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Abstract – Pneumonia is one of the most common medical problems in clinical practice and is the leading fatal infectious dis-
ease worldwide. According to the World Health Organization, pneumonia kills about 2 million children under the age of 5 and is
constantly estimated to be the leading cause of infant mortality, killing more children than AIDS, malaria, and measles combined.
A key element in the diagnosis is radiographic data, as chest x-rays are routinely obtained as a standard of care and can aid to
differentiate the types of pneumonia. However, a rapid radiological interpretation of images is not always available, particularly
in places with few resources, where childhood pneumonia has the highest incidence and mortality rates. As an alternative, the
application of deep learning techniques for the classification of medical images has grown considerably in recent years. This
study presents five implementations of convolutional neural networks (CNNs): ResNet50, VGG-16, InceptionV3, InceptionRes-
NetV2, and ResNeXt50. To support the diagnosis of the disease, these CNNs were applied to solve the classification problem
of medical radiographs from people with pneumonia. InceptionResNetV2 obtained the best recall and precision results for the
Normal and Pneumonia classes, 93.95% and 97.52% respectively. ResNeXt50 achieved the best precision and f1-score results
for the Normal class (94.62% and 94.25% respectively) and the recall and f1-score results for the Pneumonia class (97.80% and
97.65%, respectively).

Keywords – Deep Learning, Pattern Recognition, Convolutional Neural Networks, Pneumonia.

1. INTRODUCTION

Object recognition in images is a simple activity for humans and is becoming increasingly easy for computers due to advances
in computer vision studies using deep learning neural networks. Deep learning is a sub-area of machine learning, which employs
algorithms to process data, drawing on the processing carried out by the human brain, using a set of connected neurons that are
arranged in layers such that each one processes the information and passes the obtained result from a given input to the next
layer [1].

These algorithms, especially the convolution-based ones, have made great strides since 2012 and have been used in a variety
of classification problems involving general images, even medical images. The application of deep learning techniques for
medical image classification has grown considerably in recent years. Many studies addressed this issue, such as performing
image classification to aid in the early diagnosis of tuberculosis, and classifying lesions by means of chest radiography [2].
Besides, some works also applied deep learning techniques for classifying x-ray images of people with pneumonia and other
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diseases [3, 4]. Specifically, pneumonia is a form of acute respiratory infection that affects the lungs. These respiratory organs
are made up of small sacs called alveoli, which fill with air when a healthy person breathes. When an individual has pneumonia,
the alveoli become full of pus and fluid, which makes breathing painful and limits oxygen intake [5].

This research presents five implementations of convolutional neural networks (CNNs): ResNet50, VGG-16, InceptionV3,
ResNeXt50, and InceptionResNetV2. They have different paradigms, especially in relation to their architecture, for the extraction
of image characteristics. Therefore, they are feasible choices for comparative studies in this area. These CNNs are applied to
solve the classification problem of x-ray medical image from people with pneumonia to aid the disease diagnosis. The goal
of this work is to make a comparative study between the implementations, employing a regularization-based methodology (via
Dropout and Data Augmentation) and a dynamic learning rate during the training phase. Afterwards, the best performance in the
image classification is evaluated. This paper is structured as follows. Section 2 presents the motivation of this research. Section
3 highlights the related works. Section 4 covers the concept of CNN, its structure and arrangement of layers. In addition, section
4 also encompasses the architectures that were used. Section 5 comprises the methodology applied in this work, as well as the
database that was used. Section 6 discusses the results from the implementations of the five architectures. Finally, section 7
includes the final considerations and possible future works to be developed from this study.

2 MOTIVATION

According to the World Health Organization (WHO), pneumonia kills about 2 million children under the age of 5 each year
and is constantly considered as the leading cause of child mortality, killing more children than AIDS, malaria, and measles
combined [5].

The WHO reports that almost all cases of children with pneumonia occur in developing countries, particularly in Southeast
Asia and Africa. Bacterial and viral pathogens are the two main causes of pneumonia, but they require very different forms of
management. Bacterial pneumonia requires urgent referral for immediate antibiotic treatment, while viral pneumonia is treated
with caution. Thus, accurate and timely diagnosis is indispensable. A key element in the diagnosis is radiographic data, as chest
radiographs are routinely obtained as a standard of care and can aid differentiate between types of pneumonia [3]. However,
rapid radiological interpretation of images is not always available, particularly in places with minor resources, where childhood
pneumonia has the highest incidence and mortality rates.

