According to the results, the highest values of this ratio were related to the most accurate models, while values close to 1
led to poor classification performances. This fact has an explanation. If the ratio is close to one, the interclass and intraclass
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dissimilarities are close to each other. So, we expect more difficulty to train accurate models. On the other hand, the higher
the ratio is, the larger is the interclass dissimilarity concerning the intraclass one. So, we expect more ease to train accurate
classifiers. Those results suggested that we can use the proposed approach to select suitable input sizes for the classification
problem. The main advantage of this approach is not having to train classifiers for each input size to select the most suitable one.
In this way, we save time and computational resources.

The remaining of the paper is organized as follows: Section II presents the Theoretical Background, Section III describes the
Methodology, Section IV shows the results and discussions, and Section V gives our Conclusions.

2. THEORETICAL BACKGROUND

In this section, we present the Kolmogorov-Smirnov Test and Kullback-Leibler Divergence. Those techniques are commonly
used to compare probability distributions. In this work, we use both techniques to measure the dissimilarity of signals represented
by frequency spectra and spectrograms.

2.1 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov Test [13, 14] is a nonparametric statistical test that compares continuous, one-dimensional proba-
bility distributions. One can use the KS Test to investigate whether two samples come or not from statistically identical distribu-
tions (two-sample KS), or whether a sample comes or not from a reference probability distribution (one-sample KS). According
to the null hypothesis, the compared samples come from statistically identical probability distributions. On the other hand, the
rejection of the null hypothesis means that those samples come from different distributions.

Regarding the two-sample KS, the statistical test is the maximum of the absolute value of the difference between two empirical
distribution functions, as presented by Equation (1).

Dn1,n2 = max
t
|F1,n1(t)− F2,n2(t)| (1)

in which F1 and F2 are empirical distribution functions of the first and second samples, respectively. n1 and n1 are the sizes of
the first and second samples, respectively.

For large samples, the null hypothesis is rejected at a given significancy level α, e.g. 5%, if Equations (2) and (3) are true.

Dn1,n2
> c(α)

√
n1 + n2
n1n2

. (2)

c (α) =

√
−1

2
lnα (3)

One example of work relating the KS Test to fault detection and signal processing was developed by Stepanc̆ic̆ et al. [15].
They used the test to detect faults on fuel cell systems based on impedance data.

2.2 Kullback-Leibler Divergence

Also called relative entropy, the Kullback-Leibler Divergence [16, 17] measures how a probability distribution is different
from a second or a reference probability distribution. Such difference, also referred to as divergence, is calculated in terms of a
measure of information, e.g. entropy. It is a measure of surprise, with diverse applications, such as applied statistics and machine
learning. For for two distributions P1 and P2 of a continuous random variable x, the Kullback-Leibler Divergence is defined by
the Equation (4).

DKL(P1(x)||P2(x)) =

∫ ∞
−∞

p1(x) log

(
p1(x)

p2(x)

)
dx (4)

in which p1 and p2 denote the probability densities of P1 and P2, respectively.
One example of work that relates the relative entropy to fault detection and signal processing was developed by Wang et

al. [18]. They used the Kullback-Leibler divergence to detect anomalies on probability density functions. In this study, the
anomalies were human behind walls.

3. Methodology

We developed this work according to the steps presented in Figure 1. At first, we preprocessed the data consisting of time-
domain signals. In this step, we carried out the required transformations and obtained the frequency spectra and spectrograms,
which were used to train the classification models. Also, we applied the KS Test and KL Divergence on the frequency spectra and
spectrograms. Thus, we measured the dissimilarity among signals that belong to equal and different classes. Then, we analyzed
those measures together with the accuracies of the classifiers. The whole process is better described in the following subsections.
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Figure 1: Process developed in this work.

3.1 Data set

The data set consists of vibration signals. Those signals were collected by accelerometers placed on a two-stage reciprocating
compressor available at the Universidad Politécnica Salesiana in Cuenca, Ecuador. We regarded two experimental scenarios. In
the first one, the signals are divided into four classes, as presented in Table 1, which are related to bearing faults. In the second
scenario, the signals are divided into thirteen classes, which are related to bearing and valve faults (multiple faults) presented in
Table 2. In both scenarios, the classes correspond to normal and faulty operation conditions. Each class contains fifteen time-
domain signals, each one being 10 seconds long and collected at a 50 kHz sampling rate. The frequency range of those signals
was up to 15 kHz. The complete description of the experimental setup and signal acquisition process is seen in [19, 20].

