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Abstract – In the last decades, current trends in autonomous navigation have demonstrated an increased use of computational
vision over traditional techniques. This relies on the fact that most of the spaces are designed for human navigation. As a result,
they are filled with visual cues. In this sense, visual recognition is an essential ability to avoid obstacles when an autonomous
vehicle interacts with the real world. Data collection using Unmanned Aerial Vehicles (UAVs) navigating in a real-world sce-
nario is a high-cost and time-expensive activity. For this reason, one of the most valuable assets of technology companies is a
database containing locations and interactions. One solution to this problem is the adoption of a photo-realistic 3D simulator
as a data source. Using this resource, it is possible to gather a significant amount of data. Therefore, this research creates a
dataset for instance segmentation using images from a frontal UAV camera navigating in a 3D simulator. This work applies a
state-of-the-art deep learning technique, the Mask-RCNN. The architecture takes an image input and predicts per-pixel instance
segmentation. Experimental results showed that Mask RCNN has superior performance in our dataset when refining a model
trained using COCO dataset. Besides, the proposed methodology presents a good generalization capability due to the promising
results in real-world data.
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1. INTRODUCTION

Autonomous vehicles are increasingly present in many applications, such as in civil engineering [1] and robotics [2]. A
common way for this kind of system to perceive their environment is through vision [3]. Thus, visual recognition is becoming a
more demanded application to work in these environments, ensuring a safe and optimized operation. Among visual recognition
tasks, the capability of detecting and avoiding obstacles is essential in real environments. However, it may not be sufficient only
to identify the obstacles in the mission. The robot also needs to recognize the shape and boundaries from these obstacles to
distinguish among viable paths. A simple example would be a bag of plastic in the middle of the road. In this case, the laser
scan or stereo odometry could detect it, although those techniques are not able to distinguish the plastic bag from a rock or other
types of dangerous objects. As a result, their use may force the car to stop or change lanes, inadvertently exposing human lives
to potential danger.

In recent years, the growing interest in autonomous driving, as well as the development of machines able to interact with
people, is playing an important role in the improvement of the techniques for vision-based tracking machines [4–7]. However,
autonomous systems capable of interacting in not-controlled environments represent a high risk for humans that may be in
their range of action. Instance segmentation, which is a computer vision field that combines object detection and semantic
segmentation, can aid in avoiding such a risk [8]. Training such a computer vision system requires a considerable amount of data,
which can be challenging to acquire in many applications. So, employing synthetic data from a simulator can be an alternative.
The main advantage of this approach is that a simulator can provide greater control of the environment. Thus, variations that
would be much more complex in the real world can be simply realized by the simulator, e.g., obtaining data representing daytime
variations can be done by simulating such conditions. As stated in [9], this data diversification enhances network generalization
abilities. This kind of technique introduces new promises for transferring learning acquired in simulators using synthetic data
to real-world scenarios. The use of synthetic data can benefit many different methods for computational vision. For instance,
conventional methods for object detection are based on features sets, such as Bag-of-Words [10] or shallow networks [11]. The
efficiency of these methods is restricted by simple information about the object type and rough estimates of their location and
boundaries.

Deep learning represents a strong alternative to new computer vision tasks. This technique is a promising solution to the
shortcomings of classic computer vision, which is possible to observe from the recent advances in the applications of deep
learning to solve complex real-world problems. Deep learning for computer vision grows popular every year by the fact that
Convolutional Neural Networks (CNN) are able to learn descriptors from images for a broad range of tasks, such as classification,
segmentation, detection. In relation to these advances in deep learning techniques, additional tools have been proposed to
overcome some of the existing limitations in traditional methods. The Region-based Convolutional Neural Networks (R-CNN)
is an algorithm that takes advantage of an attention mechanism similar to the mechanism on a human brain [12]. This method
works in the following way. First, the method performs a fast scan of the whole scene, and then, performs a detailed analysis of
Regions of Interest (ROI). The R-CNN chooses regions that potentially include objects, adopting a selective search algorithm to
generate the proposal regions for an input image. As an improvement to the R-CNN architecture, Girshick et al. [13] presented
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the Fast R-CNN algorithm. In this architecture, the entire input image is applied to a CNN, and the feature map is extracted
from it. An improved method to obtain ROI pooling removes the need for a fixed window from the feature map. By including
an additional component to the R-CNN architecture, Ren et al. [14] presented the Faster R-CNN architecture, which includes
a Region Proposal Network (RPN). The RPN primary objective is to eliminate selective inference by combining the whole
process into the R-CNN. The work of He et al. [15] developed the Mask R-CNN architecture that works towards the instance
segmentation problem. Mask R-CNN is an extension of Faster R-CNN that predicts a binary mask for each ROI.