The process of interpreting agents (brain tumors or lung anomalies, for example) is a complex activity, so it is necessary to use
image processing techniques, often combined with machine learning techniques, to identify them [6]. The analysis and diagnosis
of chest radiographs play a very critical role due to their availability and accessibility, as a specialist radiologist is required to
interpret the results of a medical exam.

A computer-assisted sorting system would mitigate these issues by providing the initial interpretation of Chest X-Ray (CXR)
to extract a normal/infected image classification. The Computer-Aided Diagnosis (CAD) concept for chest radiographs has been
around for fifty years. Traditionally, CAD systems use the machine learning technique to perform data analysis tasks [2].

3 RELATED WORK

In [7], an advanced system for the classification of pneumonia and tuberculosis through x-ray images was developed, namely
Artificial Intelligence Aided Screening (AIAS). It was proposed an algorithm based on the Inception architecture, with 211
layers and 45 million trainable parameters. It was used four different databases, which are: ChestXray14, OCT, and Chest X-Ray
from Mendeley Data, M-SC-Xray, and Belarus, respectively. The metrics for evaluating the results were area under the curve
(AUC), Sensitivity or true positive rate (TPR), and Specificity. It was applied the transfer learning paradigm in the training stage,
generating a pre-trained model from the ChestXray-14 database, seeking to make the model as general as possible. In addition,
data augmentation was applied to generate new images, applying changes in scale, rotation, translation, and so on. An AIAS
system was formulated as a multi-label classification problem, in which each class is independent and not mutually exclusive,
i.e., a single x-ray image can contain the pathological characteristics of Tuberculosis and Pneumonia at the same time. The
authors demonstrated the results according to the metrics and compared them with other related works. A limitation of this work
is that the model was trained using frontal images of the chest, which yielded the algorithm’s inability to accurately diagnose
radiographs with lateral views.

In [8], it was developed a deep learning architecture based on ResNet (with 51 layers) that used dilated convolution to detect
childhood pneumonia. This extended convolution was employed to ensure that the original resolution of the incoming network
remained, thus decreasing the loss of resolution. Specifically, based on an understanding about the nature of the pneumonia
image classification task, the method used the residual structure to overcome the problems of overfitting and degradation of the
depth model. In addition, to overcome the problem of model training difficulty due to insufficient data, model parameters learned
in large-scale data sets were used, initializing the model through transfer learning using pre-trained weights from the database.
This method was evaluated to extract texture characteristics associated with pneumonia and to identify the performance of the
image areas that best indicate pneumonia. A comparative analysis between the proposed architecture and VGG16, DenseNet121,
Xception, and InceptionV3, was carried out. The experimental results on the test data showed that the proposed architecture
achieved recall rate as 96.7%, accuracy as 90.5%, AUC as 95.3% and f1-score as 92.7%, being surpassed in the precision metric
by InceptionV3 (89.1% against 91.6%). Therefore, it performed better than classic architectures. Compared with the prior
state-of-the-art methods, this approach can effectively solve the problem of low image resolution and partial occlusion of the
inflammatory area in chest x-ray images.
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In [9], it was proposed a trained CNN model from scratch to classify and detect the presence of pneumonia from a collection
of chest x-ray samples. The authors pointed out that to avoid overfitting and make the model generalizable, data augmentation
was applied. This model consists of two parts, with a total of 12 layers: the feature extractor and the classifier. The validation
of the model was carried out through the application of the algorithm in databases of different resolutions, with accuracy as the
standard metric. It was performed 10 simulations. The model obtained an average accuracy higher than 94% in training and
93% in validation. The authors emphasized that in their study they built the model from scratch, in contrast to other methods that
depend heavily on the transfer learning approach.

Table1 synthesizes the correlation between the literature works and the proposed study. It is important to highlight that all
works applied data augmentation techniques.

Table 1: Comparison between proposed and related works.

Work Type of nets Dataset Metrics Optimizer Problem type

7.
Own implementation
based on Inception

with 211 layers.

ChestXray14,
OCT and Chest X-Ray

(Mendeley),
M-SC-Xray e Belarus.

AUC, ROC, sensitivity
and specificity. Nesterov.