Table 1: Classes of signals regarding bearing faults.
Bearing Faults

Fault Code Fault Type
P1 No fault
P2 Inner race crack
P3 Roller element crack
P4 Outer race crack

3.2 Formatting the inputs

The time-domain signals were divided into smaller sections, each one being 0.1 second long. This resulted in 1,500 vibration
signals for each class. In this work, we used two kinds of signal representations: the frequency spectrum and the spectrogram.
The first one is a frequency-domain representation and allows the signal analysis in terms of its frequency components. On the
other hand, the second one is a time-frequency-representation and allows the visualization of the signal frequency components
over time.

The frequency spectra were obtained via the Fast Fourier Transform (FFT) [21]. We assessed the influence of different
frequency resolutions on model accuracy. In this way, we tested frequency spectra with 8, 16, 32, 64, 128, 256, 512, and 1024
frequency bins. Those bins were obtained by cropping and zero-padding the time-domain signals, depending on the frequency
spectrum size concerning the input signals.

On the other hand, the spectrograms were obtained via the Short-Time Fourier Transform (STFT) [21]. They carry more
information concerning the frequency spectra since they show how the frequency components vary over time on a given signal.
However, these representations increase the computational burden of the classification process regarding the scenario in which
the inputs are frequency spectra. In this new scenario we tested 8 different frequency resolutions: 8, 16, 24, 32, 40, 48, 56 and
64. This way, the shapes of the resulting spectrograms were: 8 x 357, 16 x 178, 24 x 118, 32 x 89, 40 x 71, 48 x 59, 56 x 50 and
64 x 44. The window overlap was 12.5%.

3.3 Input dissimilarity with the Kullback-Leibler Divergence and Kolmogorov-Smirnov Test

For each data set, we calculated the KL Divergence and the KS Test between pairs of frequency spectra, and also between
pairs of spectrograms. They were calculated by using Equations (1) and (4), which were presented in Section 2. Those pairs

18



Learning and Nonlinear Models - Journal of the Brazilian Society on Computational Intelligence (SBIC), Vol. 18, Iss. 2, pp. 16-26, 2020

c© Brazilian Computational Intelligence Society

Table 2: Classes of signals regarding multiple faults.
Multi Faults

Fault Code Fault Type
P1 No fault

P2
Bearing inner race crack/

Valve seat wear

P3
Bearing inner race crack/

Corrosion of the valve plate

P4
Bearing inner race crack/
Fracture of the valve plate

P5
Bearing inner race crack/

Spring break

P6
Bearing roller element crack/

Valve seat wear

P7
Bearing roller element crack/
Corrosion of the valve plate

P8
Bearing roller element crack/

Fracture of the valve plate

P9
Bearing roller element crack/

Spring break

P10
Bearing outer race crack/

Valve seat wear

P11
Bearing outer race crack/

Corrosion of the valve plate

P12
Bearing outer race crack/
Fracture of the valve plate

P13
Bearing outer race crack/

Spring break

included data belonging to equal and different classes, but with the same dimension. In this way, we obtained intraclass and
interclass dissimilarity measures for each input shape. Those dissimilarity measures can explain how easy a classification model
learn discriminative information from data. High interclass and low intraclass dissimilarities are desirable to train accurate
classification models.

In this work, we used the ratio between the average interclass and intraclass dissimilarity measures to infer how accurate a
model would perform. This was a comparative analysis. In other words, we compared the ratios obtained from different input
shapes and inferred which input shape was the most appropriate to perform the fault diagnosis. Our hypothesis is that input data
presenting a higher ratio lead to a more accurate classification model. In this sense, if this ratio is close to one, the interclass
and intraclass dissimilarities are close to each other. So, we expect more difficulty to train accurate models. On the other hand,
the higher the ratio is, the larger is the interclass dissimilarity concerning the intraclass one. So, we expect more ease to train
accurate models.

Those ratios were calculated for both KL Divergence and KS Test dissimilarity measures.

3.4 Model

We used the convolutional neural network (CNN) [22] to perform the classification process. We adopted an architecture
with one convolutional layer, one max pooling layer, one flattening layer, one densely connected layer, and one output layer.
The layers are better described in Table 3. Since the objective of this work is to evaluate how the type of input representation
influences on the classifier performance, the choice of the model parameters is not critical for the experiments.

3.5 Experiments

As explained in Subsection 3.2, we divided the dataset into 4 classes regarding the first fault scenario and 13 classes regarding
the second one. Each class in both scenarios had 1,500 signals. Those signals were divided into 10 subsets, which were combined
randomly to form the training and test sets. 80% (1,200 signals or 8 subsets) of the signals were allocated to the training set,
while the remaining 20% (300 signals or 2 subsets) were allocated for the testing set. Each model was trained and tested with a
different combination of subsets.