The main contribution of this work is the application of instance segmentation to detect cars and pedestrians in synthetic data
from a UAV photo-realistic simulator. The Airsim software [16] was used to create an annotated dataset for instance segmentation
task using synthetic data applicable for cars and people detection. An implementation of Mask-RCNN, pre-trained with COCO
dataset, was refined to our training set. The resulting model has excellent performance in our dataset and promising results in
real-world data, showing the good generalization capability of the proposed strategy.

The remainder of this research work is organized as follows. Section 2 presents the background and related works in the area.
Section 3 details the methodology and its foundations. Section 4 shows the proposed experiments with a proper discussion of the
results. The concluding remarks and future works are conducted in Section 5.

2. Background and Related Works

Object detection is one of the most important tasks in computer vision research area. This growing interest might be explained
by the potential applications that could use the results of object detection (e.g., computer vision has been expected to play a larger
role within autonomous systems and in surveillance applications). However, it is typically used along with other sensors due to
its history of relatively low precision. For instance, the authors in [17] adopted a Kalman filter to fuse data from multiple sensors,
such as LIDAR, radar, and computer vision. However, cameras generate a richer set of features at a fraction of the cost compared
to other kinds of sensors, such as sonar and radar.

Deep learning represents a robust approach to computer vision. In the last years, with innovative techniques based on Deep
Learning, this technique has been applied in different situations and aims [18–20]. Besides, it is a powerful tool since architectures
that make use of deep classifiers, such as CNNs, overcame the necessity of feature extraction steps from the segmented ROIs.
Figure 1 depicts the steps needed for object classification using a feature-based model and deep learning strategy. Note that in
Figure 1 (a), the process of vision-based object detection is constituted by three fundamental steps, i.e., image acquisition, feature
extraction, and classification. However, deep structures allowed the removal of the feature extraction step (Figure 1 (b)). Note
that the feature extraction is an automatic procedure performed by the deep classifier that takes images as input and computes
features at different layers of abstraction [21].

Figure 1: Steps needed for object classification. (a) Features-Based Model. (b) Deep Learning Strategy.

Among the variety of traceable objects, automatic tracking of humans in the video has always been an interesting research
topic. However, human detection and segmentation are challenging due to the large variety of conditions and well-known
problems related to image segmentation, such as noise [22]. In [23], the authors proposed a robust people detection method
in aerial images based on Cluster Boosting Tree (CBT) and Integral Channel Features (ICF). The authors also have proposed a
new dataset (GMVRT-v2) to capture a large variety of viewpoints. The work in [24] proposed a Convolutional Neural Network
(CNN) to perform people detection in embedded computers in a UAV. The UAV uses two cameras, an RGB and a thermal one.
The system was trained using GMVRT-v2 and a set of thermal images acquired through a FLIR Lepton camera. The authors have
shown that the combination of thermal and regular cameras has promising results in execution time. Other research fields that
present growing interest in automatic tracking of humans in video sequences are the human-computer interaction and augmented
reality [25–27].

An essential procedure for image analysis is segmentation. Semantic segmentation associates each pixel of an image with the
most likely class label from a finite set of possible labels. For aerial images, it is not a novel subject. Note that in the last years,
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much research effort has been applied to the semantic segmentation of satellite and aerial images. The work in [28] describes a
method based on classical techniques to perform segmentation in images from Google Earth. The method uses Superpixel [29] to
obtain an oversegmented map. An oversegmented map is a segmentation of a figure based on consistent properties such texture,
color or intensity as shown in [29]. The Local Binary Pattern Histogram Fourier features (LBP-HF) and color histograms of
RGB images are used to get texture and color descriptors, respectively, of each Superpixel. Then each Superpixel is classified
into one of five classes using k-NN, which are building, road, grass, tree, or water. In [30], the authors found a method to perform
instance segmentation to detect vehicles in aerial images. The authors employed a well known residual CNN, ResNet, to perform
detection in ISPRS and IEEE GRSS DFC2015 datasets, They also proposed the “Busy Parking Lot Unmanned Aerial Vehicle
Video” dataset.