Multiclass classification and
multi-label.

8.

Own implementation
based on ResNet

51 layers with pre trained
weights.

OCT and
Chest X-Ray (Mendeley)

Confusion Matrix, recall,
f1-score, precision,

Accuracy, ROC e AUC.
Adam

Binary
classification.

9. Own implementation.
OCT and

Chest X-Ray (Mendeley)

Arithmetic mean of the accuracy
of the network application with

datasets of 5 different resolutions.
Not specified.

Binary
classification.

Proposed work

Networks without pre-training:
VGG-16,

InceptionResNetV2, ResNeXt50
InceptionV3 and ResNet50.

OCT and
Chest X-Ray (Mendeley)

Accuracy, recall,
precision, Confusion Matrix

and f1-score.
Adam.

Binary
classification.

4 CONVOLUTION NEURAL NETWORKS

CNN are biologically inspired architectures capable of being trained and learning/generalizing invariant representations of
scale, translation, rotation, and related transformations [10, 11]. CNNs are one of the algorithms in the area known as deep
learning and are designed for multi-dimensional data, making them feasible candidates for solving image recognition problems
[12]. Similar to traditional computer vision processes, a CNN is able to apply filters to unstructured data while maintaining the
neighborhood relationship between image pixels throughout network processing. Figure 1 demonstrates the structure of a CNN.

Input Feature extraction Classification

Convolution ConvolutionConvolutionPooling Pooling Fully Connected

Pneumonia
Normal

Figure 1: Structure of a CNN.

CNNs have been used by the scientific community in medical imaging because of their excellent performance in computer
vision. Usually, three types of layers are used to build a CNN: convolutional, pooling, and fully connected layers [13].

Convolutional layers apply a number of filters over the image to obtain a series of feature maps, one for each filter. In turn,
the grouping layers summarizes these feature maps highlighting the most relevant features. The classification task is performed
by the fully connected layer [13].

The main layer of these networks is the convolution layer, and its function is to apply masks to the input images, based on a
neighborhood of pixels. The output in this operation is the convolution filters (arrays) that store the weights of the connections
between neurons [14, 15]. Convolution is represented by a linear operator between two functions that produces a third function.
The latter represents the overlapping areas of the masks that are applied to the image. The distinction of data patterns with
this operation is given by local receptive fields (small spatial portions of pixels), which are represented by structures of locally
connected neurons [16].

The sharing weights on the convolution layer ensures that filters are applied at different positions on the image, significantly
decreasing the number of data to be learned [17]. Activation is a very important structure in the convolution layer, making a fit
between a set of neurons, with an activation function over a convolution. This produces feature maps that store the information
learned by the filters [15].
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Another layer that is also crucial in CNNs is the pooling layer. It reduces the dimensionality of feature maps by decreasing
width and height. The pooling operation enables a spatial invariance. Feature pooling in most convolution architectures employs
a Max pooling function, determining the maximum value of a group in a given neighborhood [14, 18].

The next layers of CNNs play the regression role of activations. In a given network, after the grouping layer, at least one fully
connected (FC) layer is required, serving to create decision paths from the filters obtained in the previous layer [19]. The last layer
of CNNs is also fully connected and can classify the data. In this situation, an activation function determines the identification
of the outputs in classes. The most commonly used activation is the Softmax function for multi-class problems and Sigmoid for
binary problems. Softmax determines the probability that an example belongs to a class according to its occurrence [15].

The training of a CNN is performed, in most cases, through the backpropagation algorithm, which adjusts the neuron weights
by propagating and correcting errors related to data classification, supported by the optimization provided by the gradient de-
scent [20]. CNN architectures are designed to fit a range of images and classes, providing more robust pattern recognition. Many
studies investigate the size of these architectures and their effectiveness. In this sense, the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) assesses identification and classification approaches that apply deep neural networks. One of its
motivations is to promote architectures that make great progress [14]. In this study, five of these widely used CNN architectures
are considered [2, 4]: ResNet50, VGG-16, InceptionV3, ResNeXt50, and InceptionResNetV2.

4.1 VGG-16

VGG-16 is a CNN model proposed by K. Simonyan and A. Zisserman [18]. It was one of the famous models submitted to
ILSVRC-2014. It has improved AlexNet by replacing large convolutional filters (11 and 5 in the first and second convolutional
layers, respectively) with multiple 3x3 size filters one after the other.