We aim to assess the influence of different input shapes on the model performance, regarding faults scenarios with different
complexities. In this analysis, we used the Kullback-Leibler Diverenge and the Kolmogorov-Smirnov test, which were calculated
between pairs of frequency spectra or spectrograms. We trained 15 models for each fault and input shape scenario, aiming to
achieve results with statistical relevance. The number of training epochs was 50. The configuration of the computer used to
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Table 3: CNN configuration.
Layers

Convolutional layer with 8 filters
(3 x 3 for spectrograms, 3 x 1 for frequency spectra)

Max pooling layer
(2 x 2 for spectrograms, 2 x 1 for frequency spectra)

Flattening layer
Densely connected layer (32 neurons)

Output layer
(4 neurons - Bearing Faults,
13 neurons - Multi Faults)

train the models was: OS Windows 10 Home, 64 bits, Memory (RAM) 15.9 GB, Processor Intel R© Corte
TM

i7-6500 CPU @
2.50 GHz x 2, AMD Radeon

TM
T5 M330 (No CUDA support). All the scripts were written in Python [23] 3.7, on the Jetbrains

PyCharm [24] Community Edition 2019.2.

4 Results and Discussions

4.1 Frequency Spectra

First, we analyzed the accuracy of those models trained to classify bearing faults. As seen in Table 1, there are four classes
in this scenario. Table 4 lists the average accuracy of the classifiers trained with frequency spectra. The results were arranged
according to the input size, and they are related only to test samples.

Table 4: Average accuracy for different frequency spectrum sizes for bearing faults.
Input Size Accuracy

8 0.4613
16 0.6009
32 0.7142
64 0.8204

128 0.8987
256 0.9542
512 0.9852

1024 0.9983

As seen in Table 4, the classifiers became more accurate as the input size increased, e.g. the accuracy increased by 116.41%
(from 0.4613 to 0.9983) when the input size varied from 8 to 1024. One reason may be the higher amount of information available
when the input size increases. A second reason may be the quality of the information that each input size carries. In other words,
the signals are better represented in the frequency-domain when the frequency spectrum presents a higher resolution. In this way,
the frequency spectra may carry more discriminative information.

We used two dissimilarity metrics to assess the quality of the information provided by different input sizes, and also to
better understand the performance of the classification models. Those metrics were the Kullback-Leibler Divergence and the
Kolmogorov-Smirnov Test. We have calculated the ratio (R) between the average interclass and intraclass dissimilarities, regard-
ing both metrics.

Tables 5 and 6 list the average KL Divergence and KS Test between pairs of classes, respectively. Those results concern the
frequency spectra with size 1024 and bearing faults. To obtain the ratio R, we first calculate the average interclass and intraclass
dissimilarities. Regarding the average intraclass KL Divergence, we calculate the average value of the main diagonal elements
in Table 5. Those elements represent the average KL Divergence between frequency spectra belonging to the same classes, e.g.,
P1 and P1, P2 and P2, etc. On the other hand, we obtain the interclass KL Divergence by calculating the average value of the
remaining table elements, that is, the dissimilarity between different classes, e.g., P1 and P2, P2 and P3, etc. In this way, we
achieved a value of 0.0153 for the average intraclass and 0.0223 for the average interclass KL Divergences. Thus, the ratio R
is 1.4575. Following the same process for the KS Test and using the results presented in Table 6, we obtained a ratio equal to
1.4964.

By repeating this process for all input sizes, we obtain the results presented in Figures 2 and 3. The green bars refer to the
accuracy values listed in Table 4. The blue bars, on the other hand, refer to the ratio R of the KL Divergence (Figure 2) and KS
Test (Figure 3) for different sizes. We observe in those figures that the accuracy increased as the ratio R increased. It occurred
to both KL Divergence and KS Test, suggesting that the ratios between the average interclass and intraclass values of those two
metrics may relate to the ease or difficulty of training the accurate models.
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Table 5: Average KL Divergence regarding each pair of classes individually, for the input size equal to 1024 in the frequency
spectra scenario

Classes P1 P2 P3 P4
P1 0.0156 0.0248 0.0171 0.0195
P2 0.0241 0.0178 0.0262 0.0298
P3 0.0174 0.0271 0.0141 0.0158
P4 0.0197 0.0308 0.0157 0.0137

Table 6: Average KS Test regarding each pair of classes individually, for the input size equal to 1024 in the frequency spectra
scenario.