Bounding boxes are a more straightforward method of scene understanding for determining a different object in an image.
Nevertheless, this method has its limits. Some objects, such as a curvy road or sky, can rapidly become problematic or even
impossible to convey the exact shape of the object. Using bounding boxes, we only achieve partial scene understanding. Semantic
segmentation is a task that assigns meaning to a part of an object. Using this task, we obtain fine-grained inference by inferring
labels to every pixel that acquires essential information about each pixel in the image rather than just slicing sections into
bounding boxes [31] [32] [33]. Significant improvements of dense classification through semantic segmentation have gone
thanks to the use of deep learning [34]. New architectures derived from Fully Convolutional Networks (FCN) have appeared,
and they can output dense pixel-wise annotations to achieve fine-grained classification, such as the one presented in [35]. The
authors proposed a deep learning approach to the semantic segmentation of very high-resolution aerial images. They designed a
that takes as input intensity and range data. Then, through a deconvolution and recycling of early network layers, it converts the
inputs into a pixel-wise classification at a full resolution.

Vehicle detection and classification are subjects that have been widely investigated in the computer vision community. The
work of [36] proposed a method to detect vehicles in high-resolution aerial images (Toronto dataset). It also used Superpixel to
obtain an oversegmented map. Patches centered at each Superpixel are extracted, and grids of HOG descriptors of each patch
are computed. In the training stage, these descriptors are used to compose a sparse representation dictionary. In the detection
stage, the HOG features are classified using sparse codes and the final dictionary. However, this approach does not have a good
performance when the dictionary has a large number of items. Also, HOG features do not have color or contextual information.
[37] further improved this work. The feature set was extended to include color through a transformation over RGB color space,
texture (HOG), and context (pre-trained small dictionaries using multiple classes of the original samples). The work in [37] also
evaluated their method in Toronto dataset but used the ORIDS dataset as well.

The work in [38] describes a method to perform people and cars detection in images taken from a UAV. The system uses a
CNN to detect in an NVidia Jetson Tx2 graphic card. It was trained using COCO dataset and has promising results in new images
from a UAV taken during a low altitude flight. However, as can be seen, in [39], low altitude aerial image datasets for people
detection are few. So, the authors proposed a data augmentation method that transforms general images to have an aerial-like
aspect. They have shown that the use of data augmentation can aid in improving the detection results when CNN is employed to
perform detection in aerial images.

Another important aspect regards the methodology assessment. Developing and testing algorithms for autonomous vehicles
operating in real-world scenarios is an expensive and time-consuming procedure. This process requires an infrastructure to build
costly hardware systems, obtain an extensive amount of annotated training data in a range of conditions and environments, and
the ability to rapidly test and benchmark the results. An autonomous vehicle simulator can obtain a large amount of data in the
simulator to train a deep learning model. After training, the model can be ported to real-world applications.

Airsim, developed by [40], is a photo-realistic simulator with detailed 3D environments. Airsim was designed as a plugin
for Unreal Engine, a tool for game development, which means that the autonomous vehicle simulation is decoupled from the
environment where it is running. This simulator provides the sensor data from the simulated world to the autonomous vehicle
controller. The controller outputs the actuator signals that the autonomous vehicle model in the simulator takes as input. The
autonomous vehicle model navigates through the environment capturing data for training a deep learning model. Another relevant
data obtained from the simulator is the current RGB image from the camera coupled to the autonomous vehicle. Note that the
user can change cameras’ parameters and resolution. This flexibility is an essential requirement for creating datasets for deep
learning applications. In this paper, the synthetic data is used to train an instance segmentation model using an environment that
simulates a city. The used technique is Mask R-CNN, a state of art deep learning model for instance segmentation. After the
training, we verify the generalization of this model through this environment.

3. Proposed Methodology for Instance Segmentation

As established in the previous section, the use of synthetic data is a viable tool for data gathering. The software Airsim
provides all resources for gathering information to deep learning applications. Through the available Computer Vision mode, it
is possible to navigate through the environment collecting training data. The city environment in this simulator is composed of an
ample downtown space simulating a daily-basis routine. In this scenario, the cars are moving along the streets while pedestrians
are walking on the sidewalk. Due to the complexity of the existing elements, only cars and people are selected as objects in this
research. These objects were selected due to their importance in computer vision applications and their dynamic behavior. Airsim
API has many types of available images in the simulator. However, for this research proposition, the authors collected two types
of images for the city dataset, that is, RGB and semantic segmentation images. Note that the RGB image is the raw input data
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for the instance segmentation model, that after training, is used for inference. Semantically segmented images can be useful in
pre-processing procedures, in which it is possible to identify each object in the scene using its RGB value and boundary. Figure
2 presents a global overview of the proposed methodology. Initially, the network is trained with COCO dataset [41]. Then, the
data is collected from Airsim software and annotated. Finally, the network is retrained. All the code was implemented in Python
and used Keras and OpenCV libraries.