The architecture of the VGG-16 is shown in Figure 2. The input to the first convolution layer has the default size of 224x224,
accepting other sizes. The image is passed through a stack of convolutional layers, where the filters were used with a very small
3x3 receptive field. Spatial pooling is performed by five layers considering a maximum function. This grouping is performed in
a 2x2 pixel window [18].

Three FC layers follow a stack of convolutional layers (which have a different depth in different architectures): the first two
have 4096 neurons each, the third performs the classification. In the final layer the Softmax function is applied. All hidden layers
encompass the ReLU nonlinearity.

Convolution + Relu

Max pooling

Fully Connected + Relu

Softmax

75x75x3

75x75x64

37x37x128

18x18x256

9x9x512

4x4x512

2x2x512

1x1x4096

1x1x10000

Figure 2: Architecture of the VGG-16.

4.2 ResNet50

ResNet or residual network is a classic CNN model used as a backbone for many computer vision tasks. This model was the
winner of the 2015 ImageNet challenge. ResNet50 is a 50-layer residual network, but advances in its architecture allow one to
train extremely deep neural networks with more than 150 layers. The ResNet50 architecture has two main features:

• “Identity shortcut connections”: A strategy of “shortcuts” or “hop connections” that skip pairs of convolutional layer
groups. They are also called gated units or gated recurrent units, although they do not recur in the traditional sense of
recurrent neural network models;

• Heavy focus on batch normalization.

In a simple manner, the idea of shortcuts in ResNet50 is to prevent the very deep network from dying out by vanishing
gradients through stacking identity mappings. Thus, as shown in Figure 3, ResNet50 uses at a given point a signal which is the
sum of the signal produced by the two previous convolutional layers plus the signal transmitted directly from the point prior to
these layers, by joining a processed signal with a signal from an earlier step [21].

The basic architecture of any ResNet is described in Figure 4. A zero padding block of (3,3) is applied to the input. In Stage
1, 2D Convolution has 64 shape filters (7,7) and uses a stride of (2,2). BatchNorm is applied to the input channel axis. Max
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Relu

Relu

x

x

Identity

F(x)

F(x) + x

Weight layer

Weight layer

Figure 3: Residual Block.

Average pooling 2D

Flatten

Fully Connected

Identity Block 

Convolution Block

Batch Norm

Convolution

Max Pooling

ReLu

Input
Output

Zero padding

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

x3x2 x5 x2

Figure 4: Architecture of the ResNet.

Pooling uses one window (3,3) and one pass (2,2). In Stage 2, convolutional block uses three sets of filters. The second identity
block applies three sets of filters. In Stage 3, convolutional block employs three sets of filters. The third identity block uses three
sets of filters. In Stage 4, the convolutional block uses three sets of filters. The fifth identity block includes three sets of filters.
In Stage 5, convolutional block uses three sets of filters. The second identity block comprises three sets of filters. 2D Average
Pooling uses a shape window (2,2). Flatten has no hyperparameter, and the FC layer reduces its input to the number of classes
using a Softmax activation [21, 22].

4.3 InceptionV3

The GoogLeNet Network won the ILSVRC in 2014 [23]. Its main contribution was the development of an Inception module
that drastically reduced the number of parameters in the network to 4 million, compared to the 60 million from AlexNet. The
main purpose of the Inception module is to act as a feature extractor on many levels, computing 1x1, 3x3, and 5x5 convolutions
within the same network module, as shown in Figure 5.

1x1 Convolution

Convolution 3x3 Convolution 5x5 Convolution 1x1

Convolution 1x1 Convolution 1x1 Max-Pooling 3x3

Previous Layer

Concatenated Filters

Figure 5: Inception Module.

InceptionV3 is a CNN model for addressing the image classification problem encountered in the ImageNet dataset. This
network reduced the number of parameters, allowing a superior computational performance compared to VGG networks [23,
24]. As shown in Figure 6, the model is composed of symmetrical and asymmetrical components, including convolutions,
Average Pooling (AvgPool), Max Pooling (MaxPool), Concatenations (Concat), Droupout, and fully connected layers. Batch
normalization is used extensively throughout the model and applied to activation inputs. Classification is performed on the last
layer using Softmax [25].
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Convolution

Fully Connected

Figure 6: Architecture of the InceptionV3.