Classes P1 P2 P3 P4
P1 0.1205 0.1958 0.1382 0.1299
P2 0.1958 0.1032 0.2064 0.2094
P3 0.1382 0.2064 0.1078 0.1115
P4 0.1299 0.2094 0.1115 0.1100

Figure 2: KL Divergence ratio and classifier accuracy for different input shapes regarding bearing faults.

Figure 3: KS Test ratio and classifier accuracy for different input shapes regarding bearing faults.

We can also perform this analysis on the multiple faults data set. This scenario is more complex than the first one since it
presents 13 fault modalities, as seen in Table 2. The inputs are also frequency spectra and their sizes vary from 8 to 16. Table
7 lists the average accuracy of the classifiers trained with multiple faults data. The results were arranged according to the input
size, and they are related only to test samples.

Table 7 shows a trend similar to the one presented in Table 4. In other words, the classifiers became more accurate as the
input size increased. The accuracy increased by 475.16% (from 0.1236 to 0.7109) when the input size varied from 8 to 1024. On
the other hand, the best accuracy value was smaller than the one achieved by those models trained with bearing faults data. We
repeated the analysis performed with bearing faults to better understand the performance of classifiers on this new data set. The
results are presented in Figures 4 and 5. The green bars refer to the accuracy values listed in Table 7. The blue bars, on the other
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Table 7: Average accuracy for different frequency spectrum sizes for multiple faults.
Input Size Accuracy

8 0.1236
16 0.1537
32 0.2237
64 0.3234

128 0.4373
256 0.5724
512 0.6948

1024 0.7109

hand, refer to the ratio R of the KL Divergence (Figure 4) and KS Test (Figure 5) for different sizes.

Figure 4: KL Divergence ratio and classifier accuracy for different input shapes regarding multiple faults.

Figure 5: KS Test ratio and classifier accuracy for different input shapes regarding multiple faults.

We observe in those figures that the accuracy increased as the ratio R increased, similar to what occurred to the bearing faults.
It also happened to both KL Divergence and KS Test, reinforcing the hypothesis that those ratios between the average interclass
and intraclass metric values may relate to the ease or difficulty of training the accurate models. Besides, the ratios in this scenario
are lower than the ones of bearing faults, which may explain the lower accuracy values for multiple faults. Indeed, when the ratio
is close to 1, the average dissimilarity of spectra belonging to different classes is close to the one of same classes. It makes the
learning process of discriminative patterns more difficult, demanding the use of more powerful classification models to achieve
a satisfactory performance level.

4.2 Spectrograms

The first analysis in this subsection regards the bearing faults, which are divided into four classes. This time the input data
are spectrograms. Unlike the frequency spectra, their information is organized in the form of two-dimensional matrices. As
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previously mentioned, they show how the frequency components of the signal vary over time. Table 8 lists the average accuracy
of classifiers trained with bearing faults spectrograms. The results were arranged according to the input size, and they are related
only to test samples.

Table 8: Average accuracy for different spectrogram sizes for bearing faults.
Input Size Accuracy

8 x 357 0.9980
16 x 178 0.9994
24 x 118 1
32 x 89 1
40 x 71 1
48 x 59 1
56 x 50 1
64 x 44 1

The trend seen in Table 8 is similar to the one observed in Tables 4 and 7. In other words, the accuracy improved as the
frequency resolution increased. However, in Table 8 the classifiers achieved a 100% accuracy with lower frequency resolutions. It
probably occurred because of the complementary time information provided by spectrograms. We also analyzed the information
present on the spectrograms by using the ratio between the average interclass and intraclass dissimilarity measures, i.e., the KL
Divergence, and KS Test. Those results are seen in Figures 6 and 7.

Figure 6: KL Divergence ratio and classifier accuracy for different spectrogram shapes regarding bearing faults.

Figure 7: KS Test ratio and classifier accuracy for different spectrogram shapes regarding bearing faults.

Table 8 and Figures 6 and 7 show that the model accuracies reached their maximum value for most input shapes. The
exceptions were the input shapes 8 x 357 and 16 x 178, which presented accuracy values equal to 0.9980 and 0.9994. Still, these
two shapes were the ones related to the lowest R values. Regarding the remaining shapes, the analysis became unnecessary, since
a further increase of R above a given value, e.g., 1.75 for the KS Test, did not result in accuracy variations.
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We also performed this analysis on the multiple faults data set, i.e., the one with 13 fault modalities. The inputs are also
spectrograms whose input shapes varied from 8 x 357 to 64 x 44. Table 9 lists the average accuracy of the classifiers trained with
those spectrograms. The results were arranged according to the input size, and they are related only to test samples.