Data collection

Data preparation
and cleaning

Data visualization
and analysis

Parameter tuning
and model training

Evaluation

Start

Initial Coco
trained model

Supervised
data labeling

Figure 2: Proposed methodology overview.

The dataset consists of a collection of sequential frames with resolution 1024 × 1024 pixels from the camera of the virtual
UAV. The simulator versatility allows the data collection at different heights, which is also important for the machine learning
model since in real-world applications, the height can change during UAV operation. Note that the machine learning model uses
weights from COCO dataset. Thus, to obtain a model with this versatility, the dataset was split into images obtained in two
different altitudes:

• (1) High: altitudes greater than 10 meters represent applications of supervision and environment analysis;

• (2) Medium: altitudes between 5 and 10 meters represent applications that need more accurate information regarding the
environment.

The correct ground truth of the objects and their boundaries are crucial for training a good model to perform instance segmen-
tation. Annotation process for instance segmentation model is a complex task. Unfortunately, automatic labeling is a complicated
task due to its complexity. Thus, for this process, manual annotation was performed. The simulator also provides a semantically
segmented image for each RGB frame. Since the segmented image has information regarding each object in the image, including
the boundaries of this object, this image is more suitable for this research purpose. As each object has a unique color in the
segmented image, it is possible to use global color binarization to generate a mask containing only the objects that are useful in
the image. So, only the pixels belonging to a car or a pedestrian are white in the resulting binary image. The manual annotation
process is easier in the mask image since the annotator only needs to draw the boundaries of the object following the edges of the
provided mask as well as to label the object correctly. Figure 3(a) and Figure 3(b) show the semantic segmentation image and a
mask generation example, respectively. Figure 4 illustrates the database structure.

The image database is used in the Mask R-CNN training. In the training process, one of the most important parameters of the
network is its cost function. Equation (1) describes the cost function used in this work, where pi is the predicted probability of
anchors being positive or negative. An anchor is the proposed region for the object placement. The parameter p∗i is the ground
truth label, that is, 1 for positive and 0 for the negative results. ti represents a four-parameter coordinate vector of the predicted
bounding-box, and t∗i is the ground-truth bounding box related with a positive anchor. Lcls is a classification cost function
regarding two classes (i.e., positive or negative). In this work, the authors used Lreg(ti, t

∗
i ) = R(ti, t

∗
i ), where R is the smooth

L1 cost function [13]. The value λ is a training parameter with a default value set to 10. The values Ncls and Nreg define the
number of anchors in a mini-batch and the number of locations, respectively.

L(pi, ti) =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) + λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i ) (1)
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(a) (b)

Figure 3: Mask generation. (a) The semantic segmentation image. (b) The mask result after applying color binarization algorithm
in the segmentation image.

Dataset

Mask SegmentationRBG Image

Annotation

Figure 4: Database contents and its relationship.

4. RESULTS AND DISCUSSION

This work used the Matterport Mask-RCNN implementation proposed by [42] for the experimental evaluation with simplified
representation shown in Figure 5. The training was performed in a computer supplied with 1 Tesla k40c GPU, 16GB DDR4
2133MHz of RAM, Intel(R) Core(TM) i7-3770 3.40 GHz processor and Ubuntu 18.04 as the operating system. Besides, a
pre-trained Mask R-CNN in COCO dataset was used for instance segmentation. The training for the proposed network was
performed using the SGD solver with a momentum of 0.9. The learning rate was set to 0.001.

Roll
projection

Deep
Network

Roll
pooling

FCs

Figure 5: Mask RCNN simplified layout.