4.4 Inception-ResNetV2

The emergence of Inception-ResNet was due to the promising benefits this combination could bring. Inception-ResNet is
basically the replacement of the concatenation of filters used in Inception by residual connections, as highlighted in Figure 7.

As Inception networks tend to be very deep, it is natural to replace the concatenation stage of this architecture with residual
connections. This allows Inception to gather all the benefits from the residual approach, maintaining its computational efficiency
[26].

Activation 

scaling

Inception

Relu activation

Relu activation

F(z)

F(z) + z

z

Figure 7: Inception-ResNet Module.

Inception-ResNet-v2 is a more expensive version of Inception with improved recognition performance.

4.5 ResNetXt

ResNetXt obtained the second place in the ILSVRC 2016 classification challenge [27]. In its architecture, the strategy of
repeating layers and the use of residual blocks are employed, as well as the adoption of a module that explores the strategy of
division, transformation, and merging. The main highlight of this network is the concept of cardinalities, which is the size of the
module to carry out the transformations. The experiments carried out in [27] determine that increasing the depth and width of
the network are less efficient than the increase in cardinality, to obtain a greater accuracy.

In Figure 8, it is possible to observe the transformation module. One of the highlights is the use of the same topology in
the paths, which allows one to identify a greater number of transformations without the need to specialize the architecture. The
cardinality value in the module is 32, that is, it has 32 equal paths.

5 METHODOLOGY

The programming language used for the implementation of CNN architectures was Python, along with Keras and TensorFlow
libraries. Keras is a library that provides highly powerful and abstract building blocks for establishing deep learning networks
[28, 29]. TensorFlow is a machine learning system that operates on a large scale and in heterogeneous environments [30].

The infrastructure used to carry out the simulations was Google Colab (Collaboratory), which offers 12GB of RAM and a
Tesla K80 GPU. It provides pre-configured Python 2 and 3 runtimes with essential machine learning and artificial intelligence
libraries, such as TensorFlow, Matplotlib, and Keras [31, 32].

Before addressing the experimental results, an analysis on the database, confusion matrix, data augmentation, and how the
parameters for the tests were defined is carried out. For a more precise analysis, ten simulations were performed for each network,
with the goal of obtaining an average behavior of each architecture.
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256, 1X1, 4

4, 3X3, 4

4, 1X1, 256

256, 1X1, 4

4, 3X3, 4

4, 1X1, 256

256, 1X1, 4

4, 3X3, 4

4, 1X1, 256

Path: 32

Figure 8: ResNeXt Module.

5.1 Database

For this research, a database with x-ray images of the chest from patients with different types of pneumonia was used, such
as the examples in Figure 9 [3]. There are three classes: normal, viral pneumonia, and bacterial pneumonia. The images
were collected and tagged from a total of 5,856 x-ray images from children’s chest, including 4,273 categorized as representing
pneumonia (2,779 bacterial and 1,494 viral) and 1,583 normal [3].

Normal Bacterial Pneumonia Viral Pneumonia

Figure 9: Examples of chest x-rays from patients.

Figure 9 shows some examples of images present in the database. A normal chest x-ray (left) shows clean lungs with no
abnormal areas of opacification in the image. Bacterial pneumonia (center) usually shows focal lobar consolidation, for instance,
in the right upper lobe (white arrows), while viral pneumonia (right) manifests with a more diffuse “interstitial” pattern in both
lungs [3].

However, only two classes (normal and pneumonia) are considered in this paper. The division was as follows: 4,273 x-ray
images from patients with pneumonia and 1,583 images from patients in normal conditions.

5.2 Data Augmentation

Data Augmentation is a manner to reduce overfitting in deep neural networks. This technique creates many synthetic examples
of the same image, allowing better learning, which is offered with the artificial increase of information [33]. During the Data
Augmentation process, each image goes through a series of transformations to generate new images, such as rotation, translation,
and scale. It makes modifications to the images at each iteration during the training to make the networks not know the training
data completely, so that the networks do not lose their ability to generalize, becoming specialist only in the training data [24].
Table 2 describes the data augmentation parameters that were used.

Table 2: Data augmentation parameters.