Table 9: Average accuracy for different spectrogram sizes for multiple faults.
Input Size Accuracy

8 x 357 0.6171
16 x 178 0.7744
24 x 118 0.8095
32 x 89 0.8567
40 x 71 0.8660
48 x 59 0.8837
56 x 50 0.8916
64 x 44 0.9127

In this scenario, the accuracy values improved as the frequency resolution increased, just as in the experiments of the past.
Figures 8 and 9 show how the ratio between the interclass and intraclass dissimilarity measures varies over time. We also observe
that both the ratio R and the classifier accuracy increased as the input shape varied from 8 x 357 to 64 x 44. However, the ratio
increased at a rate much smaller than the accuracy one. It probably occurred due to the higher number of classes that the multiple
faults data set presents.

Figure 8: KL Divergence ratio and classifier accuracy for different spectrogram shapes regarding multiple faults.

Figure 9: KS Test ratio and classifier accuracy for different spectrogram shapes regarding multiple faults.

The results obtained by those experiments led us to some considerations. The first one regards the performance of the
classifiers on each data set. The models trained to classify bearing faults were the ones that presented the highest accuracy
values. This result corroborates our hypothesis since the frequency spectra and spectrograms related to bearing faults presented
the highest ratios between the interclass and intraclass dissimilarity measures.
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The second consideration concerns the ratio and classifier performance for different input sizes. Although the observed
behaviors were more accentuated on frequency spectra than on spectrograms, there was a global trend in which the accuracy
tended to improve as the ratio between the interclass and intraclass dissimilarity measures increased. We observed such a trend
on both dissimilarity metrics analyzed, i.e., the Kullback-Leibler Divergence, and the Kolmogorov-Smirnov Test. This was a
piece of relevant information since it can help to save time when we need to choose the most suitable input format for a given
classification problem. Many works in the literature deal with this issue by training models on different input shapes and choosing
the one that led to the highest accuracy values. Such a process can be quite time consuming, and also demand high computational
resources. On the other hand, the ratio between the interclass and intraclass divergence measures could help in this choice without
training the classifiers or performing a grid search. We could make this choice by comparing the proposed ratios obtained from
data with different input shapes.

One example is presented in Figures 2 and 3. The ratio R obtained from the input size 8 was very close to 1. It means
that the intraclass dissimilarities are almost equal to the interclass ones. It suggests that the trained model tends to face more
difficulties to learn discriminative patterns due to the poor data separability. Then, the accuracy levels of the trained model tend
to be unsatisfactory. On the other, the input size of 1024 led to a ratio close to 1.5. It means that the interclass dissimilarities are
higher concerning the intraclass ones, suggesting that the model learning process will be easier and more effective. The same
logic can be applied to the remaining scenarios.

5. CONCLUSIONS

This work proposed to use dissimilarity metrics to assess the information contained on different signal representations. We
also analyzed how those metrics relate to the classifier accuracy. The signal representations were spectrograms and frequency
spectra, and the metrics were the Kullback-Leibler Divergence and the Kolmogorov-Smirnov Test. We used the ratio between the
average interclass and intraclass dissimilarity measures to choose the input size that possibly lead to the most accurate classifiers.
This was a comparative analysis. In other words, we needed to calculate the ratio for different input sizes. Then, we compared
the resulting values to choose the most suitable size.

We performed the analysis on two data sets. They consisted of vibration signals collected by an accelerometer placed on
a reciprocating compressor. The first data set had four classes and regarded bearing faults. The second one had 13 classes
and regarded multiple faults, i.e. bearing and valve faults. The results achieved on both data sets suggested that the ratios
calculated were related to the accuracy of the trained classifiers. It occurred for the KL Divergence and KS test, and also for
inputs represented by frequency spectra and spectrograms. One example was the scenario with bearing faults data represented
by frequency spectra. The accuracy increased from 0.4613 to 0.9983 when the input size varied from 8 to 1024. Also, the ratio
varied from 1 to about 1.5 for the KS Test, meaning an improvement in data separability, which could explain the accuracy raise.

The ratio between the interclass and intraclass dissimilarity measures can aid the choice of the most suitable input shape for
a given problem. We make this choice without training the classifiers or performing a grid search, but only by comparing the
proposed ratio obtained from data with different input shapes. In this way, we save time and computational resources.

Regarding future works, we intend to extend this analysis to time-domain signals and a more significant number of data sets,
also optimizing other parameters of the deep learning-based model. The new data sets are related to different nature signals, e.g.
acoustic and electrical signals, and different nature faults, e.g. gearboxes and other mechanical devices. This way, we aim to
verify the generalization capability of this kind of analysis.
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