The network was evaluated on a city dataset with two performance metrics, namely intersection over union (IoU), and mean
average precision (mAP). The metric IoU is a ratio between the area of overlap and the area of the union. The area of overlap
corresponds to the area between the predicted bounding box and the ground-truth bounding box. The mAP is a metric that
computes the accuracy per class and across all classes in the database at a given IoU value. In this work, we used values between
0.5 and 0.95 of IoU to estimate mAP. Note that both, the ground-truth bounding boxes (a hand-labeled bounding boxes) and the
predicted bounding boxes of the model are necessary to compute IoU. Typically, the (x, y) coordinates of the predicted bounding
boxes model do not perfectly match with the coordinates of the ground-truth bounding boxes. In this case, the metric needs
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to benefit the predicted bounding boxes that heavily overlap the ground-truth. Thus, this approach ensures that the predicted
bounding boxes match the ground-truth as close as possible.

The city dataset was constructed using the photo-realistic simulator Airsim, which reproduces a real 3D environment with
rich features and complex objects. Among the offered environments, the City environment is constituted of a large downtown
environment simulating a daily-basis routine of a city. In this scenario, we have cars moving along the streets while pedestrians
were walking on the sidewalk.

The input of our instance segmentation model is an RGB image. Our pre-processing step applied color binarization to segment
each frame image and generated a mask containing only objects that we are interested in the image. This conversion is essential
to simplify the process of annotation. After that, we use VIA software tool to perform the annotation task (label and boundaries
limits). All the annotations are done in the mask image. Thus it is possible to verify if the annotation is correctly related to the
original RGB image once it will be the ground-truth data.

To perform visual verification, the authors also developed a script that loads the RGB image and the metadata in JSON,
showing a mosaic containing the RGB image and the associated masks for each object detected in the image. This verification is
important to analyze if the annotation correctly labeled each object in the image, and the boundaries correspond to the limits of
the object in an image. Figure 6(a) and Figure 6(b) show an example of the mosaic output, where it is possible to identify both
objects (i.e., car and pedestrian).

(a)

(b)

Figure 6: Mask verification. Verification that shows if the mask generated in VIA software was correctly identified by Mask
R-CNN algorithm.

The dataset is available in [43]. Table 1 presents the comparisons for two architectures, that is, Resnet-50 and Resnet-101.
Note that the Mask R-CNN with R-101-FPN structure obtained the best result. This result can be explained by the fact that
networks with more deep layers are better feature extractors. Figure 7(a) and Figure 7(b) present a few predictions using the
proposed model for people and cars, respectively.

Table 1: The results obtained in the city test dataset.
Backbone mAP mAP50 mAP75

Resnet-50-FPN 36.25 49.02 41.52
Resnet-101-FPN 39.56 54.36 50.14

Using the dataset and the model trained, it is also possible to compute the confusion matrix. This process was performed
for video from Figure 7(b) and the resulting classification metrics can be seen in Table 2. The basic terminology used in the
confusion matrix is given by:

• Condition Positive (P): The number of real positive cases in the data;
40
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(a)

(b)

Figure 7: Images showing the Mask R-CNN model predictions. (a) People. (b) Cars.

• Condition Negative (N): The number of real negative cases in the data;

• True Positive (TP): Condition positive detected as positive;

• True Negative (TN): Condition negative detected as negative;

• False Positive (FP): Equivalent with false alarm;

• False negative (FN): Equivalent with miss;

It is possible to define the parameters for the confusion matrix evaluation, as shown in Table 3. Besides, it is possible to
build Table 4 using those parameters and the previous values, which allow us to evaluate the algorithm capabilities during the
operation.

Another experiment was conducted to verify the model capability of generalizing in a different environment. This result was
evaluated using the videos from the dataset presented in [44]. This dataset has several video records taken by DJI Mavic Pro
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Table 2: Confusion Matrix.
Condition positive

(CP)
Condition negative

(CN)
Predicted condition

positive 165 (TP) 54 (FP)

Predicted condition
negative 10 (FN) 7 (TN)

Table 3: Confusion Matrix Parameters.

ACC
ΣTrue Positive+ΣTrue Negative

ΣTotal Population
TP+TN

TP+TN+FP+FN

TPR ΣTrue Positive
ΣCondition Positive

TP
TP+FN

FPR
ΣFalse Negative

ΣCondition Positive
FP

TN+FP

PPV ΣFalse Positive
ΣPositive Predicted V alue

TP
TP+FP

Prevalence
ΣCondition positive
ΣTotal Population

CP
TP+TN+FN+FP

in distinct environments without ground truth data. Besides, it contains people in altitudes that the proposed model was trained
for. Figure 8 shows the prediction model. Note that the model was able to perform classification, bounding box regression, and
binary class prediction for two people correctly. It is also important to mention the number of frames per second processed by
the algorithm. In the tests, we reached about five fps using the computer described in the first paragraph of Section 4. This means
that the methods can process data in real surveillance missions in a time-bounded fashion.