Transformation Value
epsilon for ZCA whitening 1e-06

width shift range 0.1
height shift range 0.1

fill mode nearest
horizontal flip True

5.3 Testing Parameters

The database, with 5,856 images, was divided into training data (4,684 images) and test data (1,172 images). Some of
them have different resolutions, which can be up to 1917x1432 pixels. It was necessary to standardize them so that they could
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pass through the network, thus a standard resolution of 75x75 pixels was assumed. Some parameters used in the tests for all
architectures were:

• Output layer activation function: Sigmoid;

• Batch Size (batch): 16;

• Activation function in hidden layers: ReLU ( Rectified Linear Units);

• Optimizer: Adam;

• Number of epoch: 200;

• Dropout: 0.2;

• Learning rate: The initial learning rate is: 1x10−3, multiplied by lower rates throughout the epoch, starting from epoch 81:
1x 10−1/epoch 121: 1x 10−2/epoch 161: 1x 10−3/epoch 181: 0.5x 10−3;

• Cost Function: binary cross-entropy.

5.4 Evaluation Metrics

Some evaluation metrics were applied to improve the interpretation of the results, as synthesized in the following.

5.4.1 Confusion Matrix

A confusion matrix compares the model predictions with the true patterns. The main diagonal of the matrix represents classes
that were correctly predicted (True Positive - TP and True Negative - TN), while elements of the secondary diagonal represent
examples that were wrongly classified (False Positive - FP and False Negative - FN) [24, 34]. From the confusion matrix, it is
possible to calculate the metrics to assess whether or not the algorithm achieved feasible results. Table 3 shows an example of
confusion matrix in the context of the problem addressed in this paper.

Table 3: Example of a confusion matrix.

Normal Pneumonia
Normal 10 (TP) 5 (FP)

Pneumonia 4 (FN) 6 (TN)

5.4.2 Precision

Precision is intuitively the classifier’s ability to not label a negative sample as positive [34], where TP is the number of true
positives and FP is the number of false positives.

precision =
TP

TP + FP
. (1)

5.4.3 Recall

Recall is intuitively the classifier’s ability to find all positive samples [34], where FN is the number of false negatives.

recall =
TP

TP + FN
. (2)

5.4.4 F1-score

The f1-score can be interpreted as a weighted average of precision and recall, in which a f1-score assumes its best value as 1 and
the worst score as 0. The relative contribution of precision and recall to the f1-score is equal [34].

f1-score = 2 ∗ precision ∗ recall
precision+ recall

. (3)
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6. RESULTS AND DISCUSSION

Table 4 shows the precision, recall, and f1-score for each architecture, considering the average of ten simulations for each
CNN. Based on these results, one can see that the InceptionResNetV2 obtained the best recall for the Normal class and precision
for the Pneumonia class (93.95% and 97.52%, respectively). Thus, this CNN has a greater capacity to find positive examples
and high accuracy when classifying x-ray images of patients with pneumonia. The ResNeXt50 was the architecture that obtained
the best result in terms of precision and f1-score for the Normal class (94.62% and 94.25%, respectively) and in terms of recall
and f1-score for the Pneumonia class (97.80% and 97.65%, respectively), that is, it has greater ability to find negative samples
in addition to being more accurate when classifying x-ray images of patients in normal conditions. For both classes, ResNeXt50
obtained the best f1-score results, i.e., it is the most balanced architecture to acquire the best possible accuracy.

Table 4: Average and standard deviation for precision, recall, and f1-score from ten simulations.

Architecture Class precision recall f1-score

ResNet50 Normal 94.43% ±0.0102 93.87% ±0.0068 94.14% ±0.0062
Pneumonia 97.49% ±0.0027 97.72% ±0.0044 97.60% ±0.0026

InceptionV3 Normal 93.20% ±0.0048 93.34% ±0.0114 93.27% ±0.0063
Pneumonia 97.26% ±0.0045 97.20% ±0.0021 97.23% ±0.0024

VGG-16 Normal 82.80% ±0.0154 80.11% ±0.0103 81.42% ±0.0062
Pneumonia 91.94% ±0.0034 93.15% ±0.0078 92.54% ±0.0033

InceptionResNetV2 Normal 93.86% ±0.0097 93.95% ±0.0075 93.90% ±0.0056
Pneumonia 97.52% ±0.0030 97.47% ±0.0042 97.49% ±0.0023

ResNeXt50 Normal 94.62% ±0.0083 93.90% ±0.0084 94.25% ±0.0056
Pneumonia 97.50% ±0.0033 97.80% ±0.0036 97.65% ±0.0022

Figure 10 demonstrates the accuracy of each architecture during the training (10a) and test (10b) stages. In general, it is
possible to perceive a certain balance between the architectures, except for VGG-16, which is below the others in terms of
performance. ResNeXt50, InceptionResNetV2, InceptionV3, and ResNet50 converged quickly, obtaining an accuracy greater
than 90% in a few epochs (before epoch 25) and VGG-16 reached this percentage only after the epoch 75, because it is an
architecture that has many trainable parameters that need to be adjusted.
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Figure 10: Accuracy in the training and test from the average of ten simulations for each architecture.

Regarding the loss, as shown in Figure 11, it is interesting to notice that in both the training (11a) and test (11b) stages,
the loss functions start with values around 0.6, which are gradually minimized. Except for VGG-16, the architectures have
similar behaviors in training, but there is some divergence during the testing phase. The high peaks in the average behavior of
architectures are due to the learning rate that is optimized and decreased over time. Besides, one can infer that the loss function
for VGG-16 has a distinct behavior, as the curve has premature convergence, which corroborates the relative poor performance
in terms of classification against the other CNNs.

Figure 12 shows the confusion matrix for each architecture, where the percentages of TP were: InceptionResNetV2, 92.66%;
InceptionV3, 95.01%; ResNet50, 94.13%; ResNeXt50, 92.96%; and VGG-16, 80.05%. The percentages of TN were: Inception-
ResNetV2, 97.71%; InceptionV3, 97.11%; ResNet50, 98.31%; ResNeXt50, 98.07%; and VGG-16, 92.17%. Thus, one can see
that the InceptionV3 and ResNet50 models are recommended for classifying images from the Normal and Pneumonia classes,
respectively.

Regarding the errors, it is possible to observe the percentages of FP as: InceptionResNetV2, 7.33%; InceptionV3, 4.98%;
ResNet50, 5.86%; ResNeXt50, 7.03%; and VGG-16, 19.94%. The percentages of FN were: InceptionResNetV2, 2.28%; Incep-
tionV3, 2.88%; ResNet50, 1.68%; ResNeXt50, 1.92%; and VGG-16, 7.82%. Thereby, the InceptionV3 model minimized the
False Positive errors, while the ResNet50 model reduced the False Negative errors.
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Figure 11: Loss from the average of ten simulations in the training and test for each architecture.

7. FINAL CONSIDERATIONS AND FUTURE WORK

The five architectures used in this research obtained good results, with accuracy above 90%, with InceptionResNetV2 and
ResNeXt50 achieving superior results in terms of precision, recall, and f1-score. ResNeXt50 and ResNet50 were able to reduce
False Negative errors and maximize True Positive and True Negative hits.

From this research, one can observe that the architectures that apply optimization mechanisms which prevent the vanishing
gradients tend to present better results, such as ResNet50. The combination of any other architectures with ResNet obtained
results superior to the original architecture, due to the fact that ResNet uses the residual blocks that prevent the vanishing
gradients. The VGG-16 showed results below the average of the others because it is an older architecture and has many parameters
to be trained.

From this research, new possibilities can be reached in relation to the classification of x-ray images; new images can be
collected, making it possible to increase the classes from two (normal and pneumonia) to four (normal, viral pneumonia, bacterial
pneumonia and fungal pneumonia), yielding more robust models for image classification.

A future work that can be considered is the use of other architectures, such as MobileNet, VGG-19, Xception, and DenseNet,
to develop a new comparative study. In this manner, it is possible to improve the learning process and reduce False Positive and
False Negative errors, generating an ideal model for classifying x-ray images. Techniques, such as transfer learning [35], can
be used to assist in the classification of x-ray images with pneumonia using pre-trained weights, as well as for other types of
diseases, such as bone cancer, breast cancer, tumors, and so on.

Another possibility is the use of the National Institutes of Health Chest X-Ray database to improve studies with these and
other CNN architectures, as mentioned before. It is a broad database, both of images (112,120 images) and classes (15 classes),
using the multi-class and multi-label classification paradigm.
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