Figure 8: Model detection using real-world image.

4.1 Tests in a Real Environment

For testing the proposed methodology in a real environment, this work used a Phantom 3 [45] flying in the height of eight
meters and moving with low speed to capture the images. Figure 9(a) and Figure 9(b) present the results using the Mask R-CNN
model. Note that the predicted results are higher than 0.9, which indicates that the model can generalize the knowledge obtained
from the simulated environment.

The built database is composed of only 5000 images, approximately. Despite that, the learning rate dropped significantly,
with 30 training iterations. Those results are in line with other recent works in the literature, such as Cai [46] and Kaiming [15].

Table 4: Confusion matrix parameters
True positive rate

(TPR)
False positive rate

(FPR) Prevalence
Accuracy

(ACC)
Positive predictive value

(PPV)
94,29% 5,71% 69,92% 72,88% 75,34%
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(a) (b)

Figure 9: Prediction in a real environment. (a) Car. (b) People.

As described, the work can operate in a single GPU, processing five frames per second, which is a good performance for
regular robotic applications. The estimated performance parameters are also a measurement of the proposed database efficiency.
Therefore, it is possible to compare the results with other related works. Table 5 shows the results for a few other works, that
is, [46], [47] and [15]. The results presented in the mentioned works are comparable to the results presented in Table 1.

Table 5: Comparison with results from the literature.
Backbone mAP mAP50 mAP75

RetNet-50 [46] 44.8 78.5 57.1
RetNet-101 [46] 54.2 79.6 59.2
AlexNet [47] 38.9 66.5 40.5
Kaiming ResNet-101-FPN [15] 35.7 58.0 37.8
Resnet-50-FPN 36.25 49.02 41.52

The works in [23, 24] have shown that people detection is an essential task in aerial images, and the works of [30, 36, 37]
also showed the relevance of vehicle detection. As in this work, the method in [38] can detect both people and vehicles. None of
them but [30], and the method proposed in this research work performs object detection through instance segmentation, which
can provide a richer scene understanding. However, the method in [30] can detect the vehicle, and ours can identify both vehicles
and people. Besides, as can be seen, in [39], there are few annotated datasets to train and test systems such as the ones in all
these works. They also have shown that data augmentation techniques can aid in increasing performance in object detection in
aerial images. This work provides an artificial dataset for car and people detection based on instance segmentation. Therefore,
this research showed good performance when a deep CNN method is employed in this dataset as well as good generalization
capability since the detector trained in this artificial dataset can perform well in real-world scenarios. The result indicates that
simulated data can be used to train networks that are latter deployed in real-world conditions. This reduces the burden of
deploying real equipment to gather data and allows the generation of a large dataset with low cost and repeatability.

5. CONCLUSIONS AND FUTURE WORKS

Instance segmentation is an important task with a wide range of applications. However, a large amount of data is necessary
to train algorithms to perform it. In this sense, developing and testing algorithms for the autonomous systems is expensive and
time-consuming to be performed directly in the real-world. Unlike conventional methods that use data from a real image datasets,
this work proposes a synthetic dataset from a photo-realistic simulator to train a deep learning architecture. Thus, this research
also presented a Mask R-CNN model that predicts per-pixel instance segmentation for a UAV application. The network proposed
in this research learns to predict per-pixel instance segmentation for cars and people in a city environment. The proposed
methodology was quantitatively evaluated on a city dataset. Experimental results demonstrated that the proposed approach has
promising performance w.r.t. intersection over union and mean average precision. Besides, it is comparable to others in the
literature. The trained model also has shown good generalization capability, since it could correctly predict real-world images
from UAVs.

In terms of evaluation, this work opens the possibility of several future developments. For instance, it is expected that the
proposed model can be applied in different situations, such as surveillance and rescue missions. Besides, the authors aim to
increase the City dataset by gathering more data from the City environment, including new different areas for improving model
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performance. Also, we would run this model in a dataset with real-world images that have ground-truth data to verify the model
performance. Furthermore, in the future, it is expected to include more objects (e.g., buildings, trees, etc.) in the pipeline of
instance segmentation models.
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